Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-133-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-15-133-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CALC-2020: a new baseline land cover map at 10 m resolution for the circumpolar Arctic
Chong Liu
School of Geospatial Engineering and Science, Sun Yat-sen University,
and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai 519082, China
Xiaoqing Xu
Peng Cheng Laboratory, Shenzhen 518066, China
Xuejie Feng
School of Geospatial Engineering and Science, Sun Yat-sen University,
and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai 519082, China
Xiao Cheng
School of Geospatial Engineering and Science, Sun Yat-sen University,
and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai 519082, China
State Key Laboratory of Remote Sensing Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Huabing Huang
CORRESPONDING AUTHOR
School of Geospatial Engineering and Science, Sun Yat-sen University,
and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai 519082, China
Peng Cheng Laboratory, Shenzhen 518066, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Related authors
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2760, https://doi.org/10.5194/egusphere-2024-2760, 2025
Short summary
Short summary
This manuscript proposes to combine semantic segmentation of ice region using a U-Net model and multi-stage detection of ice pixels using the Multi-textRG algorithm to achieve fine ice-water classification. Novel proccessings for the HV/HH polarization ratio and the GLCM textures, as well as the usage of regional growing, largely improve the method accuracy and robustness. The proposed algorithm framework achieved automated sea-ice labelling.
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1177, https://doi.org/10.5194/egusphere-2024-1177, 2024
Preprint archived
Short summary
Short summary
Arctic sea ice has rapidly declined due to global warming, leading to extreme weather events. Accurate ice monitoring is vital for understanding and forecasting these impacts. Combining SAR and AMSR2 data with machine learning is efficient but requires sufficient labels. We propose a framework integrating the U-Net model with the Multi-textRG algorithm to achieve ice-water classification at SAR-level resolution and to generate accurate labels for improved U-Net model training.
Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu
Earth Syst. Sci. Data, 13, 4799–4817, https://doi.org/10.5194/essd-13-4799-2021, https://doi.org/10.5194/essd-13-4799-2021, 2021
Short summary
Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.
Mingyue Nong, Xuying Liu, Teng Li, Baogang Zhang, Qi Liang, Lei Zheng, Tiancheng Zhao, and Xiao Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1884, https://doi.org/10.5194/egusphere-2025-1884, 2025
Preprint archived
Short summary
Short summary
We extracted nearshore small icebergs in front of Dalk Glacier using UAV high-resolution data and directly obtained geometric parameters of the icebergs and analyzed their distribution patterns. The area/volume relationship of our icebergs aligns with the medium to large icebergs in existing ocean model. The study demonstrates UAVs' effectiveness in polar research and the importance of including all iceberg sizes in ocean modeling for better environmental impact predictions.
Zilong Chen, Xuying Liu, Zhenfu Guan, Teng Li, Xiao Cheng, Tian Li, Yan Liu, Qi Liang, Lei Zheng, and Jiping Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-51, https://doi.org/10.5194/essd-2025-51, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Our study uses Google Earth Engine to create a dataset of Antarctic icebergs in the Southern Ocean (south of 55°S) from October 2018 to 2023. The dataset includes icebergs larger than 0.04 km², with details on their locations, sizes, and shapes. It shows significant changes in iceberg number and area, mainly driven by major ice shelf calving events – especially in the Weddell Sea. This resource fills key gaps in understanding iceberg impacts on the ocean and climate.
Fukai Peng, Xiaoli Deng, Yunzhong Shen, and Xiao Cheng
Earth Syst. Sci. Data, 17, 1441–1460, https://doi.org/10.5194/essd-17-1441-2025, https://doi.org/10.5194/essd-17-1441-2025, 2025
Short summary
Short summary
A new reprocessed altimeter coastal sea level dataset, International Altimetry Service 2024 (IAS2024), for monitoring sea level changes along the world’s coastlines is presented. The evaluation and validation results confirm the reliability of this dataset. The altimeter-based virtual stations along the world’s coastlines can be built using this dataset to monitor the coastal sea level changes where tide gauges are unavailable. Therefore, it is beneficial for both oceanographic communities and policymakers.
