Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5717-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5717-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Yang Liu
Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy
of Sciences, Beijing 100049, China
Zhixin Hao
Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy
of Sciences, Beijing 100049, China
Quansheng Ge
CORRESPONDING AUTHOR
Key Laboratory of Land Surface Pattern and Simulation, Institute of
Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy
of Sciences, Beijing 100049, China
Related authors
No articles found.
Jie Meng, Duanyang Xu, Zexing Tao, and Quansheng Ge
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-264, https://doi.org/10.5194/essd-2025-264, 2025
Preprint under review for ESSD
Short summary
Short summary
This study used multi-source remote sensing data and ensemble learning methods to map the distribution of sandy beaches in China from 2016 to 2023. A total of 2,984 sandy beaches were identified with high accuracy by integrating Sentinel-1/2 satellite imagery, terrain, and nighttime light data. Since 1990, the area at risk from human infrastructure squeeze has significantly increased. This study provides an updated dataset to support sustainable coastal management.
Zhixin Hao, Meirun Jiang, Haonan Yang, Danyang Xiong, and Jingyun Zheng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-111, https://doi.org/10.5194/nhess-2024-111, 2024
Preprint under review for NHESS
Short summary
Short summary
At ancient time, social system could successfully responded most extreme climate events, such as droughts. To explore society’s adaptability to extreme climate events, we chosen the 1759 drought as a typical case study, then reconstructed the meteorological distribution of drought spatially and temporally, analyzed the impacts of the drought on society, and summarized the adaptive measures employed at the time.
Mengyao Zhu, Junhu Dai, Huanjiong Wang, Juha M. Alatalo, Wei Liu, Yulong Hao, and Quansheng Ge
Earth Syst. Sci. Data, 16, 277–293, https://doi.org/10.5194/essd-16-277-2024, https://doi.org/10.5194/essd-16-277-2024, 2024
Short summary
Short summary
This study utilized 24,552 in situ phenology observation records from the Chinese Phenology Observation Network to model and map 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020. These phenology maps are the first gridded, independent and reliable phenology data sources for China, offering a high spatial resolution of 0.1° and an average deviation of about 10 days. It contributes to more comprehensive research on plant phenology and climate change.
Zhixin Hao, Haonan Yang, Meirun Jiang, Danyang Xiong, and Jingyun Zheng
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-40, https://doi.org/10.5194/cp-2023-40, 2023
Preprint withdrawn
Short summary
Short summary
At ancient time, social systems could successfully responded most extreme climate events, such as droughts. To explore society’s adaptability to extreme climate events, we chosen the 1759 drought as a typical case study. We collected historical records on climate as well as on crop harvests and failures, then reconstructed the meteorological distribution of drought spatially and temporally, analyzed the impacts of the drought on society, and summarized the adaptive measures employed at the time.
Xiaodan Zhang, Guoyu Ren, Yuda Yang, He Bing, Zhixin Hao, and Panfeng Zhang
Clim. Past, 18, 1775–1796, https://doi.org/10.5194/cp-18-1775-2022, https://doi.org/10.5194/cp-18-1775-2022, 2022
Short summary
Short summary
Applying yearly drought and flood records from historical documents and precipitation data in the period of instrumental measurements, this study constructs a time series of extreme droughts and floods in the Hanjiang River Basin from 1426–2017 and analyzes the temporal and spatial characteristics of the extreme drought and flood event variations.
Fengshan Liu, Ying Chen, Nini Bai, Dengpan Xiao, Huizi Bai, Fulu Tao, and Quansheng Ge
Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-2275-2021, https://doi.org/10.5194/bg-18-2275-2021, 2021
Short summary
Short summary
The sowing date is key to the surface biophysical processes in the winter dormancy period. The climate effect of the sowing date shift is therefore very interesting and may contribute to the mitigation of climate change. An earlier sowing date always had a higher LAI but a higher temperature in the dormancy period and a lower temperature in the growth period. The main reason was the relative contributions of the surface albedo and energy partitioning processes.
Cited articles
Adamson, G. C. D. and Nash, D. J.: Documentary reconstruction of monsoon
rainfall variability over western India, 1781–1860, Clim. Dynam., 42, 749–769,
https://doi.org/10.1007/s00382-013-1825-6, 2014.
Akkemik, Ü., Köse, N., Kopabayeva, A., and Mazarzhanova, K.: October
to July precipitation reconstruction for Burabai region (Kazakhstan) since
1744, Int. J. Biometeorol., 64, 803–813,
https://doi.org/10.1007/s00484-020-01870-8, 2020.
