Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1287-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1287-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system
Universidad de Alcalá, Environmental Remote Sensing Research Group, Departamento de Geología, Geografía y Medio Ambiente, Colegios 2, 28801 Alcalá de Henares, Spain
Mariano García
Universidad de Alcalá, Environmental Remote Sensing Research Group, Departamento de Geología, Geografía y Medio Ambiente, Colegios 2, 28801 Alcalá de Henares, Spain
Michele Salis
National Research Council (CNR), Institute of BioEconomy (IBE), Traversa La Crucca 3, 07100 Sassari, Italy
Luís M. Ribeiro
Universidade de Coimbra, Association for the Development of Industrial Aerodynamics (ADAI), Department of Mechanical Engineering, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal
Emilio Chuvieco
Universidad de Alcalá, Environmental Remote Sensing Research Group, Departamento de Geología, Geografía y Medio Ambiente, Colegios 2, 28801 Alcalá de Henares, Spain
Related authors
No articles found.
Seppe Lampe, Lukas Gudmundsson, Basil Kraft, Stijn Hantson, Douglas Kelley, Vincent Humphrey, Bertrand Le Saux, Emilio Chuvieco, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2025-3550, https://doi.org/10.5194/egusphere-2025-3550, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce BuRNN, a model which estimates monthly burned area based on satellite observations and climate, vegetation, and socio-economic data using machine learning. BuRNN outperforms existing process-based fire models. However, the model tends to underestimate burned area in parts of Africa and Australia. We identify the extent of bare ground, the presence of grasses, and fire weather conditions (long periods of warm and dry weather) as key regional drivers of fire activity in BuRNN.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Pere Joan Gelabert, Adrián Jiménez-Ruano, Clara Ochoa, Fermín Alcasena, Johan Sjöström, Christopher Marrs, Luís Mário Ribeiro, Palaiologos Palaiologou, Carmen Bentué Martínez, Emilio Chuvieco, Cristina Vega-Garcia, and Marcos Rodrigues
EGUsphere, https://doi.org/10.5194/egusphere-2025-143, https://doi.org/10.5194/egusphere-2025-143, 2025
Short summary
Short summary
Wildfires threaten ecosystems and communities across Europe. Our study developed models to predict where and why these ignitions occur in different European environments. We found that weather anomalies and human factors, like proximity to urban areas and roads, are key drivers. Using Machine Learning our models achieved strong predictive accuracy. These insights help design better wildfire prevention strategies, ensuring safer landscapes and communities as fire risks grow with climate change.
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Ana C. L. Sá, Bruno Aparicio, Akli Benali, Chiara Bruni, Michele Salis, Fábio Silva, Martinho Marta-Almeida, Susana Pereira, Alfredo Rocha, and José Pereira
Nat. Hazards Earth Syst. Sci., 22, 3917–3938, https://doi.org/10.5194/nhess-22-3917-2022, https://doi.org/10.5194/nhess-22-3917-2022, 2022
Short summary
Short summary
Assessing landscape wildfire connectivity supported by wildfire spread simulations can improve fire hazard assessment and fuel management plans. Weather severity determines the degree of fuel patch connectivity and thus the potential to spread large and intense wildfires. Mapping highly connected patches in the landscape highlights patch candidates for prior fuel treatments, which ultimately will contribute to creating fire-resilient Mediterranean landscapes.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399, https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Short summary
Short summary
The article presents the burned area product of the Copernicus Climate Change Service, called C3SBA10. It is the adaptation to Sentinel-3 OLCI data of the FireCCI51 global BA product. The paper shows how C3SBA10 is fully consistent with its predecessor, ensuring an uninterrupted provision of global burned area data from 2001 to present. The product is freely available in two monthly formats: in continental tiles at 300m spatial resolution, and globally at 0.25 degrees.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Cited articles
Alcasena, F., Ager, A., Page, Y. Le, Bessa, P., Loureiro, C., and Oliveira,
T.: Assessing Wildfire Exposure to Communities and Protected Areas in
Portugal, Fire, 4, 82, https://doi.org/10.3390/FIRE4040082, 2021.
Ali, A., Xu, M.-S., Zhao, Y.-T., Zhang, Q.-Q., Zhou, L.-L., Yang, X.-D., and
Yan, E.-R.: Allometric biomass equations for shrub and small tree species in
subtropical China, Silva Fenn., 49, 1275, https://doi.org/10.14214/sf.1275,
2015.