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2760, https://doi.org/10.5194/egusphere-2024-2760, 2025
Short summary
Short summary
This manuscript proposes to combine semantic segmentation of ice region using a U-Net model and multi-stage detection of ice pixels using the Multi-textRG algorithm to achieve fine ice-water classification. Novel proccessings for the HV/HH polarization ratio and the GLCM textures, as well as the usage of regional growing, largely improve the method accuracy and robustness. The proposed algorithm framework achieved automated sea-ice labelling.
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024, https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary
Short summary
The inconsistent coverage of Landsat data due to its long revisit intervals and frequent cloud cover poses challenges to large-scale land monitoring. We developed a global 30 m 23-year (2000–2022) daily seamless data cube (SDC) of surface reflectance based on Landsat 5, 7, 8, and 9 and MODIS products. The SDC exhibits enhanced capabilities for monitoring land cover changes and robust consistency in both spatial and temporal dimensions, which are important for global environmental monitoring.
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1177, https://doi.org/10.5194/egusphere-2024-1177, 2024
Preprint archived
Short summary
Short summary
Arctic sea ice has rapidly declined due to global warming, leading to extreme weather events. Accurate ice monitoring is vital for understanding and forecasting these impacts. Combining SAR and AMSR2 data with machine learning is efficient but requires sufficient labels. We propose a framework integrating the U-Net model with the Multi-textRG algorithm to achieve ice-water classification at SAR-level resolution and to generate accurate labels for improved U-Net model training.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Short summary
Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. This study gives a systematic inter-comparison and evaluation of eight SITY products. Main results include differences in SITY products being significant, with average Arctic multiyear ice extent up to 1.8×106 km2; Ku-band scatterometer SITY products generally performing better; and factors such as satellite inputs, classification methods, training datasets and post-processing highly impacting their performance.
Qi Liang, Wanxin Xiao, Ian Howat, Xiao Cheng, Fengming Hui, Zhuoqi Chen, Mi Jiang, and Lei Zheng
The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, https://doi.org/10.5194/tc-16-2671-2022, 2022
Short summary
Short summary
Using multi-temporal ArcticDEM and ICESat-2 altimetry data, we document changes in surface elevation of a subglacial lake basin from 2012 to 2021. The long-term measurements show that the subglacial lake was recharged by surface meltwater and that a rapid drainage event in late August 2019 induced an abrupt ice velocity change. Multiple factors regulate the episodic filling and drainage of the lake. Our study also reveals ~ 64 % of the surface meltwater successfully descended to the bed.
Yijing Lin, Yan Liu, Zhitong Yu, Xiao Cheng, Qiang Shen, and Liyun Zhao
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-325, https://doi.org/10.5194/tc-2021-325, 2021
Preprint withdrawn
Short summary
Short summary
We introduce an uncertainty analysis framework for comprehensively and systematically quantifying the uncertainties of the Antarctic mass balance using the Input and Output Method. It is difficult to use the previous strategies employed in various methods and the available data to achieve the goal of estimation accuracy. The dominant cause of the future uncertainty is the ice thickness data gap. The interannual variability of ice discharge caused by velocity and thickness is also nonnegligible.
Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu
Earth Syst. Sci. Data, 13, 4799–4817, https://doi.org/10.5194/essd-13-4799-2021, https://doi.org/10.5194/essd-13-4799-2021, 2021
Short summary
Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Short summary
A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2, and the average calving rate was measured as 770.3 Gt yr-1. Iceberg calving is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. This annual iceberg calving dataset provides consistent and precise calving observations with the longest time coverage.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Yu Zhou, Jianlong Chen, and Xiao Cheng
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-21, https://doi.org/10.5194/esurf-2021-21, 2021
Preprint withdrawn
Cited articles
A'Campo, W., Bartsch, A., Roth, A., Wendleder, A., Martin, V. S.,
Durstewitz, L., Lodi, R., Wagner, J., and Hugelius, G.: Arctic Tundra Land
Cover Classification on the Beaufort Coast Using the Kennaugh Element
Framework on Dual-Polarimetric TerraSAR-X Imagery, Remote Sens., 13, 4780,
https://doi.org/10.3390/rs13234780, 2021.
Bartsch, A., Höfler, A., Kroisleitner, C., and Trofaier, A. M.: Land
Cover Mapping in Northern High Latitude Permafrost Regions with Satellite
Data: Achievements and Remaining Challenges, Remote Sens., 8, 979,
https://doi.org/10.3390/rs8120979, 2016.