Altman, J.: Tree-ring-based disturbance reconstruction in interdisciplinary
research: Current state and future directions, Dendrochronologia, 63, 125733,
https://doi.org/10.1016/j.dendro.2020.125733, 2020.
Altman, J., Fibich, P., Dolezal, J., and Aakala, T.: TRADER: A package for
Tree Ring Analysis of Disturbance Events in R, Dendrochronologia, 32,
107–112, https://doi.org/10.1016/j.dendro.2014.01.004, 2014.
Arsalani, M., Azizi, G., and Bräuning, A.: Dendroclimatic reconstruction
of May-June maximum temperatures in the central Zagros Mountains, western
Iran, Int. J. Climatol., 35, 408–416, https://doi.org/10.1002/joc.3988,
2015.
Arsalani, M., Pourtahmasi, K., Azizi, G., Bräuning, A., and Mohammadi,
H.: Tree-ring based December–February precipitation reconstruction in the
southern Zagros Mountains, Iran, Dendrochronologia, 49, 45–56,
https://doi.org/10.1016/j.dendro.2018.03.002, 2018.
Awan, J. A., Bae, D. H., and Kim, K. J.: Identification and trend analysis
of homogeneous rainfall zones over the East Asia monsoon region, Int. J.
Climatol., 35, 1422–1433, https://doi.org/10.1002/joc.4066, 2015.
Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and
Kurths, J.: Complex networks reveal global pattern of extreme-rainfall
teleconnections, Nature, 566, 373–377,
https://doi.org/10.1038/s41586-018-0872-x, 2019.
Bombardi, R. J., Kinter, J. L., and Frauenfeld, O. W.: A Global Gridded
Dataset of the Characteristics of the Rainy And Dry Seasons, B. Am.
Meteorol. Soc., 100, 1315–1328, https://doi.org/10.1175/bams-d-18-0177.1,
2019.
Borgaonkar, H. P., Sikder, A. B., Ram, S., and Pant, G. B.: El Niño and
related monsoon drought signals in 523-year-long ring width records of teak
(Tectona grandis L.F.) trees from south India, Palaeogeography,
Palaeoclimatology, Palaeoecology, 285, 74–84,
https://doi.org/10.1016/j.palaeo.2009.10.026, 2010.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov,
S. G., and Vaganov, E. A.: Tree-ring width and density data around the
Northern Hemisphere: Part 1, local and regional climate signals, Holocene,
12, 737–757, 2002.
Buckley, B. M., Stahle, D. K., Luu, H. T., Wang, S. Y. S., Nguyen, T. Q. T.,
Thomas, P., Le, C. N., Ton, T. M., Bui, T. H., and Nguyen, V. T.: Central
Vietnam climate over the past five centuries from cypress tree rings, Clim.
Dynam., 48, 3707–3723, https://doi.org/10.1007/s00382-016-3297-y, 2017.
CAMS: Yearly charts of dryness/wetness for the last 500-year period,
SinoMaps Press, Beijing, 1981 (in Chinese).
Chen, F., Mambetov, B., Maisupova, B., and Kelgenbayev, N.: Drought
variations in Almaty (Kazakhstan) since AD 1785 based on spruce tree rings,
Stoch. Environ. Res. Risk Assess., 31, 2097–2105,
https://doi.org/10.1007/s00477-016-1290-y, 2016.
Chen, M., Xie, P., Janowiak, J. E., and Arkin, P. A.: Global Land
Precipitation: A 50-yr Monthly Analysis Based on Gauge Observations, J.
Hydrometeorol., 3, 249–266,
https://doi.org/10.1175/1525-7541(2002)003<0249:Glpaym>2.0.Co;2, 2002.
Christiansen, B. and Ljungqvist, F. C.: Challenges and perspectives for
large-scale temperature reconstructions of the past two millennia, Rev.
Geophys., 55, 40–96, https://doi.org/10.1002/2016rg000521, 2017.
Conroy, J. L. and Overpeck, J. T.: Regionalization of Present-Day
Precipitation in the Greater Monsoon Region of Asia, J. Climate, 24,
4073–4095, https://doi.org/10.1175/2011jcli4033.1, 2011.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: A review and comparison of two techniques, Int. J.
Climatol., 14, 379–402,
https://doi.org/10.1002/joc.3370140404, 1994.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G.
C., and Wright, W. E.: Asian Monsoon Failure and Megadrought During the Last
Millennium, Science, 328, 486–489, https://doi.org/10.1126/science.1185188,
2010a.