Alonso-Benito, A., Arroyo, L. A., Arbelo, M., Hernández-Leal, P., and
González-Calvo, A.: Pixel and object-based classification approaches for
mapping forest fuel types in Tenerife Island from ASTER data, Int. J. Wildl.
Fire, 22, 306–317, https://doi.org/10.1071/WF11068, 2013.
Alvarado, S. T., Andela, N., Silva, T. S. F., and Archibald, S.: Thresholds
of fire response to moisture and fuel load differ between tropical savannas
and grasslands across continents, Glob. Ecol. Biogeogr., 29, 331–344,
https://doi.org/10.1111/GEB.13034, 2020.
Anderson, H.: Aids to determining fuel models for estimating fire behavior,
US Department of Agriculture, Forest Service, Intermountain Forest and Range
Experiment Station, Washington, DC, USA, 26 pp., https://www.fs.usda.gov/rm/pubs_int/int_gtr122.pdf (last access: 10 March 2023), 1982.
Aragoneses, E. and Chuvieco, E.: Generation and Mapping of Fuel Types for
Fire Risk Assessment, Fire, 4, 59,
https://doi.org/10.3390/FIRE4030059, 2021.
Aragoneses, E., García, M., and Chuvieco, E.: FirEUrisk_Europe_fuel_map: European fuel map at 1 km
resolution, e-cienciaDatos [data set],
https://doi.org/10.21950/YABYCN, 2022a.
Aragoneses, E., Chuvieco, E., and García, M.: Product User Manual for
the FirEurisk European fuel map, 1–9 pp., e-cienciaDatos,
https://edatos.consorciomadrono.es/dataset.xhtml?persistentId=doi:10.21950/YABYCN (last access: 7 March 2023),
2022b.
Arca, B., Duce, P., Laconi, M., Pellizzaro, G., Salis, M., and Spano, D.:
Evaluation of FARSITE simulator in Mediterranean maquis, Int. J. Wildl.
Fire, 16, 563–572, https://doi.org/10.1071/WF06070, 2007.
Arroyo, L. A., Healey, S. P., Cohen, W. B., Cocero, D., and Manzanera, J.
A.: Using object-oriented classification and high-resolution imagery to map
fuel types in a Mediterranean region, J. Geophys. Res.-Biogeo., 111,
G04S04, https://doi.org/10.1029/2005JG000120, 2006.
Arroyo, L. A., Pascual, C., and Manzanera, J. A.: Fire models and methods to
map fuel types: The role of remote sensing, For. Ecol. Manage., 256,
1239–1252, https://doi.org/10.1016/j.foreco.2008.06.048, 2008.
Ascoli, D., Vacchiano, G., Scarpa, C., Arca, B., Barbati, A., Battipaglia,
G., Elia, M., Esposito, A., Garfì, V., Lovreglio, R., Mairota, P.,
Marchetti, M., Marchi, E., Meytre, S., Ottaviano, M., Pellizzaro, G.,
Rizzolo, R., Sallustio, L., Salis, M., Sirca, C., Valese, E., Ventura, A.,
and Bacciu, V.: Harmonized dataset of surface fuels under Alpine, temperate
and Mediterranean conditions in Italy. A synthesis supporting fire
management, iForest, 13, 513–522,
https://doi.org/10.3832/IFOR3587-013, 2020.
Batistoti, J., Marcato, J., Ítavo, L., Matsubara, E., Gomes, E.,
Oliveira, B., Souza, M., Siqueira, H., Filho, G. S., Akiyama, T.,
Gonçalves, W., Liesenberg, V., Li, J., and Dias, A.: Estimating Pasture
Biomass and Canopy Height in Brazilian Savanna Using UAV Photogrammetry,
Remote Sens., 11, 2447, https://doi.org/10.3390/RS11202447, 2019.
Bohlman, G. N., Underwood, E. C., and Safford, H. D.: Estimating Biomass in
California's Chaparral and Coastal Sage Scrub Shrublands, Madroño, 65, 28–46, https://doi.org/10.3120/0024-9637-65.1.28, 2018.
Bonazountas, M., Astyakopoulos, A., Martirano, G., Sebastian, A., De la
Fuente, D., Ribeiro, L. M., Viegas, D. X., Eftychidis, G., Gitas, I., and
Toukiloglou, P.: LIFE ArcFUEL: Mediterranean fuel-type maps geodatabase for
wildland & forest fire safety, in: Advances in forest fire research,
edited by: Viegas, D. X., Imprensa da Universidade de Coimbra, Coimbra,
Portugal, 1723–1735,
https://doi.org/10.14195/978-989-26-0884-6_189, 2014.
