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Abstract. In Earth observation, multimodal data fusion is an intuitive strategy to break the limitation of in-
dividual data. Complementary physical contents of data sources allow comprehensive and precise information
retrieval. With current satellite missions, such as ESA Copernicus programme, various data will be accessible at
an affordable cost. Future applications will have many options for data sources. Such a privilege can be benefi-
cial only if algorithms are ready to work with various data sources. However, current data fusion studies mostly
focus on the fusion of two data sources. There are two reasons; first, different combinations of data sources face
different scientific challenges. For example, the fusion of synthetic aperture radar (SAR) data and optical images
needs to handle the geometric difference, while the fusion of hyperspectral and multispectral images deals with
different resolutions on spatial and spectral domains. Second, nowadays, it is still both financially and labour
expensive to acquire multiple data sources for the same region at the same time. In this paper, we provide the
community with a benchmark multimodal data set, MDAS, for the city of Augsburg, Germany. MDAS includes
synthetic aperture radar data, multispectral image, hyperspectral image, digital surface model (DSM), and geo-
graphic information system (GIS) data. All these data are collected on the same date, 7 May 2018. MDAS is a
new benchmark data set that provides researchers rich options on data selections. In this paper, we run exper-
iments for three typical remote sensing applications, namely, resolution enhancement, spectral unmixing, and
land cover classification, on MDAS data set. Our experiments demonstrate the performance of representative
state-of-the-art algorithms whose outcomes can serve as baselines for further studies. The dataset is publicly
available at https://doi.org/10.14459/2022mp1657312 (Hu et al., 2022a) and the code (including the pre-trained
models) at https://doi.org/10.5281/zenodo.7428215 (Hu et al., 2022b).
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1 Introduction

The rapid development of Earth observation (EO) techniques
enables the measurements and monitoring of Earth on the
land surface and beneath, of the quality of air and water, and
of the health of humans, plants, and animals. Remote sens-
ing (RS) is one of the most important contact-free sensing
means for EO to extract relevant information about the phys-
ical properties of the Earth and environment system from
space. With the ever-growing availability of RS data source
from both satellite and airborne sensors on a large scale and
even global scale, e.g. Sentinel missions, multi-modal RS
techniques have been garnering increasing attention in vari-
ous EO-related tasks (Hong et al., 2021c). The data acquired
by different platforms can provide diverse and complemen-
tary information, such as light detection and ranging (lidar)
providing the height information about the ground elevation,
synthetic aperture radar (SAR) providing the structure in-
formation about Earth’s surface, and multispectral (MS) or
hyperspectral (HS) data providing detailed content informa-
tion of sensed materials. The joint exploitation of different
RS data has been therefore proven to be helpful to further
enhance our understanding, possibilities, and capabilities to
Earth and environment.

Multimodal data fusion takes advantage of complemen-
tary information of different data sources so that its perfor-
mance can reach beyond the limitation of individual data.
Currently, a lot of studies in remote sensing focus on de-
veloping methodologies that can effectively utilize differ-
ent data sources. Tupin and Roux (2003); Hu et al. (2019);
Hong et al. (2020c); Meraner et al. (2020); Adrian et al.
(2021); Hong et al. (2021f) develop algorithms to join advan-
tages of optical images and synthetic aperture radar (SAR)
data for their respective goals. They utilize spatial structures,
spectral information from optical data, and the independence
of weather conditions, dielectric properties, and geometric
structures from SAR data. Paris and Bruzzone (2014); Kho-
dadadzadeh et al. (2015); Al-Najjar et al. (2019); Hang et al.
(2020); Ge et al. (2021); Hong et al. (2020a) introduce mod-
els to merge height information from lidar data or digital sur-
face model (DSM) with spatial and spectral information from
optical images. Yokoya et al. (2011); Simoes et al. (2014);
Hong et al. (2019b, c); Zhang et al. (2020c); Liu et al. (2020)
propose methods to fuse rich spectral information of hyper-
spectral images with high spatial resolution of multispectral
images. All these studies have proven that the data fusion is
very beneficial to remote sensing applications.

While reviewing literature of data fusion, one can find
that some data sets frequently appear in a lot of studies,
for example, the hyperspectral image of Houston university
(https://hyperspectral.ee.uh.edu/?page_id=1075, last access:
2 January 2023) and the aerial images and DSM of Vaihin-
gen (Rottensteiner et al., 2012). These accessible benchmark
data sets play a very important role in the advancing of fu-
sion technologies. Especially, in this era, data are the founda-
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tion for state-of-the-art machine learning and deep learning
methodologies. As remote sensing data strongly associate to
geographic locations, it would be beneficial to the commu-
nity to have more benchmark data sets of high quality that
originate from different geolocations.