Bartsch, A., Pointner, G., Ingeman-Nielsen, T., and Lu, W.: Towards
Circumpolar Mapping of Arctic Settlements and Infrastructure Based on
Sentinel-1 and Sentinel-2, Remote Sens., 12, 2368,
https://doi.org/10.3390/rs12152368, 2020a.
Bartsch, A., Widhalm, B., Leibman, M., Ermokhina, K., Kumpula, T., Skarin,
A., Wilcox, E. J., Jones, B. M., Frost, G. V., Höfler, A., and Pointner,
G.: Feasibility of tundra vegetation height retrieval from Sentinel-1 and
Sentinel-2 data, Remote Sens. Environ., 237, 111515,
https://doi.org/10.1016/j.rse.2019.111515, 2020b.
Bartsch, A., Pointner, G., Nitze, I., Efimova, A., Jakober, D., Ley, S.,
Högström, E., Grosse, G., and Schweitzer, P.: Expanding
infrastructure and growing anthropogenic impacts along Arctic coasts,
Environ. Res. Lett., 16, 115013, https://doi.org/10.1088/1748-9326/ac3176,
2021.
Beamish, A., Raynolds, M. K., Epstein, H., Frost, G. V., Macander, M. J.,
Bergstedt, H., Bartsch, A., Kruse, S., Miles, V., Tanis, C. M., Heim, B.,
Fuchs, M., Chabrillat, S., Shevtsova, I., Verdonen, M., and Wagner, J.:
Recent trends and remaining challenges for optical remote sensing of Arctic
tundra vegetation: A review and outlook, Remote Sens. Environ., 246, 111872,
https://doi.org/10.1016/j.rse.2020.111872, 2020.
Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M.,
Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B.
V., Burns, P., Zetterberg, P., D'Arrigo, R., and Goetz, S. J.: Summer
warming explains widespread but not uniform greening in the Arctic tundra
biome, Nat. Commun., 11, 4621, https://doi.org/10.1038/s41467-020-18479-5,
2020.
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and
Friedl, M. A.: Continental-scale land surface phenology from harmonized
Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685,
https://doi.org/10.1016/j.rse.2020.111685, 2020.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B.,
Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R.,
Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan,
O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m
land use land cover mapping, Sci. Data, 9, 251,
https://doi.org/10.1038/s41597-022-01307-4, 2022.
Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q., Dwyer, J. L.,
Vogelmann, J. E., Loveland, T. R., Woodcock, C. E., Stehman, S. V., Zhu, Z.,
Pengra, B. W., Smith, K., Horton, J. A., Xian, G., Auch, R. F., Sohl, T. L.,
Sayler, K. L., Gallant, A. L., Zelenak, D., Reker, R. R., and Rover, J.:
Lessons learned implementing an operational continuous United States
national land change monitoring capability: The Land Change Monitoring,
Assessment, and Projection (LCMAP) approach, Remote Sens. Environ., 238,
111356, https://doi.org/10.1016/j.rse.2019.111356, 2020.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover
mapping at 30m resolution: A POK-based operational approach, ISPRS J.
Photogramm. Remote Sens., 103, 7–27,
https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Christensen, T., Barry, T., Taylor, J. J., Doyle, M., Aronsson, M., Braa,
J., Burns, C., Coon, C., Coulson, S., Cuyler, C., Falk, K., Heiðmarsson,
S., Kulmala, P., Lawler, J., MacNearney, D., Ravolainen, V., Smith, P. A.,
Soloviev, M., and Schmidt, N. M.: Developing a circumpolar programme for the
monitoring of Arctic terrestrial biodiversity, Ambio, 49, 655–665,
https://doi.org/10.1007/s13280-019-01311-w, 2020.
Descals, A., Gaveau, D. L. A., Verger, A., Sheil, D., Naito, D., and
Peñuelas, J.: Unprecedented fire activity above the Arctic Circle linked
to rising temperatures, Science, 378, 532–537,
https://doi.org/10.1126/science.abn9768, 2022.
Engram, M., Anthony, K. W., Meyer, F. J., and Grosse, G.: Synthetic aperture
radar (SAR) backscatter response from methane ebullition bubbles trapped by
thermokarst lake ice, Can. J. Remote Sens., 38, 667–682,
https://doi.org/10.5589/m12-054, 2013.