Bond, W. J., Woodward, F. I., and Midgley, G. F.: The global distribution of
ecosystems in a world without fire, New Phytol., 165, 525–538,
https://doi.org/10.1111/j.1469-8137.2004.01252.x, 2005.
Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and Humber,
M. L.: Global validation of the collection 6 MODIS burned area product,
Remote Sens. Environ., 235, 111490,
https://doi.org/10.1016/J.RSE.2019.111490, 2019.
Bowman, D., Williamson, G., Yebra, M., Lizundia-Loiola, J., Pettinari, M.
L., Shah, S., Bradstock, R., and Chuvieco, E.: Wildfires: Australia needs
national monitoring agency, Nature, 584, 188–191,
https://doi.org/10.1038/d41586-020-02306-4, 2020.
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A.,
Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C.,
Swetnam, T. W., Van Der Werf, G. R., and Pyne, S. J.: Fire in the earth
system, Science, 324, 481–484,
https://doi.org/10.1126/science.1163886, 2009.
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A.,
D'Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M.
A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A.
C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on
Earth, J. Biogeogr., 38, 2223–2236,
https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011.
Bowman, D. M. J. S., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A.,
Cochrane, M. A., and Smith, A. M. S.: Human exposure and sensitivity to
globally extreme wildfire events, Nat. Ecol. Evol., 1, 0058,
https://doi.org/10.1038/s41559-016-0058, 2017.
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar,
N.-E., Herold, M., and Fritz, S.: Copernicus Global Land Service: Land Cover
100m: collection 3: epoch 2019: Globe, Zenodo [data set],
https://doi.org/10.5281/zenodo.3939050, 2020.
Chen, J. and Ban, S. L.: Open access to earth land-cover map, Nature, 514,
434–434, 2014.
Copernicus Climate Change Services: Land cover classification gridded maps
from 1992 to present derived from satellite observations, European Comission
[data set],
https://doi.org/10.24381/cds.006f2c9a (last access: 17 January 2022), 2020.
Countryman, C. M.: The fire environment concept, USDA Forest Service,
Pacific Southwest Range and Experiment Station, Berkeley, California, USA, 12 pp.,
1972.
Crabbe, R. A., Lamb, D. W., Edwards, C., Andersson, K., and Schneider, D.: A
preliminary investigation of the potential of Sentinel-1 radar to estimate
pasture biomass in a grazed pasture landscape, Remote Sens., 11, 872,
https://doi.org/10.3390/RS11070872, 2019.
Defourny, P., Lamarche, C., Marissiaux, Q., Carsten, B., Martin, B., and
Grit, K.: Product User Guide and Specification, ICDR Land Cover 2016–2020,
Copernicus Climate Change Service, 1–37, D5.3.1_PUGS_ICDR_LC_v2.1.x_PRODUCTS_v1.1, https://datastore.copernicus-climate.eu/documents/satellite-land-cover/D5.3.1_PUGS_ICDR_LC_v2.1.x_PRODUCTS_v1.1.pdf (last access: 10 March 2023), 2021.
Domingo, D., de la Riva, J., Lamelas, M. T., García-Martín, A.,
Ibarra, P., Echeverría, M., and Hoffrén, R.: Fuel Type
Classification Using Airborne Laser Scanning and Sentinel 2 Data in
Mediterranean Forest Affected by Wildfires, Remote Sens., 12, 3660,
https://doi.org/10.3390/rs12213660, 2020.
Duc, H. N., Chang, L. T. C., Azzi, M., and Jiang, N.: Smoke aerosols
dispersion and transport from the 2013 New South Wales (Australia)
bushfires, Environ. Monit. Assess., 190, 428,
https://doi.org/10.1007/S10661-018-6810-4, 2018.
Duguy Pedra, B., Godoy Puertas, J., and Fuentes Lopez, L.: Developing
Allometric Volume-Biomass Equations to Support Fuel Characterization in
North-Eastern Spain, Ecol. Mediterr., 41, 15–24,
https://doi.org/10.3406/ECMED.2015.1239, 2015.
EFFIS: Real-time updated Burnt Areas database, EFFIS Data and services [data
set], https://effis.jrc.ec.europa.eu/applications/data-and-services
(last access: 27 January 2022), 2021.
