

Supplement of

CALC-2020: a new baseline land cover map at 10 m resolution for the circumpolar Arctic

Chong Liu et al.

Correspondence to: Caixia Liu (liucx@radi.ac.cn) and Huabing Huang (huanghb55@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1 Distribution of preliminary training sample derived from FAST (**a**), extracted from preexisting land cover maps (**b**) and interpreted from VHR imagery (**c**). The base map of the figure is from ESRI.

Figure S2 An example fit of NDVI time series for the identification of phenometrics. Green points represent original cloud-free Sentinel-2 observations.

Legend

- Cropland
- Forest
- Graminoid tundra
- Shrub tundra
- Wetland
- Open water
- Lichen/moss
- Man-made impervious
- Barren
- Ice/snow

Figure S3 Geographical distribution of validation sample. The base map of the figure is from ESRI.

Figure S4 Sentinel-2 true-color images showing three typical examples of water sample points misclassified by CALC-2020. (a) Mixed pixel of lake water and barren land (centred at 69.1°N, 134.8°W). (b) Mixed pixel of river water and barren land (centred at 75.8°N, 99.7°E). (c) Frozen lake water confused with ice/snow (centred at 78.9°N, 20.1°E). The © Google Earth VHR image is also displayed for each example.

Figure S5 Accuracy assessment of three compared global land cover products in field and flux tower sites. (a) shows overall accuracy (OA) results. (b)~(d) are alluvial diagrams for ESA WorldCover, ESRI Global Land Cover and GlobeLand30, respectively. Abbreviations of land cover are given in the main text. To deal with the legend discrepancy issue, the grass (ESA WorldCover, ESRI Global Land Cover) and wet tundra classes (GlobeLand30) are treated as equivalents of graminoid tundra and wetland, respectively. These assumptions are expected to generate overestimated OAs for three compared land cover products.

Figure S6 Comparison of CALC-2020 and two national-scale land cover products: NLCD 2016 (a) and Land Cover of Canada 2015 (b). The level-2 classification schemes of two national-scale land cover products are merged to that of CALC-2020 (level-1) for visual interpretation.

Data source	Label	Description	Number of metrics	Feature domain	Algorithm	
Sentinel-1	S1.summer	Sentinel-1 backscatter coefficient in June, July and August	1	SAR	Median compositing	
	S1.dormant	Sentinel-1 backscatter coefficient in the other months	1			
	S1.diff	The value difference between S1.summer and S1.dormant	1			
Sentinel-2	Bx.median	The median value of per- band surface reflectance. Here x represents Sentinel- 2 band ID.	10	Spectral band	Median compositing	
	Bx.greenest	The value of per-band surface reflectance when NDVI reaches the highest. Here x represents Sentinel- 2 band ID.	10		Greenest compositing	
	VI.p10/50/90	The index value of selected percentiles (10%, 50%, 90%). A total of seven indices are employed, including Chlorophyll Index (CI), Normalized Burn Ratio (NBR), Normalized Difference Moisture Index (NDMI), Modified Normalized Difference Water Index (MNDWI), Normalized Difference of Vegetation Index (NDVI), Normalized Difference of Vegetation Index red- edge1 (NDVIre1), Normalized Difference of Vegetation Index red- edge1 narrow (NDVIre1n)	21	Spectral index	Beck et al. (2016); Kennedy et al. (2010); Jin and Sader (2005); Xu (2006); Tucker (1979); Fernández- Manso et al. (2016); Forkuor et al. (2018)	
	SOS, EOS, POS, LDOG	The start of growing season (SOS), end of growing season (EOS), the peak of growing season (POS), and the largest data value of growing season (LDOG)	4	Phenology	Bolton et al. (2020)	
ArcticDEM	Elevation, slope, aspect	Terrain metrics	3	Topography		

 Table S1 Summary of satellite image feature metrics used in this study.

Table S2 Meta information of field and flux tower sites used for CALC-2020 map accuracyassessment. Abbreviations of country and land cover are given in the main text.