Foody, G. M., Pal, M., Rocchini, D., Garzon-Lopez, C. X., and Bastin, L.:
The Sensitivity of Mapping Methods to Reference Data Quality: Training
Supervised Image Classifications with Imperfect Reference Data, ISPRS Int.
J. Geo-Inf., 5, 199, https://doi.org/10.3390/ijgi5110199, 2016.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ.,
114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Friedl, M. A., Woodcock, C. E., Olofsson, P., Zhu, Z., Loveland, T.,
Stanimirova, R., Arevalo, P., Bullock, E., Hu, K.-T., Zhang, Y., Turlej, K.,
Tarrio, K., McAvoy, K., Gorelick, N., Wang, J. A., Barber, C. P., and Souza,
C.: Medium Spatial Resolution Mapping of Global Land Cover and Land Cover
Change Across Multiple Decades From Landsat, Front. Remote Sens., 3, 894571,
https://doi.org/10.3389/frsen.2022.894571, 2022.
Gong, P.: Accuracies of global land cover maps checked against fluxnet
sites, Sci. Found. China, 16, 31–35, 2008.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang,
X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X.,
Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng,
Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu,
X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., and Chen, J.: Finer resolution observation
and monitoring of global land cover: first mapping results with Landsat TM
and ETM+ data, Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.
Gong, P., Yu, L., Li, C., Wang, J., Liang, L., Li, X., Ji, L., Bai, Y.,
Cheng, Y., and Zhu, Z.: A new research paradigm for global land cover
mapping, Ann. GIS, 22, 87–102,
https://doi.org/10.1080/19475683.2016.1164247, 2016.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji,
L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H. P., Guo,
J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L.,
Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.:
Stable classification with limited sample: transferring a 30-m resolution
sample set collected in 2015 to mapping 10-m resolution global land cover in
2017, Sci. Bull., 64, 370–373, https://doi.org/10.1016/j.scib.2019.03.002,
2019.
Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X.,
Fang, L., Feng, S., Feng, Y., Gong, Y., Gu, H., Huang, H., Huang, X., Jiao,
H., Kang, Y., Lei, G., Li, A., Li, X., Li, X., Li, Y., Li, Z., Li, Z., Liu,
C., Liu, C., Liu, M., Liu, S., Mao, W., Miao, C., Ni, H., Pan, Q., Qi, S.,
Ren, Z., Shan, Z., Shen, S., Shi, M., Song, Y., Su, M., Suen, H. P., Sun,
B., Sun, F., Sun, J., Sun, L., Sun, W., Tian, T., Tong, X., Tseng, Y., Tu,
Y., Wang, H., Wang, L., Wang, X., Wang, Z., Wu, T., Xie, Y., Yang, J., Yang,
J., Yuan, M., Yue, W., Zeng, H., Zhang, K., Zhang, N., Zhang, T., Zhang, Y.,
Zhao, F., Zheng, Y., Zhou, Q., Clinton, N., Zhu, Z., and Xu, B.: Mapping
essential urban land use categories in China (EULUC-China): preliminary
results for 2018, Sci. Bull., 65, 182–187,
https://doi.org/10.1016/j.scib.2019.12.007, 2020a.
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B.,
Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global artificial
impervious area (GAIA) between 1985 and 2018, Remote Sens. Environ., 236,
111510, https://doi.org/10.1016/j.rse.2019.111510, 2020b.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Gray, J. and Song, C.: Consistent classification of image time series with
automatic adaptive signature generalization, Remote Sens. Environ., 134,
333–341, https://doi.org/10.1016/j.rse.2013.03.022, 2013.
Hakkenberg, C. R., Dannenberg, M. P., Song, C., and Vinci, G.: Automated
Continuous Fields Prediction From Landsat Time Series: Application to
Fractional Impervious Cover, IEEE Geosci. Remote Sens. Lett., 17, 132–136,
https://doi.org/10.1109/LGRS.2019.2915320, 2020.
Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are
treelines advancing? A global meta-analysis of treeline response to climate
warming, Ecol. Lett., 12, 1040–1049,
https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009.