European Commission: Prometheus, S.V. Project. Management Techniques for
Optimisation of Suppression and Minimization of Wildfire Effect, European
Commission Contract Number ENV4-CT98-0716, 1999.
European Environment Agency: Biogeographical regions, European Environment
Agency [data set],
https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
(last access: 14 January 2022), 2016.
European Forest Fire Information System (EFFIS): European Fuel Map based on
JRC Contract Number 384347 on the “Development of a European Fuel Map”,
European Commission [data set],
https://effis.jrc.ec.europa.eu/applications/data-and-services (last access:
21 May 2021), 2017.
European Union Copernicus Land Monitoring Service: Corine Land Cover (CLC)
2018, Version 2020_20u1, European Environment Agency (EEA)
[data set],
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (last
access: 17 January 2022), 2018.
European Union Copernicus Land Monitoring Service: Copernicus Land
Monitoring Service, User Manual, European Environment Agency (EEA),
Copenhagen K., Denmark, 1–129, https://land.copernicus.eu/user-corner/technical-library/clc-product-user-manual (last access: 10 March 2023), 2021.
Eurostat: Land cover/use statistics – Overview, Eurostat,
https://ec.europa.eu/eurostat/web/lucas/overview, last access: 2 February
2022a.
Eurostat: LUCAS micro data 2018, Eurostat,
[data set],
https://ec.europa.eu/eurostat/web/lucas/data/primary-data/2018, last access:
2 February 2022b.
Fernandes, P. M.: Combining forest structure data and fuel modelling to
classify fire hazard in Portugal, Ann. For. Sci., 66, 415,
https://doi.org/10.1051/forest/2009013, 2009.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1 km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
Finney, M. A.: FARSITE: Fire Area Simulator – Model development and
evaluation, USDA Forest Service, Rocky Mountain Research Station, 52 pp.,
https://www.firelab.org/project/farsite (last access: 24 May 2022), 2004.
Finney, M. A.: An Overview of FlamMap Fire Modeling Capabilities, in: Fuels
Management-How to Measure Success,, Conference Proceedings, Portland, OR, 28–30 March 2006, edited by: Andrews, P. L. and Butler, B.
W., Proceedings
RMRS-P-41, Fort Collins, CO, U.S. Department of Agriculture, Forest Service,
Rocky Mountain Research Station, 213–220, 2006.
Food and Agriculture Organization: Land Cover Classification System,
Appendix A. Glossary of classifiers, modifiers and attributes, FAO, 2000,
https://www.fao.org/3/x0596e/X0596e01n.htm, last access: 19 January 2022.
Forestry Canada Fire Danger Group: Development and structure of the canadian
fire behaviour prediction system, Forestry Canada, Inf. Repor, Ottawa, 63
pp., 1992.
Franquesa, M., Lizundia-Loiola, J., Stehman, S. V., and Chuvieco, E.: Using
long temporal reference units to assess the spatial accuracy of global
satellite-derived burned area products, Remote Sens. Environ., 269, 112823,
https://doi.org/10.1016/J.RSE.2021.112823, 2022.
García, M., Riaño, D., Chuvieco, E., Salas, J., and Danson, F. M.:
Multispectral and LiDAR data fusion for fuel type mapping using Support
Vector Machine and decision rules, Remote Sens. Environ., 115,
1369–1379, https://doi.org/10.1016/j.rse.2011.01.017, 2011.
García-Martín, M., Quintas-Soriano, C., Torralba, M., Wolpert, F.,
and Plieninger, T.: Landscape Change in Europe, in: Sustainable Land
Management in a European Context, edited by: Weith, T., Barkmann, T.,
Gaasch, N., Rogga, S., Strauß, C., and Zscheischle, J.,
Human-Environment Interactions, 8, Springer, Bloomington, IN, USA, 17–37,
https://doi.org/10.1007/978-3-030-50841-8_2,
2001.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote
Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005,
2018.
Global Disaster Alert and Coordination system: Forest Fire (2287 ha) in
Germany, Czech Republic, 24 July 2022,
https://www.gdacs.org/report.aspx?eventtype=WF&eventid=1007792, last
access: 18 November 2022.
González-Olabarria, J. R., Rodríguez, F., Fernández-Landa, A.,
and Mola-Yudego, B.: Mapping fire risk in the Model Forest of Urbión
(Spain) based on airborne LiDAR measurements, For. Ecol. Manage., 282,
149–156, https://doi.org/10.1016/j.foreco.2012.06.056, 2012.