Site ID	Latitude	Longitude	Network	Country	Land
ca nunavut pearl	80.0536	-86.4169	AERONET	CA	LAM
ca_nunavut_opal	79.9903	-85.9392	AERONET, BSRN	CA	LAM
ca_nunavut_resolute_bay	74.7051	-94.9694	AERONET	CA	MMI
ca_northwestterritories_daring_1	64.8648	-111.5677	AMERIFLUX,	CA	GRT
akefen			EUROPEANFLUXES		
ca_nunavut_iqaluit	63.7476	-68.5430	AERONET	CA	GRT
gl_pituffik_thule	76.5161	-68.7690	AERONET	GR	BAR
gl_nationalparken_greenland	74.6333	-20.5667	NECC	GR	LAM
gl_nationalparken_zackenberg_f en	74.4814	-20.5545	FLUXNET, EUROPEANFLUXES, ICOS	GR	GRT
gl_nationalparken_zackenberg_h eath	74.4732	-20.5503	FLUXNET, EUROPEANFLUXES	GR	GRT
gl_kommuneqarfiksermersooq_it toqqortoormiit	70.4848	-21.9512	AERONET	GR	BAR
gl_qeqertalik_disko	69.2535	-53.5140	EUROPEANFLUXES	GR	GRT
gl_qeqqatakommunia_kangerlus suaq	66.9958	-50.6214	AERONET	GR	MMI
gl_kommuneqarfiksermersooq_k obbefjord	64.1382	-51.3784	EUROPEANFLUXES	GR	GRT
gl_kommuneqarfiksermersooq_n uuk_fen	64.1308	-51.3861	FLUXNET, EUROPEANFLUXES	GR	WET
gl_kommuneqarfiksermersooq_i vittuut	61.2069	-48.1697	ICOS	GR	BAR
gl_kommunekujalleq_narsarsuaq	61.1560	-45.4194	AERONET	GR	MMI
sj_svalbard_ny_alesund	78.9294	11.8608	AERONET, BSRN	NO	MMI
sj_svalbard_bayelva_spitsbergen	78.9216	11.8311	FLUXNET, EUROPEANFLUXES, ICOS	NO	GRT
no_svalbard_longyearbyen	78.2228	15.6490	AERONET	NO	MMI
sj_spitsbergen_adventdalen	78.1860	15.9230	FLUXNET, EUROPEANFLUXES	NO	GRT
sj_svalbard_hornsund	77.0011	15.5603	AERONET	NO	BAR
ru_komi_seidavorkuta	67.0547	62.9405	FLUXNET, EUROPEANFLUXES	RU	GRT
ru_chukot_samoylov_island_len a_delta	72.3733	126.4978	FLUXNET, EUROPEANFLUXES	RU	WET
ru_sakha_kurungnakh	72.2983	126.1733	EUROPEANFLUXES	RU	OWT
ru_sakha_tiksi	71.5943	128.8878	FLUXNET, EUROPEANFLUXES	RU	GRT
ru_chukot_tiksi	71.5869	128.9214	AERONET, RU BSRN		GRT
ru_chukot_chokurdakh	70.8291	147.4943	FLUXNET, RU EUROPEANFLUXES		WET
ru_chukot_chersky_reference	68.6169	161.3509	EUROPEANFLUXES, FLUXNET	RU	WET