In the remote sensing community, benchmark data sets are
often generated based on one data source, such as the UC-
Merced dataset (Yang and Newsam, 2010), the WHU-RS19
dataset (Xia et al., 2010), the AID dataset (Xia et al., 2017),
the Berlin-urban-gradient (Okujeni et al., 2016), the SAR-
Ship (SSDD, Zhang et al., 2021), DOTA (Xia et al., 2018),
and the BigEarthNet (Sumbul et al., 2019). Recently some re-
searchers created benchmark data sets for multimodal remote
sensing data, such as Hong et al. (2021e), including hyper-
spectral and multispectral data, hyperspectral and SAR data,
hyperspectral, SAR, and DSM data, or DFC 2018 (Xu et al.,
2019) and So2Sat LCZ42 (Zhu et al., 2020). Besides this,
the IEEE GRSS data fusion contests have done great contri-
butions by consistently publishing data sets for developing
fusion technologies. They often provide two to three types
of data for tasks like classification, detection, and 3D recon-
struction (Wu et al., 2019, 2020). By far, the listed datasets
mostly have a comparative large amount of samples and wide
geographic distribution because it is easy to access the origi-
nal data sources, such as Sentinel-1, Sentinel-2, and Google
Earth images. When involving certain data sources, namely,
hyperspectral image, lidar data, and DSM, the amount of
samples is often limited due to the high costs of collections
and data preparations. Examples are the Vaihingen dataset
and the Houston dataset. The complexity of preparing these
data is also one of the reasons that most studies focus on fus-
ing two data sources, often the easily accessible ones. Table 1
summarizes the characteristics of some of the most popular
data sets in the field.

In this paper, we contribute to the community by pub-
lishing a benchmark remote sensing dataset including five
modalities, namely, SAR data, multispectral image, hyper-
spectral image, DSM, and GIS data, for the entire city of
Augsburg, Germany. Apart from the GIS data, the remote
sensing data are all collected on the same day. The prepara-
tions of the SAR data, the hyperspectral image, and the DSM
are carried out by a group of experienced experts to ensure
the high quality. We also provide experiment results of state-
of-the-art algorithms in this paper for three typical remote
sensing tasks, namely, resolution enhancement, spectral un-
mixing, and land cover classification. These results play as
baselines for future studies. MDAS not only provides one
more testing instance for developing algorithms of typical
tasks, but also possibilities for unknown applications because
of the variety of data modalities.

1.1 Super-resolution

Images with high spatial resolution have detailed tex-
tures and structures that facilitate semantic interpretation.

Meanwhile, materials have different reflectances at differ-
ent ranges of wavelengths, a high spectral resolution and a
wide spectral range can benefit the identification of cover-
ing material. However, the limitation of imaging sensors pre-
vents achieving high resolution in spectral and spatial do-
mains at the same time (Loncan et al., 2015; Hong et al.,
2021g). To break the limitation, researchers develop super-
resolution algorithms to fuse data of the two types so that
high resolution in both spatial and spectral domains are avail-
able. With the increasing amount of multispectral and hyper-
spectral data, e.g. Sentinel-2 images and EnMAP images, the
super-resolution products have an important role in optical
remote sensing.

Current super-resolution research (Sheikholeslami et al.,
2020; Yokoya et al., 2017; D. Zhang et al., 2020; S. Zhang
et al., 2020b) evaluates algorithms based on data sets which
have high spatial resolutions. They down-sample the spatial
resolution of original data sets to create the counterpart low
resolution data. On spectral domain, they mostly apply either
the same spectral bands or a subset of the spectral bands.
Very few would utilize simple spectral response functions.
These data configurations simplify the super-resolution ap-
plications of the real world. In this regard, in MDAS, we at-
tempt to provide realistic data sets. We simulate EnMAP and
Sentinel-2 images using the EeteS (Segl et al., 2012, 2010)
and S2eteS (Segl et al., 2015) software based on a HySpex
imagery. This simulation integrates not only the specific spa-
tial response functions and spectral response functions, but
also the effects of instrumental and environmental parame-
ters on the resulting image characteristics. Besides the sim-
ulations, we also provide a Sentinel-2 image from the same
date for the same region.

When comparing to the current data sets used for super-
resolution evaluations that mostly only emphasize the spa-
tial resolution, MDAS also challenges the algorithms with
respect to spectral enhancement, instrumental effects, envi-
ronmental impact, and influence of different sensors.

1.2 Spectral unmixing

Hyperspectral remote sensing has greatly improved our abil-
ity to qualitatively and quantitatively sense Earth’s surface,
due to its capability to obtain data with tens to hundreds
of contiguous spectral bands (Hong et al., 2020b). However,
mixed pixels are widely spread in hyperspectral image due to
its limited spatial resolution, which has hindered the accurate
analysis and applications of hyperspectral data. Hyperspec-
tral unmixing is one of the most hot topics i hyperspectral im-
age processing, which aims at solving the mixed pixel prob-
lem by decomposing the mixed pixel into the constituent pure
signatures, also called endmembers, and the corresponding
abundance coefficients (Liu et al., 2017; Hong et al., 2021d).

The unmixing topic has been intensively studied by re-
searchers in the last few decades, and many efforts have been
made to improve the accuracy of the methods of unmixing.
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The most widely used real hyperspectral image datasets for
the evaluation of the developed unmixing algorithms were
presented by Zhu (2017), in which the Urban dataset and
Cuprite dataset are exceedingly frequently used. These im-
ages are small in spatial size, which is not enough to test
whether the developed method is capable of processing large
dataset with low error and reasonable time cost. Hong and
Zhu proposed a novel subspace unmixing framework with
the use of low-rank attribute embedding, called SULoRA
(Hong and Zhu, 2018). Moreover, they further considered
the spectral variability, and proposed a seminal linear mix-
ing model, called augmented linear mixing model (ALMM)
for accurate spectral unmixing (Hong et al., 2019a). In addi-
tion, the ground truth of abundance is usually not available
and only synthetic images can be used for the quantitative
evaluation of the abundance (Du et al., 2019). However, syn-
thetic images cannot model the complex scene of real im-
ages. Thus, large dataset with reliable reference is highly re-
quested for the development of efficient unmixing methods.