Gray, J. T. and Schlesinger, W. H.: Biomass, production, and litterfall in
the coastal sage scrub of Southern California, Am. J. Bot., 68, 24–33,
https://doi.org/10.1002/J.1537-2197.1981.TB06352.X, 1981.
International Peatland Society: What are peatlands?, International Peatland
Society, https://peatlands.org/peatlands/what-are-peatlands/ (last
access: 19 January 2022), 2021.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O.,
Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K.,
Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V.,
Okem, A., and Rama, B., Cambridge University Press, 3676 pp., in press, https://doi.org/10.1017/9781009325844,
2022.
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., and Le Quéré, C.: Global and regional trends and drivers of fire under climate change, Rev. Geophys., 60, e2020RG000726, https://doi.org/10.1029/2020RG000726, 2022.
Keane, R. E. and Reeves, M.: Use of Expert Knowledge to Develop Fuel Maps
for Wildland Fire Management, in: Expert Knowledge and Its Application in
Landscape Ecology, edited by: Perera, A., Ashton Drew, C., and Johnson, C.,
Springer Science+Business Media, New York Dordrecht Heidelberg London,
211–228, https://doi.org/10.1007/978-1-4614-1034-8_11, 2012.
Keane, R. E., Burgan, R., and van Wagtendonk, J.: Mapping wildland fuels for
fire management across multiple scales: Integrating remote sensing, GIS, and
biophysical modeling, Int. J. Wildl. Fire, 10, 301–319,
https://doi.org/10.1071/WF01028, 2001.
Keeley, J. E. and Keeley, S. C.: Energy Allocation Patterns of a Sprouting
and a Nonsprouting Species of Arctostaphylos in the California Chaparral,
Am. Midl. Nat., 98, 1–10, https://doi.org/10.2307/2424710, 1977.
Kosztra, B., Büttner, G., Stephan, H., and Arnold, G.: Updated CLC
illustrated nomenclature guidelines, European Topic Centre on Urban, land
and soil systems: ETC/ULS, Wien, Austria, 1–126, https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf (last access: 10 March 2023), 2019.
Koutsias, N. and Karteris, M.: Classification analyses of vegetation for
delineating forest fire fuel complexes in a Mediterranean test site using
satellite remote sensing and GIS, Int. J. Remote Sens., 24, 3093–3104,
https://doi.org/10.1080/0143116021000021152, 2003.
Kucuk, O., Bilgili, E., and Fernandes, P. M.: Fuel modelling and potential
fire behavior in Turkey, Šumarski List, 11–12, 553–560, https://hrcak.srce.hr/157019 (last access: 10 March 2023), 2015.
Lizundia-Loiola, J., Otón, G., Ramo, R., and Chuvieco, E.: A
spatio-temporal active-fire clustering approach for global burned area
mapping at 250 m from MODIS data, Remote Sens. Environ., 236, 111493,
https://doi.org/10.1016/j.rse.2019.111493, 2020.
Mallinis, G., Mitsopoulos, I. D., Dimitrakopoulos, A. P., Gitas, I. Z., and
Karteris, M.: Local-scale fuel-type mapping and fire behavior prediction by
employing high-resolution satellite imagery, IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens., 1, 230–239,
https://doi.org/10.1109/JSTARS.2008.2011298, 2008.
Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D.,
Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., Kakarla, A.,
Paganini, M., and Strano, E.: Outlining where humans live, the World
Settlement Footprint 2015, Sci. Data, 7, 242,
https://doi.org/10.1038/s41597-020-00580-5, 2020.
Marino, E., Ranz, P., Tomé, J. L., Noriega, M. Á., Esteban, J., and
Madrigal, J.: Generation of high-resolution fuel model maps from discrete
airborne laser scanner and Landsat-8 OLI: A low-cost and highly updated
methodology for large areas, Remote Sens. Environ., 187, 267–280,
https://doi.org/10.1016/j.rse.2016.10.020, 2016.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A., and
Watkins, J. W.: A climatic stratification of the environment of Europe,
Glob. Ecol. Biogeogr., 14, 549–563,
https://doi.org/10.1111/j.1466-822X.2005.00190.x, 2005.
Michez, A., Lejeune, P., Bauwens, S., Lalaina Herinaina, A. A., Blaise, Y.,
Muñoz, E. C., Lebeau, F., and Bindelle, J.: Mapping and monitoring of
biomass and grazing in pasture with an unmanned aerial system, Remote Sens.,
11, 476, https://doi.org/10.3390/RS11050473, 2019.