us_alaska_teller_mm27	64.7355	-165.9504	NGEE-ARCTIC	AK	SRT
us_alaska_teller_mm47	64.9820	-166.2114	NGEE-ARCTIC	AK	GRT
us_alaska_kougarok_mm64	65.1625	-164.8199	NGEE-ARCTIC	AK	SRT
us_alaska_ngee_arctic_council	64.8614	-163.7008	AMERIFLUX,	AK	GRT
(near-surface photo available)			NGEE-ARCTIC,		
			FLUXNET		
us_alaska_bethel_87_wnw	61.3465	-164.0769	USCRN	AK	GRT
us_alaska_yukon_kuskokwim_d	61.2723	-163.2228	AMERIFLUX	AK	WET
elta_burned_2015	<1.2540	1.62.0500		4 17	
us_alaska_yukon_kuskokwim_d	61.2548	-163.2590	AMERIFLUX	AK	WET
elta_unournea	50.2800	158 6100	UCCDN	^ K	ECT
US_alaska_alekilagik_1_iiie	59.2000	150.0100	USCKIN		CPT
us_alaska_ak_selawik_20_e	40 0077	162 0212	USCAN		CDT
	08.0277	-102.9212	USUKIN	Aĸ	SKI
us alaska ivotuk (near-surface	68 4865	-155 7503	AMERIFLUX	AK	GRT
photo available)	00.1002	10011000	FLUXNET.		
P,			USCRN,		
			PHENOCAM		
us_alaska_atqasuk	70.4696	-157.4089	AMERIFLUX,	AK	WET
			FLUXNET		
us_alaska_barrow_3	71.3122	-156.6650	AERONET	AK	GRT
us_alaska_central_marsh	71.3202	-156.6223	AMERIFLUX	AK	GRT
us_alaska_barrow_environmenta	-71.2824	-156.6194	NEON,	AK	WET
l_observatory			AERONET,		
			PHENOCAM,		
	70 4052	140.9922	AMERIFLUX		CDT
us_alaska_arm_amis_oliktok	/0.4955	-149.8823	AMERIFLUA, FLUXNET	AK	GKI
(hear-sufface photo available)	70 4995	-149 8800	AFRONET	ΔΚ	GRT
us alaska ak deadhorse 3 s	70.1618	-148 4644	USCRN		GRT
us_alaska_ak_deadnorse_5_s	69 5131	-148 5676			WFT
us_alaska_sag_iivei	69 1672	-148.8569			SPT
dge_tundra	07.1072	-140.0507	AWERITLOA		SKI
us alaska anaktuvuk river seve	68.9900	-150.2800	AMERIFLUX	AK	GRT
re burn	00000000				
us_alaska_anaktuvuk_river_mod	68.9500	-150.2100	AMERIFLUX	AK	SRT
erate_burn					
us_alaska_anaktuvuk_river_unb	68.9300	-150.2700	AMERIFLUX	AK	SRT
urned					
us_alaska_toolik_lake	68.6307	-149.6106	NEON,	AK	OWT
	<u> </u>	1.40.5022	PHENOCAM	A T7	
us_alaska_arcarctic_iterarc	68.6283	-149.5933	LTER	AK	SRT
1 us alaska toolik laka 5 ana	68 6483	1/0 3088	USCEN	A K	SDT
us_alaska_toolik_take_5_elle	68 6611	-149.3988	NEON		WET
us_alaska_toolik (lieai-suitace	08.0011	-149.5705	AFRONET	AK	WEI
			PHENOCAM		
			AMERIFLUX		

Class	CRO	FST	GRT	SRT	WET	OWT	LAM	MMI	BAR	IAS
UA (%)	93.5	75.0	81.9	84.7	81.0	93.7	76.8	95.9	75.1	74.0
PA (%)	100.0	100.0	94.3	68.1	79.6	63.7	78.1	100.0	63.0	90.1
OA (%)	79.6									
Kappa	0.735									

Table S3 Accuracy statistics of the CALC-2020 map based on traditional confusion matrix of sample counts. Abbreviations of land cover are given in the main text.

References of Supplement

Beck, R., Zhan, S., Liu, H., Tong, S., Yang, B., Xu, M., Ye, Z., Huang, Y., Shu, S., Wu, Q., Wang, S., Berling, K., Murray, A., Emery, E., Reif, M., Harwood, J., Young, J., Nietch, C., Macke, D., Martin, M., Stillings, G., Stump, R., and Su, H.: Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations, 178, 15–30, https://doi.org/10.1016/j.rse.2016.03.002, 2016.

Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020.

Fernández-Manso, A., Fernández-Manso, O., and Quintano, C.: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity, 50, 170–175, https://doi.org/10.1016/j.jag.2016.03.005, 2016.

Forkuor, G., Dimobe, K., Serme, I., and Tondoh, J. E.: Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2's red-edge bands to land-use and land-cover mapping in Burkina Faso, 55, 331–354, https://doi.org/10.1080/15481603.2017.1370169, 2018.

Jin, S. and Sader, S. A.: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, 94, 364–372, https://doi.org/10.1016/j.rse.2004.10.012, 2005.

Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms, 114, 2897–2910, https://doi.org/10.1016/j.rse.2010.07.008, 2010.

Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.

Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006.