1.3 Multimodal land cover classification

Land cover classification has been a fundamental but chal-
lenging research topic in the RS community, as many high-
level subsequent analysis largely depends on the classifi-
cation results. Over the past decades, extensive classifica-
tion algorithms were developed for single modalities (Huang
et al., 2020; Hong et al., 2021b; Rasti et al., 2020), e.g. HS,
MS, SAR, lidar, OpenStreetMap. These methods have been
proven to be effective in many real applications. We have to
admit, however, that the utilization of single modalities in-
evitably suffers from the performance bottleneck. Enormous
efforts have been recently made to couple or jointly analyse
different RS observation sources by the attempts to design
advanced data fusion methods to achieve a more diversified
description for a studied scene. According to different pro-
cessing levels that the fusion behaviour happens, the current
state-of-the-art approaches related to RS data fusion can be
approximately categorized into three groups: data level, fea-
ture level, and decision level.

The first application of this paper, i.e. HS super-resolution,
is a typical data level fusion task. These developed super-
resolution approaches are only applied for homogeneous RS
data fusion, e.g. HS and MS images and panchromatic and
MS images. Because they have a similar imaging principle
and data structure, enabling the fusion of these data sources.
For heterogeneous RS data, e.g. SAR and optical data, DSM
and SAR, or DSM and optical data, they fail to directly fuse
in the image level due to their totally different image prop-
erties and structure. For this reason, the feature level fusion
strategy has been garnering increasing attention, providing
greater potential in the land cover classification task. Very
recently, only few benchmark datasets are openly available
for multimodal RS data processing and analysis, e.g. land
cover classification. More notably, there are some potential

limitations in these existing and public benchmark datasets.
For example,

– the number of multimodal RS data are limited, e.g. the
well-known Houston 2013 datasets (including HS and
DSM data) provided by the IEEE Data Fusion Contest
(DFC) 2013, the LCZ datasets (including MS and Open-
StreetMap) provided by the IEEE DFC 2017, the optical
and lidar data provided by the IEEE DFC 2019;

– there is a lack of diverse multimodal data, especially
heterogeneous data, e.g. the Houston 2018 datasets pro-
vided by the IEEE DFC 2018, including HS, MS, RBG.

For these reasons, building high-quality and multimodal
RS benchmark datasets is a primary and key step to boost the
development of various multimodal RS applications, further
contributing to the RS community. This, therefore, will mo-
tivate us to develop new and more diversified multimodal RS
datasets.

1.4 Contribution of this paper

In this paper, we have two major contributions. First, we
publish MDAS, a new multimodal benchmark data, that con-
sists of five modalities. All components of MDAS are well-
prepared by experienced experts to ensure a high quality, e.g.
the preparation of the DLR 3K DSM, the simulation of En-
MAP imagery, and the generation of ground reference for
unmixing. As far as we know, the ground reference is the
first product that provides reliable reference for quantitative
evaluation of real hyperspectral image unmixing. Besides the
high quality, the variety of data modality provides more pos-
sibilities for data fusion applications. Second, we demon-
strate the performance of state-of-the-art algorithms for three
typical remote sensing applications, namely, resolution en-
hancement, spectral unmixing, and land cover classification.
These experiment results provide baselines for further algo-
rithm developments on MDAS.

2 MDAS dataset

MDAS has remote sensing data of five modalities. They are
SAR data, multispectral image, hyperspectral image, DSM,
and GIS data. Figure 1 demonstrates all these modalities. The
region of interest (ROI) is the city of Augsburg, Germany,
and covers an area of 121.7 km2. Apart from the GIS data,
the other data are all collected on the same day, 7 May 2018.

2.1 Synthetic aperture radar data

The SAR component in MDAS is a Sentinel-1 data. The
SAR data after processing is the backscattering coefficient.
No speckle denoising was applied and the data were not con-
verted to dB. We download a level-1 Ground Range De-
tected (GRD) product collected under the Interferometric
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Figure 1. The visualization of five data modalities in MDAS. From left to right: the Sentinel-1 image (VH band in dB), the Sentinel-2 image
(RGB: 665, 560, 490 nm), the OSM land use layer, the HySpex image (RGB: 691, 569, 445 nm), and the DSM.

Wide (IW) swath mode. It is a dual-Pol SAR data with
VV and VH channels. Based on recommended preprocess-
ing of Sentinel-1 data in Hu et al. (2018); Filipponi (2019);
Zhu et al. (2020), we prepare the SAR data by using ESA
SNAP toolbox (https://step.esa.int/main/toolboxes/snap/, last
access: 2 January 2023) following the workflow of apply-
ing precise orbit profile, conducting radiometric calibration,
and performing terrain correction. The topographic data used
in the processing are from the Shuttle Radar Topography
Mission (SRTM). We apply bilinear interpolation to achieve
a geocoded SAR image with a 10 m ground sampling dis-
tance (GSD). Based on the ROI, the final SAR image has a
size of 1371× 888 pixels, a geographic reference of WGS
84/UTM zone 32 N, and two channels (intensities of VV and
VH).

2.2 Multispectral imagery

The multispectral imagery in MDAS is a Sentinel-2 data. We
fetch a level-2A product directly from the Sentinel Data Hub.
It is an image in bottom of atmosphere (BOA) reflectance and
geocoded in WGS 84/UTM zone 32 N as well. It has 12 spec-
tral bands with wavelength ranging from 440 to 2200 nm.
The six bands (B5, B6, B7, B8A, B11, B12) of 20 m GSD
and the two bands (B1, B09) of 60 m GSD are all upsampled
to 10 m GSD. The final image is cropped according to the
ROI, resulting in a size of 1371× 888 pixels.