Mutlu, M., Popescu, S. C., Stripling, C., and Spencer, T.: Mapping surface
fuel models using lidar and multispectral data fusion for fire behavior,
Remote Sens. Environ., 112, 274–285,
https://doi.org/10.1016/j.rse.2007.05.005, 2008.
Neal, E.: Climate in Temperate Grasslands, Sciencing,
https://sciencing.com/climate-temperate-grasslands-8038155.html (last access:
18 January 2022), 2021.
Nunez, C.: Grasslands, explained, National Geographic Magazine,
https://www.nationalgeographic.com/environment/article/grasslands (last
access: 18 January 2022), 2019.
Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., and Prichard, S. J.: An
overview of the fuel characteristic classification system – quantifying,
classifying, and creating fuelbeds for resource planning, Can. J. For. Res.,
37, 2383–2393, 2007.
Palaiologou, P., Kalabokidis, K., and Kyriakidis, P.: Forest mapping by
geoinformatics for landscape fire behaviour modelling in coastal forests,
Greece, Int. J. Remote Sens., 34, 4466–4490,
https://doi.org/10.1080/01431161.2013.779399, 2013.
Paradis, M., Lévesque, E., and Boudreau, S.: Greater effect of
increasing shrub height on winter versus summer soil temperature, Environ.
Res. Lett., 11, 085005, https://doi.org/10.1088/1748-9326/11/8/085005,
2016.
Pausas, J. G. and Keeley, J. E.: A burning story: The role of fire in the
history of life, Bioscience, 59, 593–601,
https://doi.org/10.1525/bio.2009.59.7.10, 2009.
Pettinari, M. L. and Chuvieco, E.: Cartografía de combustible y
potenciales de incendio en el continente Africano utilizando FCCS, Rev.
Teledetec., 2015, 1–10, https://doi.org/10.4995/raet.2015.2302, 2015.
Pettinari, M. L. and Chuvieco, E.: Generation of a global fuel data set using the Fuel Characteristic Classification System, Biogeosciences, 13, 2061–2076, https://doi.org/10.5194/bg-13-2061-2016, 2016.
Pettinari, M. L., Ottmar, R. D., Prichard, S. J., Andreu, A. G., and
Chuvieco, E.: Development and mapping of fuel characteristics and associated
fire potentials for South America, Int. J. Wildl. Fire, 23, 643–654,
https://doi.org/10.1071/WF12137, 2014.
Prichard, S. J., Ottmar, R. D., and Anderson, G. K.: Consume 3.0 User's
Guide, Pacific Wildland Fire Sciences Laboratory. USDA Forest Service.
Pacific Northwest Research Station, Seattle, Washington, 236 pp., https://www.fs.usda.gov/pnw/fera/research/smoke/consume/consume30_users_guide.pdf (last access: 10 March 2023), 2006.
Pyne, S. J.: Introduction to wildland fire. Fire management in the United
States, 6th edn., edited by: Pyne, S. J., John Wiley, ISBN 10 047109658X, ISBN 13 9780471096580, 1984.
Radloff, F. G. T. and Mucina, L.: A quick and robust method for biomass
estimation in structurally diverse vegetation, J. Veg. Sci., 18,
719–724, https://doi.org/10.1111/J.1654-1103.2007.TB02586.X, 2007.
Riaño, D., Meier, E., Allgöwer, B., Chuvieco, E., and Ustin, S. L.:
Modeling airborne laser scanning data for the spatial generation of critical
forest parameters in fire behavior modeling, Remote Sens. Environ., 86,
177–186, https://doi.org/10.1016/S0034-4257(03)00098-1, 2003.
Rothermel, R. C.: A mathematical model for predicting fire spread in
wildland fuels, INT-RP-115, Intermountain Forest and Range
Experiment Station, Ogden, UT, USDA Forest Service, 73 pp., https://www.fs.usda.gov/rm/pubs_int/int_rp115.pdf (last access: 10 March 2023), 1972.
Roulet, N. T.: Peatlands, carbon storage, greenhouse gases, and the kyoto
protocol: Prospects and significance for Canada, Wetlands, 20, 605–615,
https://doi.org/10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2, 2000.
Saglam, B., Küçük, Ö., Bilgili, E., and Durmaz, B. D.:
Estimating Fuel Biomass of Some Shrub Species (Maquis) in Turkey, Turkish J.
Agric. For., 32, 349–356, 2008.
