Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-113-2023
https://doi.org/10.5194/essd-15-113-2023
Data description paper
 | 
09 Jan 2023
Data description paper |  | 09 Jan 2023

MDAS: a new multimodal benchmark dataset for remote sensing

Jingliang Hu, Rong Liu, Danfeng Hong, Andrés Camero, Jing Yao, Mathias Schneider, Franz Kurz, Karl Segl, and Xiao Xiang Zhu

Related authors

Traffic Pattern Analysis at Urban Intersections through Vehicle Detection in Aerial Imagery
Reza Bahmanyar, Jens Hellekes, Manuel Mühlhaus, Veronika Gstaiger, and Franz Kurz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 151–158, https://doi.org/10.5194/isprs-annals-X-G-2025-151-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-151-2025, 2025
Airborne Remote Sensing for Environmental and Disaster Management Applications
Veronika Gstaiger, Claas Köhler, Philipp Hochstaffl, Martin Bachmann, Raquel de los Reyes, Stefanie Holzwarth, Jiaojiao Tian, Peter Gege, Oliver Paxa, Thomas Krauss, Nina Merkle, and Franz Kurz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 315–322, https://doi.org/10.5194/isprs-annals-X-G-2025-315-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-315-2025, 2025
GlobalBuildingAtlas: An Open Global and Complete Dataset of Building Polygons, Heights and LoD1 3D Models
Xiao Xiang Zhu, Sining Chen, Fahong Zhang, Yilei Shi, and Yuanyuan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-327,https://doi.org/10.5194/essd-2025-327, 2025
Preprint under review for ESSD
Short summary
Generating Training Data for Deep Learning-Based Segmentation Algorithms by Projecting Existing Labels onto Additional Aerial Images
Franz Kurz, Nina Merkle, Corentin Henry, Reza Bahmanyar, Felix Rauch, Jens Hellekes, Veronika Gstaiger, Dominik Rosenbaum, and Peter Reinartz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-6-2025, 189–195, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-189-2025,https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-189-2025, 2025
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary

Cited articles

Adrian, J., Sagan, V., and Maimaitijiang, M.: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine, ISPRS J. Photogramm., 175, 215–235, 2021. a
Al-Najjar, H. A., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., and Mansor, S.: Land cover classification from fused DSM and UAV images using convolutional neural networks, Remote Sensing, 11, 1461, https://doi.org/10.3390/rs11121461, 2019. a
Brachmann, J., Baumgartner, A., and Gege, P.: The Calibration Home Base for Imaging Spectrometers, Journal of Large-Scale Research Facilities JLSRF, 2, https://doi.org/10.17815/jlsrf-2-137, 2016. a
d'Angelo, P. and Kurz, F.: Aircraft based real time bundle adjustment and digital surface model generation, in: ISPRS Geospatial Week 2019, 1643–1647, https://elib.dlr.de/127049/ (last access: 2 January 2023​​​​​​​), 2019. a
Du, B., Wei, Q., and Liu, R.: An improved quantum-behaved particle swarm optimization for endmember extraction, IEEE T. Geosci. Remote, 57, 6003–6017, 2019. a
Download
Short summary
Multimodal data fusion is an intuitive strategy to break the limitation of individual data in Earth observation. Here, we present a multimodal data set, named MDAS, consisting of synthetic aperture radar (SAR), multispectral, hyperspectral, digital surface model (DSM), and geographic information system (GIS) data for the city of Augsburg, Germany, along with baseline models for resolution enhancement, spectral unmixing, and land cover classification, three typical remote sensing applications.
Share
Altmetrics
Final-revised paper
Preprint