2.3 Hyperspectral imagery

2.3.1 Data acquisition

The hyperspectral images used in this study have been
acquired using the airborne imaging spectrometer system
HySpex, which is operated by the Remote Sensing Technol-
ogy Institute (IMF) of the German Aerospace Center (DLR).
For this study, HySpex was mounted on a Dornier DO228-
212. The imagery over the city of Augsburg was acquired in
23 flight strips.

2.3.2 System configuration

The system features two different cameras covering the
VNIR (visible and near-infrared) and SWIR (shortwave in-
frared) spectral domain. Both cameras have been extensively
characterized at the Calibration Home Base (CHB, Brach-
mann et al., 2016), resulting in a very well characterized
high-precision instrument suited for benchmark Earth ob-
servation applications. The HySpex VNIR-1600 features a
CCD detector covering the spectral range 416 to 992 nm
with 160 channels. This results in a spectral sampling inter-
val of 3.6 nm. The spectral resolution ranges from 3.5 nm at
nadir to approximately 6 nm at the outer edge of the swath.
The HySpex SWIR-320m-e is equipped with a mercury cad-
mium telluride (MCT) detector with 256 channels covering
the spectral range 968 to 2498 nm at a sampling interval of
6 nm and a spectral resolution of 5.6 to 7.0 nm. The VNIR
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detector has a width of 1600 pixels, while the SWIR detector
has a width of 320 pixels (Köhler, 2016).

2.3.3 Preprocessing

The HySpex processing chain consists of two parts: The
preparation of the data for the automatic processing, which
comprises the processing of GPS and IMU data and as-
signing them to the corresponding flight strips, and the sec-
ond part consisting of systematic correction, orthorectifica-
tion, co-registration, and atmospheric correction, which is
performed in the generic processing system Catena (Krauß
et al., 2013). For the systematic correction, the following
steps are applied on each frame in the given order: dark signal
correction, linearity correction (VNIR only), stray light cor-
rection (VNIR only), radiometric calibration, bad pixel cor-
rection (SWIR only), and finally correction of point spread
function (PSF) non-uniformities. The linearity correction of
the VNIR instrument is performed after the dark signal cor-
rection, since the dark current is very stable and does not
significantly change. For the stray light correction, a four-
dimensional tensor is applied. Currently, only the VNIR data
are corrected for stray light, while the measurement of the
SWIR instrument’s stray light is currently ongoing research.
The radiometric calibration is performed by dividing the sig-
nal corrected to this point by the radiometric response mul-
tiplied by the integration time. The radiometric responses of
both instruments are determined during laboratory calibra-
tion. The bad pixels of the HySpex SWIR are corrected by
linear interpolation between adjacent pixels along the spec-
tral axis, while the bad pixels of the VNIR are corrected by
the camera software. Finally, optical distortions like smile,
keystone, and – equally important – the individual angular
and spectral resolutions of each pixel are corrected by ap-
plying an individual homogenization kernel to each pixel.
For the co-registration of VNIR and SWIR data, a BRISK
matching is used (Schwind et al., 2014). After this step, the
data are orthorectified using the physical sensor model, the
GPS-/IMU-data, the mounting angles, and the DEM by the
DLR software ORTHO, followed by an atmospheric correc-
tion using the DLR software ATCOR (Richter, 1998). As
reflectance depends on the viewing and solar illumination
geometry, the processed data strips appear inconsistently in
magnitudes, which results in different brightness. This phe-
nomenon is described by the bidirectional reflectance distri-
bution function (BRDF). We manually iterate a BRDF effects
correction routine (BREFCOR, Schläpfer et al., 2014) on our
imagery and dramatically mitigate the influence of BRDF. At
last, the data strips are merged as one scene for the entire city
of Augsburg.

2.3.4 Simulation of additional image products

The hyperspectral Augsburg mosaic is an ideal data basis to
derive further image products suitable for classification tests

or resolution enhancement experiments. Accordingly, very
realistic hyperspectral EnMAP and multispectral Sentinel-2
data were generated. This was done using the EeteS (Segl
et al., 2012, 2010) and S2eteS (Segl et al., 2015) software,
both developed within the EnMAP project (Guanter et al.,
2015) to understand better the effects of instrumental and
environmental parameters on the resulting image charac-
teristics. The sequential processing chain of these software
tools consists of four independent parts – the atmospheric,
spatial, spectral, and radiometric modules – in which the
HySpex BOA reflectance data are used to calculate top-of-
atmosphere radiance and subsequently digital numbers. This
forward simulator is coupled with a backward simulation
branch consisting of calibration modules (e.g. for EnMAP:
non-linearity, dark current, and absolute radiometric calibra-
tion) and a series of pre-processing modules (radiometric
calibration, co-registration, atmospheric correction, and or-
thorectification) forming the complete end-to-end simulation
tool. Since both image products are based on the same data,
they are ideally suited for comparisons of classifications or
parameter retrievals using EnMAP and Sentinel-2 images.
Additional three images were generated for resolution exper-
iments, which do not contain any additional sensor or pro-
cessing uncertainties for better comparison. Accordingly, an
end-to-end simulation was completely omitted here and only
a purely spectral and spatial adaptation was calculated. In
a first step, the HySpex data were spatially adjusted to 10
and 30 m GSD, respectively. This was done with the help
of a PSF convolution using a 2D Gaussian filter, whose full
width at half maximum (FWHM) results from the ratio of the
output and input GSD. Since the input grid (2.2 m grid size)
and output grids (10.0/30.0 m) do not overlap perfectly, the
result of the PSF convolution is slightly erroneous because
the PSF cannot be perfectly positioned over the input pixels.
In order to keep these errors as small as possible, the PSF
was spatially shifted in the Fourier space for each pixel and
thus optimally adapted to the input grid. Subsequently, the 10
and 30 m GSD data were spectrally adjusted to the 242 En-
MAP bands by a spectral filtering using the original spectral
response functions of ENMAP. Similar, the four Sentinel-2
10 m bands were also generated based on the 10 m GSD data.