Salis, M., Arca, B., Alcasena, F., Arianoutsou, M., Bacciu, V., Duce, P.,
Duguy, B., Koutsias, N., Mallinis, G., Mitsopoulos, I., Moreno, J. M.,
Pérez, J. R., Urbieta, I. R., Xystrakis, F., Zavala, G., and Spano, D.:
Predicting wildfire spread and behaviour in Mediterranean landscapes, Int.
J. Wildl. Fire, 25, 1015–1032, https://doi.org/10.1071/WF15081, 2016.
San-Miguel-Ayanz, J., Moreno, J. M., and Camia, A.: Analysis of large fires
in European Mediterranean landscapes: Lessons learned and perspectives, For.
Ecol. Manage., 294, 11–22, https://doi.org/10.1016/j.foreco.2012.10.050,
2013.
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertà, G.,
Artés Vivancos, T., Jacome Felix Oom, D., Branco, A., De Rigo, D., Ferrari,
D., Pfeiffer, H., Grecchi, R., Nuijten, D., and Leray, T.: Forest Fires in
Europe, Middle East and North Africa 2019, Publications Office of the
European Union, Luxembourg, 1–162 pp., https://doi.org/10.2760/468688, 2020.
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertà, G.,
Artés-Vivancos, T., Oom, D., Branco, A., De Rigo, D., Ferrari, D.,
Pfeiffer, H., Grecchi, R., Nuijten, D., Onida, M., and Löffler, P.:
Forest Fires in Europe, Middle East and North Africa 2020, Publications
Office of the European Union, Luxembourg, 1–172,
ISBN 978-92-76-42350-8, https://doi.org/10.2760/059331, 2021.
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertá, G.,
Artés-Vivancos, T., Oom, D., Branco, A., de Rigo, D., Ferrari, D.,
Pfeiffer, H., Grecchi, R., and Nuijten, D.: Advance Report on Forest Fires
in Europe, Middle East and North Africa 2021, Publications Office of the
European Union, Luxembourg, https://doi.org/10.2760/039729, 2022.
Santoni, P. A., Filippi, J. B., Balbi, J. H., and Bosseur, F.: Wildland fire
behaviour case studies and fuel models for landscape-scale fire modeling, J.
Combust., 2011, 613424, https://doi.org/10.1155/2011/613424, 2011.
Schlesinger, W. H. and Gill, D. S.: Biomass, Production, and Changes in the
Availability of Light, Water, and Nutrients During the Development of Pure
Stands of the Chaparral Shrub, Ceanothus Megacarpus, After Fire, Ecology, 61, 781–789, https://doi.org/10.2307/1936748, 1980.
Scott, J. and Burgan, R.: Standard fire behavior fuel models: a
comprehensive set for use with Rothermel's surface fire spread model, US
Department of Agriculture, Forest Service, Rocky Mountain Research Station, https://www.resolutionmineeis.us/sites/default/files/references/scott-burgan-2005.pdf (last access: 10 March 2023),
2005.
Scott, J. and Reinhardt, E.: Assessing crown fire potential by linking
models of surface and crown fire behavior, Fort Collins, CO, US Department
of Agriculture, Forest Service, Rocky Mountain Research Station, 59 pp.,
https://doi.org/10.2737/RMRS-RP-29, 2001.
Shakesby, R. A.: Post-wildfire soil erosion in the Mediterranean: Review and
future research directions, Earth-Sci. Rev., 105, 71–100,
https://doi.org/10.1016/J.EARSCIREV.2011.01.001, 2011.
Shoshany, M. and Karnibad, L.: Mapping shrubland biomass along Mediterranean
climatic gradients: The synergy of rainfall-based and NDVI-based models,
Int. J. Remote Sens., 32, 9497–9508,
https://doi.org/10.1080/01431161.2011.562255, 2011.
Shoshany, M. and Karnibad, L.: Remote sensing of shrubland drying in the
South-East Mediterranean, 1995–2010: Water-use-efficiency-based mapping of
biomass change, Remote Sens., 7, 2283–2301,
https://doi.org/10.3390/RS70302283, 2015.
Smit, H. J., Metzger, M. J., and Ewert, F.: Spatial distribution of
grassland productivity and land use in Europe, Agric. Syst., 98,
208–219, https://doi.org/10.1016/j.agsy.2008.07.004, 2008.
Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P., and Haydon, S.:
Wildfire effects on water quality in forest catchments: A review with
implications for water supply, J. Hydrol., 396, 170–192,
https://doi.org/10.1016/J.JHYDROL.2010.10.043, 2011.