Cook, E. R., Seager, R., Heim, R. R., Vose, R. S., Herweijer, C., and
Woodhouse, C.: Megadroughts in North America: placing IPCC projections of
hydroclimatic change in a long-term palaeoclimate context, J. Quat. Sci.,
25, 48–61, https://doi.org/10.1002/jqs.1303, 2010b.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank,
D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L.,
Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M.,
Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson,
B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F.,
Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl,
T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D.,
Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A.,
Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M.,
Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson,
R., and Zang, C.: Old World megadroughts and pluvials during the Common Era,
Science Advances, 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015.
Cook, E. R., Solomina, O., Matskovsky, V., Cook, B. I., Agafonov, L.,
Berdnikova, A., Dolgova, E., Karpukhin, A., Knysh, N., Kulakova, M.,
Kuznetsova, V., Kyncl, T., Kyncl, J., Maximova, O., Panyushkina, I., Seim,
A., Tishin, D., Dotny, T. W. O., and Yermokhin, M.: The European Russia
Drought Atlas (1400–2016 CE), Clim. Dynam., 54, 2317–2335, 2020.
Coulthard, B. L., St. George, S., and Meko, D. M.: The limits of
freely-available tree-ring chronologies, Quat. Sci. Rev., 234, 106264,
https://doi.org/10.1016/j.quascirev.2020.106264, 2020.
CRED and UNISDR: The Human Cost of Weather-Related Disasters 1995–2015,
Centre for Research on the Epidemiology of Disasters and United Nations
International Strategy for Disaster Reduction, Brussels and Geneva, 30, https://www.undrr.org/publication/human-cost-weather-related-disasters-1995-2015 (last access: 22 May 2022),
2015.
Feng, S., Hu, Q., Wu, Q. R., and Mann, M. E.: A Gridded Reconstruction of
Warm Season Precipitation for Asia Spanning the Past Half Millennium, J.
Climate, 26, 2192–2204, https://doi.org/10.1175/JCLI-D-12-00099.1, 2013.
Friedman, J. H.: A variable span smoother, Technical Report, Department of Statistics,
Stanford University, Stanford, CASLAC-PUB-3477, 30,
https://doi.org/10.2172/1447470, 1984.
George, S. S.: An overview of tree-ring width records across the Northern
Hemisphere, Quat. Sci. Rev., 95, 132–150,
https://doi.org/10.1016/j.quascirev.2014.04.029, 2014.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J.,
Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P.
W., Wild, M., and Zhai, P. M.: Observations: Atmosphere and Surface, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 159–254, https://doi.org/10.1017/CBO9781107415324.008, 2013.
Hsu, H. H., Zhou, T. J., and Matsumoto, J.: East Asian, Indochina and
Western North Pacific Summer Monsoon – An update, Asia-Pac. J. Atmos. Sci., 50,
45–68, https://doi.org/10.1007/s13143-014-0027-4, 2014.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/jcli-d-16-0836.1, 2017.
Kamiguchi, K., Arakawa, O., Kitoh, A., Yatagai, A., Hamada, A., and
Yasutomi, N.: Development of APHRO_JP, the first Japanese
high-resolution daily precipitation product for more than 100 years,
Hydrol. Res. Lett., 4, 60–64, https://doi.org/10.3178/hrl.4.60,
2010.
Kostyakova, T. V., Touchan, R., Babushkina, E. A., and Belokopytova, L. V.:
Precipitation reconstruction for the Khakassia region, Siberia, from tree
rings, Holocene, 28, 377–385, https://doi.org/10.1177/0959683617729450,
2017.
Kucherov, S. E.: Reconstruction of summer precipitation in the Southern
Urals over the last 375 years based on analysis of radial increment in the
Siberian larch, Russ. J. Ecol., 41, 284–292,
https://doi.org/10.1134/s1067413610040028, 2010.
Lee, J., Perera, D., Glickman, T., and Taing, L.: Water-related disasters
and their health impacts: A global review, Progress in Disaster Science, 8, 100123,
https://doi.org/10.1016/j.pdisas.2020.100123, 2020.
Lever, J., Krzywinski, M., and Altman, N.: Model selection and overfitting,
Nat. Methods, 13, 703–704, https://doi.org/10.1038/nmeth.3968, 2016.