2.4 Digital surface model

A high-resolution DSM with images acquired with the 3K
camera system (Kurz et al., 2012) has been generated for this
study (see example of sub area in Fig. 2). For this, 1702 im-
ages from the nadir-looking camera, which has an average
coverage of 1170 m× 765 m and a GSD of 25 cm, were used
for the further processing. These images were acquired with
23 flight strips covering the whole test area of 275 km2 size
at a flight height of 1800 m above ground, which results in
a 75 % and 36 % along, respectively, across-track overlap.
First, a self-calibration image bundle adjustment was per-
formed using the SAPOS corrected and filtered GNSS/in-
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Figure 2. Shaded DSM of subarea.

ertial data of the image positions and attitudes as well as
121116 tie points. No further pass information was intro-
duced, except the global SRTM elevation model as a weak
additional height information for the tie points. With precise
oriented images, the DSM generation was then performed
using the SGM algorithm with modifications (d’Angelo and
Kurz, 2019). The resulting disparity images for each stereo
pair were filtered, fused, filled, and finally resampled to a
GSD of 30 cm.

2.5 Geographic information system (GIS) data

For the GIS data in MDAS, we download the building layer,
the land use layer, and the water layer from Open Street
Map (https://www.openstreetmap.org/#map=13/48.3699/10.
8809, last access: 2 January 2023). The original vector lay-
ers are rasterized into GeoTiff files with a coordinate system
of WGS 84/UTM zone 32 N. Depending on the application,
the GIS data can be utilized as either input data or ground
reference.

2.6 Manually labelled data

Three subregions were selected to be labelled, and their lo-
cation in the original image is shown in Fig. 3. A spectral
library of the most dominant urban materials for the HySpex
hyperspectral image was constructed by manually chosen
pure pixels throughout the subregions of the HySpex data.
In total, the spectral library contains 859 endmember spec-
tra with 181 spectra being pavement, 211 spectra being low
vegetation, 49 spectra being soil, 210 spectra being tree, 134
spectra being roof, and 74 spectra being water. The spectra
for each land cover class are shown in Fig. 4. To obtain sub-
pixel level information of mixed pixels for the unmixing task,
the land cover mapping products of six classes, namely, pave-
ment, low vegetation, soil, tree, roof, and water, were manu-
ally delineated across the 0.2 m DLR 3K image. The elabo-
rately produced land cover maps of the three subregions are
presented in Figs. 5–7. The ground-truth maps can be used to

generate reference abundances for quantitative evaluations of
the hyperspectral unmixing task.

2.7 Data summary

The data components of MDAS are listed in Table 2. They
are a Sentinel-1 SAR image, a Sentinel-2 multispectral im-
age, a DLR 3K DSM, and a HySpex hyperspectral image.
These four components are data sets collected from operating
missions. Besides this, MDAS includes some HySpex-based
simulated data. The S2eteS_S2 is a simulation of Sentinel-2
image in terms of the spatial and spectral characteristics. The
EeteS_EnMAP_10 imitates the spectral bands of EnMAP,
yet with a 10 m GSD. The EeteS_EnMAP_30 imitates both
the spectral bands and 30 m GSD of EnMAP. Meanwhile,
the simulation of EnMAP includes additionally the effects of
instrumental and environmental parameters. At last, MDAS
also has components which can be used as ground reference.
They are OSM GIS maps and manually labelled endmember
and land cover maps.

3 Experiments

3.1 Super-resolution

3.1.1 Selected algorithms

In this paper, we select representative super-resolution al-
gorithms among the literature and demonstrate their perfor-
mance on our MDAS data set. The experiment results can
be treated as the baseline for further studies. Our selection
of algorithms are based on two papers, Yokoya et al. (2017)
and Zhang et al. (2020c), as both studies carry out compre-
hensive comparative experiments and publish their source
codes. Yokoya et al. (2017) implements 10 conventional al-
gorithms, tests them on eight data sets, and evaluates the
performance with four metrics. Based on the 32 evaluations
(four metrics on eight data sets) in Yokoya et al. (2017), we
selected HySure (Simoes et al., 2014) and CNMF (Yokoya
et al., 2011), since they most frequently rank the first place,
respectively, 13 and 8 times. Zhang et al. (2020c) implements
six deep learning models, tests on six data sets, and applies
four evaluation metrics. We choose SSR-NET (Zhang et al.,
2020c) and ResTFNet (Liu et al., 2020) as they rank the first
place for 18 and 6 times. In the following, we briefly recap
the selected algorithms. CNMF (Yokoya et al., 2011) applies
non-negative matrix factorization on both hyperspectral and
multispectral images so that hyperspectral endmembers and
multispectral abundance map are extracted and further fused
to achieve an image of high-resolution in both spectral and
spatial domain. HySure (Simoes et al., 2014) attempts to
fuse hyperspectral and multispectral images by fitting both
of them to a latent representation. To do so, they optimize
two quadratic terms that fit the two images to the latent rep-
resentation and a regularizer to preserve edges. Liu et al.
(2020) proposes a two-stream convolutional neural network
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Figure 3. Three manually labelled subregions.