Stefanidou, A., Gitas, I. Z., and Katagis, T.: A national fuel type mapping
method improvement using sentinel-2 satellite data, Geocarto Int., 1, 1022–1042,
https://doi.org/10.1080/10106049.2020.1756460, 2020.
Thomlinson, J. R., Bolstad, P. V., and Cohen, W. B.: Coordinating
methodologies for scaling landcover classifications from site-specific to
global: Steps toward validating global map products, Remote Sens. Environ.,
70, 16–28, https://doi.org/10.1016/S0034-4257(99)00055-3, 1999.
Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire
disturbance for global vegetation dynamics: coupling fire into a Dynamic
Global Vegetation Model, Glob. Ecol. Biogeogr., 10, 661–677,
https://doi.org/10.1046/J.1466-822X.2001.00175.X, 2001.
Toukiloglou, P., Eftychidis, G., Gitas, I., and Tompoulidou, M.: ArcFuel methodology for mapping forest fuels in Europe, Proc. SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), 87951J (5 August 2013), https://doi.org/10.1117/12.2028213,
2013.
Tsendbazar, N.-E., Tarko, A., Li, L., Herold, M., Lesiv, M., Fritz, S., and
Maus, V.: Copernicus Global Land Service: Land Cover 100m: version 3 Globe
2015–2019: Validation Report, Zenodo, Geneve, Switzerland, 1–84,
https://doi.org/10.5281/zenodo.3606370, 2020.
Tsendbazar, N., Herold, M., Li, L., Tarko, A., de Bruin, S., Masiliunas, D.,
Lesiv, M., Fritz, S., Buchhorn, M., Smets, B., Van De Kerchove, R., and
Duerauer, M.: Towards operational validation of annual global land cover
maps, Remote Sens. Environ., 266, 112686,
https://doi.org/10.1016/j.rse.2021.112686, 2021.
UNESCO: International classification and mapping of vegetation, the United Nations Educational, Scientific and Cultural Organization, Genève,
Switzerland, 1–102, ISBN: 92-3-001046-4, 1973.
van Wees, D., van der Werf, G. R., Randerson, J. T., Andela, N., Chen, Y.,
and Morton, D. C.: The role of fire in global forest loss dynamics, Glob.
Change Biol., 27, 2377–2391, https://doi.org/10.1111/GCB.15591, 2021.
Weise, D. R. and Wright, C. S.: Wildland fire emissions, carbon and climate:
Characterizing wildland fuels, For. Ecol. Manag., 317, 26–40,
https://doi.org/10.1016/J.FORECO.2013.02.037, 2014.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Zepner, L., Karrasch, P., Wiemann, F., and Bernard, L.: ClimateCharts.net –
an interactive climate analysis web platform, Int. J. Digit. Earth, 14,
338–356, https://doi.org/10.1080/17538947.2020.1829112, 2020.
Zhang, H., Sun, Y., Chang, L., Qin, Y., Chen, J., Qin, Y., Du, J., Yi, S.,
and Wang, Y.: Estimation of grassland canopy height and aboveground biomass
at the quadrat scale using unmanned aerial vehicle, Remote Sens., 10,
851, https://doi.org/10.3390/rs10060851, 2018.
Zhang, X., Guan, T., Zhou, J., Cai, W., Gao, N., Du, H., Jiang, L., Lai, L.,
and Zheng, Y.: Community Characteristics and Leaf Stoichiometric Traits of
Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of
China, Int. J. Environ. Res. Public Health, 15, 109,
https://doi.org/10.3390/IJERPH15010109, 2018.
Zheng, B., Ciais, P., Chevallier, F., Chuvieco, E., Chen, Y., and Yang, H.:
Increasing forest fire emissions despite the decline in global burned area,
Sci. Adv., 7, 39, https://doi.org/10.1126/sciadv.abh2646, 2021.
Short summary
We present a new hierarchical fuel classification system with a total of 85 fuels that is useful for preventing fire risk at different spatial scales. Based on this, we developed a European fuel map (1 km resolution) using land cover datasets, biogeographic datasets, and bioclimatic modelling. We validated the map by comparing it to high-resolution data, obtaining high overall accuracy. Finally, we developed a crosswalk for standard fuel models as a first assignment of fuel parameters.
We present a new hierarchical fuel classification system with a total of 85 fuels that is useful...
Altmetrics
Final-revised paper
Preprint