Hermosilla, T., Wulder, M. A., White, J. C., and Coops, N. C.: Land cover
classification in an era of big and open data: Optimizing localized
implementation and training data selection to improve mapping outcomes,
Remote Sens. Environ., 268, 112780,
https://doi.org/10.1016/j.rse.2021.112780, 2022.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hodkinson, I. D., Webb, N. R., Bale, J. S., Block, W., Coulson, S. J., and
Strathdee, A. T.: Global Change and Arctic Ecosystems: Conclusions and
Predictions from Experiments with Terrestrial Invertebrates on Spitsbergen,
Arct. Alp. Res., 30, 306–313,
https://doi.org/10.1080/00040851.1998.12002904, 1998.
Horvath, P., Tang, H., Halvorsen, R., Stordal, F., Tallaksen, L. M., Berntsen, T. K., and Bryn, A.: Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models, Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, 2021.
Huang, H., Wang, J., Liu, C., Liang, L., Li, C., and Gong, P.: The migration
of training samples towards dynamic global land cover mapping, ISPRS J.
Photogramm. Remote Sens., 161, 27–36,
https://doi.org/10.1016/j.isprsjprs.2020.01.010, 2020.
Huang, X., Yang, J., Wang, W., and Liu, Z.: Mapping 10 m global impervious surface area (GISA-10 m) using multi-source geospatial data , Earth Syst. Sci. Data, 14, 3649–3672, https://doi.org/10.5194/essd-14-3649-2022, 2022.
Huntington, H. P., Carey, M., Apok, C., Forbes, B. C., Fox, S., Holm, L. K.,
Ivanova, A., Jaypoody, J., Noongwook, G., and Stammler, F.: Climate change
in context: putting people first in the Arctic, Reg. Environ. Change, 19,
1217–1223, https://doi.org/10.1007/s10113-019-01478-8, 2019.
Ingeman-Nielsen, T. and Vakulenko, I.: Calibration and validation data for
infratructure mapping, Greenland, link to files, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.895949, 2018.
Jeong, S.-J., Bloom, A. A., Schimel, D., Sweeney, C., Parazoo, N. C.,
Medvigy, D., Schaepman-Strub, G., Zheng, C., Schwalm, C. R., Huntzinger, D.
N., Michalak, A. M., and Miller, C. E.: Accelerating rates of Arctic carbon
cycling revealed by long-term atmospheric CO2 measurements, Sci. Adv.,
4, eaao1167, https://doi.org/10.1126/sciadv.aao1167, 2018.
Jia, G. J., Epstein, H. E., and Walker, D. A.: Greening of arctic Alaska,
1981–2001, Geophys. Res. Lett., 30, 2067, https://doi.org/10.1029/2003GL018268,
2003.
Jin, S., Yang, L., Zhu, Z., and Homer, C.: A land cover change detection and
classification protocol for updating Alaska NLCD 2001 to 2011, Remote Sens.
Environ., 195, 44–55, https://doi.org/10.1016/j.rse.2017.04.021, 2017.
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M.,
and Brumby, S. P.: Global land use / land cover with Sentinel 2 and deep
learning, in: 2021 IEEE International Geoscience and Remote Sensing
Symposium IGARSS, 4704–4707,
https://doi.org/10.1109/IGARSS47720.2021.9553499, 2021.
Keenan, T. F. and Riley, W. J.: Greening of the land surface in the world's
cold regions consistent with recent warming, Nat. Clim. Change, 8, 825–828,
https://doi.org/10.1038/s41558-018-0258-y, 2018.
Kohonen, T.: Essentials of the self-organizing map, Neural Netw., 37,
52–65, https://doi.org/10.1016/j.neunet.2012.09.018, 2013.
Kumpula, T., Pajunen, A., Kaarlejärvi, E., Forbes, B. C., and Stammler,
F.: Land use and land cover change in Arctic Russia: Ecological and social
implications of industrial development, Spec. Issue Polit. Policy Carbon
Capture Storage, 21, 550–562,
https://doi.org/10.1016/j.gloenvcha.2010.12.010, 2011.
Landrum, L. and Holland, M. M.: Extremes become routine in an emerging new
Arctic, Nat. Clim. Change, 10, 1108–1115,
https://doi.org/10.1038/s41558-020-0892-z, 2020.