Figure 4. The endmember spectra for each land cover class.

(CNN) whose two branches extract representation from hy-
perspectral and multispectral images, respectively, fuse high-
level representations at a late stage, and recover an image
of high spectral and spatial resolution with a reconstruction
loss. Zhang et al. (2020c) trains a CNN to accomplish super-
resolution by a loss function of three terms. These terms rep-
resent differences on spectral edges, spatial edges, and the
data. Their training applies corresponding image patches of

hyperspectral image, multispectral image, and the targeted
image of high spectral and spatial resolution.

3.1.2 Evaluation metrics

For quantitative evaluations, we implement four metrics to
assess the super-resolution results, namely, PSNR, SAM,
ERGAS, andQ2n. PSNR evaluates the spatial reconstruction
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Table 2. This table lists data components of MDAS.

Data Modality Sensor GSD (m) No. bands

Sentinel-1 SAR Sentinel-1 payload 10 2
Sentinel-2 Multispectral image Sentinel-2 payload 10 12
DSM DSM DLR 3K 0.25 1
HySpex Hyperspectral image HySpex 2.2 416
S2eteS_S2 Multispectral image S2eteS spatial and spectral simulation 10 4
EeteS_EnMAP_10 Hyperspectral image EeteS spatial and spectral simulation 10 242
EeteS_EnMAP_30 Hyperspectral image EeteS spatial and spectral simulation 30 242
EnMAP Hyperspectral image EeteS 30 242
GIS GIS Open street map (OSM)
Endmember Manual labelling
Land cover maps Manual labelling

Table 3. Quantitative assessment of super-resolution algorithms. The best results are shown in bold font.

PSNR SAM ERGAS Q2n

CNMF (Yokoya et al., 2011) 32.8202 4.3695 5.7793 0.5242
HySure (Simoes et al., 2014) 29.1428 7.4784 8.2372 0.4245
SSR-NET (Zhang et al., 2020c) 37.5386 2.9909 3.7842 0.6540
ResTFNet (Liu et al., 2020) 37.0841 2.9163 3.6529 0.6763

Figure 5. The manually delineated land cover composition of the
sub1 region based on the DLR 3K image.

of each band. We assess our experiments with an averaged
PSNR over all bands. SAM is widely used to demonstrate
the quality of spectral information via calculating the angle
differences. ERGAS is a modified version of mean squared
error that globally assesses the quality of data reconstruc-
tion. At last, Q2n aims to qualify spectral and spatial distor-

Figure 6. The manually delineated land cover composition of the
sub2 region based on the DLR 3K image.

tions. For more details about the four metrics, please refer
to Yokoya et al. (2017).

3.1.3 Experiment setting

To train the algorithms, as shown in Fig. 8, we select three
areas for training, validating, and testing the algorithms. This
setting is required by the two deep learning models, SSR-
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Table 4. Quantitative assessment of unmixing algorithms for the sub1 region.

SeCoDe NMF-QMV-boundary NMF-QMV-center NMF-QMV-TV GMM

RMSE HySpex 0.3090 0.3291 0.3654 0.3211 0.3578
EeteS_EnMAP_10 0.2560 0.2792 0.2777 0.2776 0.2873

Time (min) HySpex 294.76 308.15 303.38 306.34 6442.33
EeteS_EnMAP_10 8.76 14.23 14.65 14.94 194.3

Table 5. Quantitative assessment of unmixing algorithms for the sub2 region.

SeCoDe NMF-QMV-boundary NMF-QMV-center NMF-QMV-TV GMM

RMSE HySpex 0.2786 0.2825 0.2899 0.2889 0.3249
EeteS_EnMAP_10 0.2413 0.2557 0.2785 0.2772 0.2639

Time (min) HySpex 287.06 274.52 279.53 277.50 5050.08
EeteS_EnMAP_10 7.10 13.97 13.88 13.87 162.77

Figure 7. The manually delineated land cover composition of the
sub3 region based on the DLR 3K image.

NET and ResTFNet. Since HySure and CNMF do not require
training with ground reference data, they work directly with
data of the testing area.

On the aspect of data, we utilize the spatially simulated
10 m GSD hyperspectral image as the reference data, which
have high spatial and high spectral resolution. The low spa-
tial and high spectral resolution image is the spatially sim-
ulated 30 m GSD hyperspectral image. The high spatial and
low spectral resolution image is the spectrally simulated 10 m
multispectral image. Figure 9 visualizes these three images,
and the details of simulations are introduced in Sect. 2.3.

The implementation of the deep learning models is based
on the codes introduced in Zhang et al. (2020c), within Py-

Torch framework. The number of epochs is 10 000. The opti-
mizer is Adam with a learning rate of 10−4. The best model
is saved along the training procedure, based on the assess-
ment on the validation data after each epoch. The codes of
the shallow models are accessible with Yokoya et al. (2017).

