Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-113-2023
https://doi.org/10.5194/essd-15-113-2023
Data description paper
 | 
09 Jan 2023
Data description paper |  | 09 Jan 2023

MDAS: a new multimodal benchmark dataset for remote sensing

Jingliang Hu, Rong Liu, Danfeng Hong, Andrés Camero, Jing Yao, Mathias Schneider, Franz Kurz, Karl Segl, and Xiao Xiang Zhu

Related authors

Training for Emergencies - How Germany is Preparing for Large-Scale Emergencies Using the EUROMED 2024 Civil Protection Exercise as an Example
Veronika Gstaiger, Nils Machinia, Nina Merkle, Dominik Rosenbaum, Ronald Nippold, Manuel Muehlhaus, Pablo d’Angelo, Corentin Henry, Xiangtian Yuan, Reza Bahmanyar, Franz Kurz, and Christa-Maria Krieg
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 163–168, https://doi.org/10.5194/isprs-annals-X-3-2024-163-2024,https://doi.org/10.5194/isprs-annals-X-3-2024-163-2024, 2024
Learning Building Floor Numbers from Crowdsourced Streetview Images
Yifan Tian, Yao Sun, and Xiao Xiang Zhu
Abstr. Int. Cartogr. Assoc., 7, 171, https://doi.org/10.5194/ica-abs-7-171-2024,https://doi.org/10.5194/ica-abs-7-171-2024, 2024
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language Geo-Foundation Models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-140,https://doi.org/10.5194/essd-2024-140, 2024
Revised manuscript under review for ESSD
Short summary
Physics-aware Machine Learning for Glacier Ice Thickness Estimation: A Case Study for Svalbard
Viola Steidl, Jonathan L. Bamber, and Xiao Xiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1732,https://doi.org/10.5194/egusphere-2024-1732, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024,https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024,https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Global mapping of oil palm planting year from 1990 to 2021
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024,https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024,https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary

Cited articles

Adrian, J., Sagan, V., and Maimaitijiang, M.: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine, ISPRS J. Photogramm., 175, 215–235, 2021. a
Al-Najjar, H. A., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., and Mansor, S.: Land cover classification from fused DSM and UAV images using convolutional neural networks, Remote Sensing, 11, 1461, https://doi.org/10.3390/rs11121461, 2019. a
Brachmann, J., Baumgartner, A., and Gege, P.: The Calibration Home Base for Imaging Spectrometers, Journal of Large-Scale Research Facilities JLSRF, 2, https://doi.org/10.17815/jlsrf-2-137, 2016. a
d'Angelo, P. and Kurz, F.: Aircraft based real time bundle adjustment and digital surface model generation, in: ISPRS Geospatial Week 2019, 1643–1647, https://elib.dlr.de/127049/ (last access: 2 January 2023​​​​​​​), 2019. a
Du, B., Wei, Q., and Liu, R.: An improved quantum-behaved particle swarm optimization for endmember extraction, IEEE T. Geosci. Remote, 57, 6003–6017, 2019. a
Download
Short summary
Multimodal data fusion is an intuitive strategy to break the limitation of individual data in Earth observation. Here, we present a multimodal data set, named MDAS, consisting of synthetic aperture radar (SAR), multispectral, hyperspectral, digital surface model (DSM), and geographic information system (GIS) data for the city of Augsburg, Germany, along with baseline models for resolution enhancement, spectral unmixing, and land cover classification, three typical remote sensing applications.
Altmetrics
Final-revised paper
Preprint