Li, C., Gong, P., Wang, J., Zhu, Z., Biging, G. S., Yuan, C., Hu, T., Zhang,
H., Wang, Q., Li, X., Liu, X., Xu, Y., Guo, J., Liu, C., Hackman, K. O.,
Zhang, M., Cheng, Y., Yu, L., Yang, J., Huang, H., and Clinton, N.: The
first all-season sample set for mapping global land cover with Landsat-8
data, Sci. Bull., 62, 508–515, https://doi.org/10.1016/j.scib.2017.03.011,
2017.
Liang, L., Liu, Q., Liu, G., Li, H., and Huang, C.: Accuracy Evaluation and
Consistency Analysis of Four Global Land Cover Products in the Arctic
Region, Remote Sens., 11, 1396, https://doi.org/10.3390/rs11121396, 2019.
Liu, C., Zhang, Q., Luo, H., Qi, S., Tao, S., Xu, H., and Yao, Y.: An
efficient approach to capture continuous impervious surface dynamics using
spatial-temporal rules and dense Landsat time series stacks, Remote Sens.
Environ., 229, 114–132, https://doi.org/10.1016/j.rse.2019.04.025, 2019.
Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q., Wu, B., Zhang, M.,
Nabil, M., Tian, F., Zeng, H., Zhang, N., Bavuudorj, G., Rukundo, E., Liu,
W., Bofana, J., Beyene, A. N., and Elnashar, A.: A new framework to map fine
resolution cropping intensity across the globe: Algorithm, validation, and
implication, Remote Sens. Environ., 251, 112095,
https://doi.org/10.1016/j.rse.2020.112095, 2020.
Liu, C., Huang, H., Hui, F., Zhang, Z., and Cheng, X.: Fine-Resolution
Mapping of Pan-Arctic Lake Ice-Off Phenology Based on Dense Sentinel-2 Time
Series Data, Remote Sens., 13, 2742, https://doi.org/10.3390/rs13142742, 2021.
Liu, C., Huang, H., Zhang, Q., Chen, X., Xu, X., Xu, H., and Cheng, X.:
Arctic's man-made impervious surfaces expanded by over two-thirds in the
21st century, Sci. Bull., 67, 1425–1429, https://doi.org/10.1016/j.scib.2022.06.001, 2022.
Liu, H., Gong, P., Wang, J., Wang, X., Ning, G., and Xu, B.: Production of
global daily seamless data cubes and quantification of global land cover
change from 1985 to 2020 - iMap World 1.0, Remote Sens. Environ., 258,
112364, https://doi.org/10.1016/j.rse.2021.112364, 2021.
Lönnqvist, A., Rauste, Y., Molinier, M., and Häme, T.: Polarimetric
SAR Data in Land Cover Mapping in Boreal Zone, IEEE Trans. Geosci. Remote, 48, 3652–3662, https://doi.org/10.1109/TGRS.2010.2048115, 2010.
Loveland, T. R. and Belward, A. S.: The International Geosphere Biosphere
Programme Data and Information System global land cover data set (DISCover),
Acta Astronaut., 41, 681–689,
https://doi.org/10.1016/S0094-5765(98)00050-2, 1997.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21,
1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Lu, W., Aalberg, A., Høyland, K. V., Lubbad, R., Løset, S., and
Ingeman-Nielsen, T.: Calibration data for Infratructure mapping in Svalbard,
link to files, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.895950, 2018.
Magnússon, R. Í., Limpens, J., Kleijn, D., Huissteden, K. van,
Maximov, T. C., Lobry, S., and Heijmans, M. M. P. D.: Shrub decline and
expansion of wetland vegetation revealed by very high resolution land cover
change detection in the Siberian lowland tundra, Sci. Total Environ., 782,
146877, https://doi.org/10.1016/j.scitotenv.2021.146877, 2021.
Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J.,
McGuire, A. D., Fix, A., Sweeney, C., Elder, C. D., and Miller, C. E.:
Permafrost carbon emissions in a changing Arctic, Nat. Rev. Earth Environ.,
3, 55–67, https://doi.org/10.1038/s43017-021-00230-3, 2022.
Moon, T. A., Overeem, I., Druckenmiller, M., Holland, M., Huntington, H.,
Kling, G., Lovecraft, A. L., Miller, G., Scambos, T., Schädel, C.,
Schuur, E. A. G., Trochim, E., Wiese, F., Williams, D., and Wong, G.: The
Expanding Footprint of Rapid Arctic Change, Earths Future, 7, 212–218,
https://doi.org/10.1029/2018EF001088, 2019.
Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H.
E., Assmann, J. J., John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck,
P. S. A., Berner, L. T., Bhatt, U. S., Bjorkman, A. D., Blok, D., Bryn, A.,
Christiansen, C. T., Cornelissen, J. H. C., Cunliffe, A. M., Elmendorf, S.
C., Forbes, B. C., Goetz, S. J., Hollister, R. D., de Jong, R., Loranty, M.
M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T. C.,
Parmentier, F.-J. W., Post, E., Schaepman-Strub, G., Stordal, F., Sullivan,
P. F., Thomas, H. J. D., Tømmervik, H., Treharne, R., Tweedie, C. E.,
Walker, D. A., Wilmking, M., and Wipf, S.: Complexity revealed in the
greening of the Arctic, Nat. Clim. Change, 10, 106–117,
https://doi.org/10.1038/s41558-019-0688-1, 2020.
Najafi, M. R., Zwiers, F. W., and Gillett, N. P.: Attribution of Arctic
temperature change to greenhouse-gas and aerosol influences, Nat. Clim.
Change, 5, 246–249, https://doi.org/10.1038/nclimate2524, 2015.
Nemani, R., Votava, P., Michaelis, A., Melton, F., Hashimoto, H., Milesi,
C., Wang, W., and Ganguly, S.: NASA Earth Exchange: A Collaborative Earth
Science Platform, in: AGU Fall Meeting Abstracts, IN53A-1161, 2010.
Niittynen, P., Heikkinen, R. K., and Luoto, M.: Snow cover is a neglected
driver of Arctic biodiversity loss, Nat. Clim. Change, 8, 997–1001,
https://doi.org/10.1038/s41558-018-0311-x, 2018.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57,
https://doi.org/10.1016/j.rse.2014.02.015, 2014.
ORNL DAAC: Spatial Data Access Tool (SDAT), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1388, 2017.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., and Isaac, P.: The
FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance
data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr.,
M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W.,
Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen,
M.: ArcticDEM, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Potapov, P., Turubanova, S., Hansen, M. C., Tyukavina, A., Zalles, V., Khan,
A., Song, X.-P., Pickens, A., Shen, Q., and Cortez, J.: Global maps of
cropland extent and change show accelerated cropland expansion in the
twenty-first century, Nat. Food, 3, 19–28,
https://doi.org/10.1038/s43016-021-00429-z, 2022.
Previdi, M., Smith, K. L., and Polvani, L. M.: Arctic amplification of
climate change: a review of underlying mechanisms, Environ. Res. Lett., 16,
093003, https://doi.org/10.1088/1748-9326/ac1c29, 2021.
Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R.,
Kanevskiy, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., and Webber, P.
J.: Cumulative geoecological effects of 62 years of infrastructure and
climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield,
Alaska, Glob. Change Biol., 20, 1211–1224,
https://doi.org/10.1111/gcb.12500, 2014.
Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov,
M. M., Daniëls, F. J. A., Eidesen, P. B., Ermokhina, K. A., Frost, G.
V., Jedrzejek, B., Jorgenson, M. T., Kennedy, B. E., Kholod, S. S.,
Lavrinenko, I. A., Lavrinenko, O. V., Magnússon, B., Matveyeva, N. V.,
Metúsalemsson, S., Nilsen, L., Olthof, I., Pospelov, I. N., Pospelova,
E. B., Pouliot, D., Razzhivin, V., Schaepman-Strub, G., Šibík, J.,
Telyatnikov, M. Y., and Troeva, E.: A raster version of the Circumpolar
Arctic Vegetation Map (CAVM), Remote Sens. Environ., 232, 111297,
https://doi.org/10.1016/j.rse.2019.111297, 2019.
Rees, W. G., Hofgaard, A., Boudreau, S., Cairns, D. M., Harper, K., Mamet,
S., Mathisen, I., Swirad, Z., and Tutubalina, O.: Is subarctic forest
advance able to keep pace with climate change?, Glob. Change Biol., 26,
3965–3977, https://doi.org/10.1111/gcb.15113, 2020.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M.,
Gray, J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M.,
Melaas, E. K., Friedl, M. A., and Frolking, S.: Tracking vegetation
phenology across diverse North American biomes using PhenoCam imagery, Sci.