3.1.4 Experiment results and visualization

Table 3 shows the quantitative measures for the performance
of the selected four super-resolution algorithms. ResTFNet
has the best performance among them by ranking the first for
three indications. The two deep learning models significantly
outperform the other two conventional algorithms, at the cost
of requiring dramatically more data for training models. Fig-
ure 10 visualizes the super-resolution results, images of root
squared error, and images of angle differences. For both root
squared error and angle differences, HySure has the largest
error. The two deep learning models have smaller errors com-
pared to the two conventional algorithms. It is interesting to
point out that, in terms of angle differences, CNMF seems to
outperform the two deep models.

3.2 Hyperspectral unmixing

3.2.1 Ground truth

In the experiments, the endmember spectra shown in Fig. 4
were used by methods which need a spectral library as
prior knowledge. The abundance ground truth for quantita-
tive evaluation of unmixing performance was generated from
the land cover map shown in Figs. 5–7. The generated abun-
dance maps of the three subsets are displayed in Figs. 11–13.

3.2.2 Selected algorithms

There are several categories of unmixing algorithms (Hong
et al., 2021a). In this paper, we tested the performance of al-
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Figure 8. This figure demonstrates the data of the three regions that are used for the training, validating, and testing of the super-resolution
algorithms. The visualization is based on EeteS simulated Sentinel-2 image. The background, testing area, validating area, and training
area are visualized by R–G–B (663–560–492 nm), IR–G–B (842–560–492 nm), IR (842 nm), and IR (842 nm), respectively. IR is short for
infrared.

Figure 9. Visualizations of reference image, multispectral image, and hyperspectral image for the testing area.

gorithms on the generated dataset that belong to these three
categories: (1) unmixing methods that do not need the spec-
tral library as prior knowledge and do not consider the intra-
class spectral variability; (2) unmixing methods that do not
need the spectral library as prior knowledge and consider the
intra-class spectral variability; and (3) assume that there is a
spectral library of pure spectra representing endmember vari-
ability for a set of endmember classes and unmix the image
with the library. The NMF-QMV algorithm (Zhuang et al.,
2019), SeCoDe algorithm (Yao et al., 2021) and GMM al-
gorithm (Zhou et al., 2020) are selected as the representa-
tive algorithms that belong to the three categories, respec-
tively. NMF-QMV conducts unmixing via introducing three
kinds of well-known minimum volume regularization terms,
referred to as boundary, center, and total variance (TV) into
the nonnegative matrix factorization framework, in which the
regularization parameter between the data-fitting term and
the regularization term is selected automatically. SeCoDe

jointly captures the spatial–spectral information of hyper-
spectral image in a tensor-based fashion, in which the con-
volutional operation is employed to locally model the spa-
tial relation between neighbouring pixels by spectral bun-
dles that represent spectral variability (Hong et al., 2019a).
Experiments on three hyperspectral datasets showed that
SeCoDe outperformed other state-of-the-art unmixing algo-
rithms. GMM assumes that the endmembers for each pixel
are sampled from probability distributions, hence the pix-
els as linear combinations of these endmembers also follow
the distribution. It works by using Gaussian mixture model
for distributions and unmixing pixels based on the estimated
distribution parameters. Experiments on both synthetic and
real hyperspectral images showed that GMM performed best
among the distribution-based methods and achieved compa-
rable unmixing accuracy to set-based methods without the
need for library reduction; it may also be more stable across
datasets.
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Figure 10. Visualizations of super-resolution results. The first row demonstrates RGB images composed of bands of 652, 553, and 450 nm.
The second row demonstrates the rooted squared error between the reference and fusion results. The third row demonstrates the angle
differences between the reference and fusion results.

Figure 11. Ground truth of abundance maps of the sub1 region of the EeteS_EnMAP_10 data. (a) Pavement. (b) Low vegetation. (c) Soil.
(d) Tree. (e) Roof. (f) Water.

3.2.3 Evaluation metric

The spectral angle distance (SAD) and root mean square er-
ror (RMSE) are two most widely used evaluation metrics for
unmixing (Liu and Zhu, 2020). Since the tested methods con-
tain the method that uses spectral library as prior informa-
tion, only RMSE between the estimated abundance and the
ground truth abundance is employed for quantitative evalua-
tion. A smaller RMSE value means better performance.

3.2.4 Experiment setting

We tested the selected algorithms on the three subsets of
HySpex data and the EeteS_EnMAP_10 data. For NMF-
QMV, the three regularization terms, boundary, centre, and
TV are chosen separately, and no other parameter needs
to set. For SeCoDe, there are three regularization param-
eters (α,β, and γ ) that need to be manually adjusted.
We conducted parameter analysis on the sub1 region of
EeteS_EnMAP_10 data, and the parameter combination that
produces the minimum mean RMSE value is α = 0.3, β =
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Figure 12. Ground truth of abundance maps of the sub2 region of the EeteS_EnMAP_10 data. (a) Pavement. (b) Low vegetation. (c) Soil.
(d) Tree. (e) Roof. (f) Water.

Figure 13. Ground truth of abundance maps of the sub3 region of the EeteS_EnMAP_10 data. (a) Pavement. (b) Low vegetation. (c) Soil.
(d) Tree. (e) Roof. (f) Water.

0.01, and γ = 3. This parameter combination was directly
used for other images. For GMM, no parameter was manu-
ally set. All the algorithms were implemented in Matlab on a
PC with Intel Core i7-6700 CPU and 64 GB memory.

3.2.5 Results

Tables 4–6 show the quantitative assessments for the perfor-
mance of the selected unmixing algorithms. For both of the
HySpex and EnMAP dataset, SeCoDe has the best perfor-
mance in terms of RMSE. Regarding the computation time,
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Table 6. Quantitative assessment of unmixing algorithms for the sub3 region.

SeCoDe NMF-QMV-boundary NMF-QMV-center NMF-QMV-TV GMM

RMSE HySpex 0.3185 0.3314 0.3484 0.3493 0.3400
EeteS_EnMAP_10 0.2680 0.2997 0.2977 0.2973 0.3005

Time (min) HySpex 240.40 294.70 303.64 272.32 6238.65
EeteS_EnMAP_10 6.82 14.09 14.07 14.03 156.42

Table 7. This table lists category information of the investigated
dataset.

Class no. Class name Training Testing

1 Forest 1235 4936
2 Park 55 220
3 Residential 8704 34 812
4 Industrial 2487 9947
5 Farm 1456 5821
6 Cemetery 321 1284
7 Allotments 866 3460
8 Meadow 256 1023
9 Commercial 950 3797
10 Recreation ground 598 2389
11 Retail 340 1358
12 Scrub 236 941
13 Grass 72 285
14 Heath 36 141

– Total 17 612 90 388

although SeCode is the most efficient, it needs extra time
to select the best parameters, while the NMF-QMV-based
methods do not need parameter tuning. GMM is the most
time-consuming method. The efficiency of all methods de-
creased largely when the size of the image increased.

3.3 Multimodal land cover classification

3.3.1 Experimental setup

We selected pixel-wise classification as a potential applica-
tion to evaluate the performance of different modality com-
binations for the land cover mapping task on the Augs-
burg dataset. The classification performance is quantitatively
shown in terms of three common indices, i.e. overall accu-
racy (OA), average accuracy (AA), and kappa coefficient (κ),
using canonical correlations forest (CCF) classifier (Rain-
forth and Wood, 2015). We choose the sub area the same
as Fig. 5 to conduct our experiments. The sample statistics
are summarized in Table 7, in which 20 % samples were ran-
domly selected as the training set.

In this task, we investigate the classification performance
with the use of different combinations of RS modalities.
They include the following:

– single modality, e.g. HS, MS, SAR, DSM;

– two modalities, e.g. HS-MS, HS-SAR, HS-DSM, MS-
SAR, MS-DSM, SAR-DSM;

– three modalities, e.g. HS-MS-SAR, HS-MS-DSM, HS-
SAR-DSM, MS-SAR-DSM;

– four modalities, e.g. HS-MS-SAR-DSM.

3.3.2 Results and discussion

Table 8 lists the classification results of all possible combina-
tions of modalities on the to-be-released multimodal bench-
mark dataset, i.e. Augsburg. Moreover, only using HS or MS
data is apt to obtain better classification results than SAR
or DSM. The input with two modalities (even though SAR
plus DSM) obviously yields a performance improvement
compared to the single modality. Similarly, the use of three
modalities achieves a better result on the basis of two modal-
ities. As expected, the classification accuracies by using all
modalities are superior to those by using single modality, two
modalities, and three modalities, achieving the best classifi-
cation performance. This can demonstrate the necessity and
important values to investigate and build such a multimodal
benchmark dataset in the RS community, which can help us
break the performance bottleneck in many single-modality-
oriented applications and meanwhile point out the future re-
search direction.

Here, we only show the baseline results as a reference by
using the CCF classifier directly conducted on the original
RS data, in order to provide a larger space to the subsequent
potential researchers who are interested in the topics related
to multimodal feature extraction and classification for RS
data. In addition, we also visualize the corresponding clas-
sification maps, as illustrated in Fig. 14, where there is a ba-
sically similar trend with quantitative results.

4 Code and data availability

The data are accessible at https://doi.org/10.14459/
2022mp1657312 with a CC BY-SA 4.0 license (Hu
et al., 2022a), and the code (including the pre-trained mod-
els) is at https://doi.org/10.5281/zenodo.7428215 (Hu et al.,
2022b). Also, the live repository is available at https://github.
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Figure 14. Visualization of classification results obtained by the CCF classifier using different modalities.

com/zhu-xlab/augsburg_Multimodal_Data_Set_MDaS (last
access: 2 January 2023).

5 Conclusions

In this paper, we contributed to the community a new multi-
modal benchmark data set, MDAS, at the scene of Augsburg,
Germany. It includes five different data modalities, which are
SAR, multispectral image, hyperspectral image, DSM, and
GIS data. All data modalities were collected on the same day,
7 May 2018. Experienced experts put a lot of effort in the col-
lection and preparation of the data set to ensure a high qual-
ity. MDAS not only provides new benchmark data for current
data fusion applications, but some of its components enrich
data options for applications of single data source, such as
the DSM and hyperspectral images. Additionally, the multi-
ple modalities make it possible to explore different combina-
tions. Besides the data itself, we contribute by demonstrating
the performance of state-of-the-art algorithms on MDAS in
terms of super-resolution, unmixing, and land cover classifi-
cation. These experiment results provide baselines for further
studies that use MDAS, including but not limited to multi-
modal data fusion, the automatic design of neural architec-
tures and ML pipelines (NAS and AutoML) for multimodal
data, multi-fidelity problems (e.g. considering multi and hy-
perspectral data as different resolutions), domain adaption
(e.g. training a model on this high-quality data set and de-
ploying it into a new region), and transfer learning across
modalities, among many others.
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