Data, 5, 180028, https://doi.org/10.1038/sdata.2018.28, 2018.
Shevtsova, I., Heim, B., Kruse, S., Schroeder, J., Troeva, E., Pestryakova,
L. A., Zakharov, E. S., and Herzschuh, U.: Strong shrub expansion in
tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka
(north-eastern Siberia) between 2000 and 2017, Environ. Res. Lett., 15,
085006, https://doi.org/10.1088/1748-9326/ab9059, 2020.
Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A.,
Vermote, E. F., and Townshend, J. R.: Global land change from 1982 to 2016,
Nature, 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9, 2018.
Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E.,
Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J.,
Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A., and other members of the T. C. Team: The Circumpolar Arctic
vegetation map, J. Veg. Sci., 16, 267–282,
https://doi.org/10.1111/j.1654-1103.2005.tb02365.x, 2005.
Wang, J. A. and Friedl, M. A.: The role of land cover change in
Arctic-Boreal greening and browning trends, Environ. Res. Lett., 14, 125007,
https://doi.org/10.1088/1748-9326/ab5429, 2019.
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R.
F., and Friedl, M. A.: Extensive land cover change across Arctic–Boreal
Northwestern North America from disturbance and climate forcing, Glob.
Change Biol., 26, 807–822, https://doi.org/10.1111/gcb.14804, 2020.
Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., and Hermosilla, T.:
Land cover 2.0, Int. J. Remote Sens., 39, 4254–4284,
https://doi.org/10.1080/01431161.2018.1452075, 2018.
Xu, X., Liu, C., Liu, C., Hui, F., Cheng, X., and Huang, H.: Circumpolar
Arctic Land Cover for circa 2020 (CALC-2020), Science Data Bank [data set],
https://doi.org/10.57760/sciencedb.01869, 2022a.
Xu, X., Liu, C., Liu, C., Hui, F., Cheng, X., and Huang, H.: Fine-resolution
mapping of the circumpolar Arctic Man-made impervious areas (CAMI) using
sentinels, OpenStreetMap and ArcticDEM, Big Earth Data, 0, 1–22,
https://doi.org/10.1080/20964471.2022.2025663, 2022b.
Xu, X., Liu, C., Liu, C., Hui, F., Cheng,
X., Huang,
H., and Chen,
X.: Circumpolar Arctic Man-made Impervious Surface Area (CAMI) Datasets[DS/OL], Science Data Bank [data set], https://doi.org/10.11922/sciencedb.01435, 2022c.
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E., Ramoino, F., Arino, O.: ESA WorldCover 10 m 2020 v100 (Version v100), Zenodo [data set], https://doi.org/10.5281/zenodo.5571936, 2021.
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform, Earth Syst. Sci. Data, 12, 1625–1648, https://doi.org/10.5194/essd-12-1625-2020, 2020.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhang, Y., Song, C., Hwang, T., Novick, K., Coulston, J. W., Vose, J.,
Dannenberg, M. P., Hakkenberg, C. R., Mao, J., and Woodcock, C. E.: Land
cover change-induced decline in terrestrial gross primary production over
the conterminous United States from 2001 to 2016, Agric. For. Meteorol.,
308–309, 108609, https://doi.org/10.1016/j.agrformet.2021.108609, 2021.
Zhu, Z., Woodcock, C. E., Rogan, J., and Kellndorfer, J.: Assessment of
spectral, polarimetric, temporal, and spatial dimensions for urban and
peri-urban land cover classification using Landsat and SAR data, Remote
Sens. Environ., 117, 72–82, https://doi.org/10.1016/j.rse.2011.07.020,
2012.
Short summary
Rapid Arctic changes are increasingly influencing human society, both locally and globally. Land cover offers a basis for characterizing the terrestrial world, yet spatially detailed information on Arctic land cover is lacking. We employ multi-source data to develop a new land cover map for the circumpolar Arctic. Our product reveals regionally contrasting biome distributions not fully documented in existing studies and thus enhances our understanding of the Arctic’s terrestrial system.
Rapid Arctic changes are increasingly influencing human society, both locally and globally. Land...
Special issue
Altmetrics
Final-revised paper
Preprint