Li, Z., Liu, G., Fu, B., Zhang, Q., Hu, C., and Luo, S.: Influence of
different detrending methods on climate signal in tree-ring chronologies in
Wolong National Natural Reserve, western Sichuan, China, Chinese Journal of
Plant Ecology, 35, 707–721, 2011 (in Chinese).
Lian, T., Chen, D., Tang, Y., and Jin, B.: A theoretical investigation of
the tropical Indo-Pacific tripole mode, Science China Earth Sciences, 57,
174–188, https://doi.org/10.1007/s11430-013-4762-7, 2013.
Liu, F., Gao, C., Chai, J., Robock, A., Wang, B., Li, J., Zhang, X., Huang,
G., and Dong, W.: Tropical volcanism enhanced the East Asian summer monsoon
during the last millennium, Nat. Commun., 13, 3429,
https://doi.org/10.1038/s41467-022-31108-7, 2022.
Liu, Y., Hao, Z. X., Zhang, X. Z., and Zheng, J. Y.: Intercomparisons of
multiproxy-based gridded precipitation datasets in Monsoon Asia:
cross-validation and spatial patterns with different phase combinations of
multidecadal oscillations, Climatic Change, 165, 31,
https://doi.org/10.1007/s10584-021-03072-6, 2021.
Liu, Y., Zheng, J., Hao, Z., and Ge, Q.: A dataset of standard precipitation
index reconstructed from multi-proxies over Asia for the past 300 years,
Science Data Bank [data set], https://doi.org/10.57760/sciencedb.01829,
2022.
McCarroll, D., Young, G. H. F., and Loader, N. J.: Measuring the skill of
variance-scaled climate reconstructions and a test for the capture of
extremes, Holocene, 25, 618–626,
https://doi.org/10.1177/0959683614565956, 2015.
Melvin, T. M., Briffa, K. R., Nicolussi, K., and Grabner, M.:
Time-varying-response smoothing, Dendrochronologia, 25, 65–69,
https://doi.org/10.1016/j.dendro.2007.01.004, 2007.
Murata, A.: Reconstruction of rainfall variation of the Baiu in historical
times, in: Climate since AD 1500, edited by: Bradley, R. S., and Jones, P.
D., Routledge, London and New York, 224–245, ISBN 0-415-12030-6, 1992.
Nguyen, H. T. T., Turner, S. W. D., Buckley, B. M., and Galelli, S.:
Coherent Streamflow Variability in Monsoon Asia Over the Past Eight
Centuries – Links to Oceanic Drivers, Water Resour. Res., 56, e2020WR027883,
https://doi.org/10.1029/2020wr027883, 2020.
Nieto, R., Ciric, D., Vázquez, M., Liberato, M. L. R., and Gimeno, L.:
Contribution of the main moisture sources to precipitation during extreme
peak precipitation months, Adv. Water Resour., 131, 103385,
https://doi.org/10.1016/j.advwatres.2019.103385, 2019.
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling Errors
in the Estimation of Empirical Orthogonal Functions, Mon. Weather Rev., 110,
699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:Seiteo>2.0.Co;2, 1982.
Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., Cook,
B. I., O'Donnell, A., Lough, J., Grierson, P., and Baker, P.: Drought
variability in the eastern Australia and New Zealand summer drought atlas
(ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation,
Environ. Res. Lett., 10, 124002, https://doi.org/10.1088/1748-9326/10/12/124002, 2015.
Peng, D. D., Zhou, T. J., and Zhang, L. X.: Moisture Sources Associated with
Precipitation during Dry and Wet Seasons over Central Asia, J. Climate, 33,
10755–10771, https://doi.org/10.1175/Jcli-D-20-0029.1, 2020.
Pumijumnong, N., Brauning, A., Sano, M., Nakatsuka, T., Muangsong, C., and
Buajan, S.: A 338-year tree-ring oxygen isotope record from Thai teak
captures the variations in the Asian summer monsoon system, Sci. Rep., 10,
8966, https://doi.org/10.1038/s41598-020-66001-0, 2020.
Qin, D., Hou, S., Zhang, D., Ren, J., Kang, S., Mayewski, P. A., and Wake,
C. P.: Preliminary results from the chemical records of an 80.4 m ice core
recovered from East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya,
Ann. Glaciol., 35, 278–284, https://doi.org/10.3189/172756402781816799,
2002.
Sass-Klaassen, U., Leuschner, H. H., Buerkert, A., and Helle, G.: Tree-ring
analysis of Juniperus excelsa from the northern Oman mountains, in: Proceedings
of the Dendrosymposium 2007, Riga, Latvia, 3–6 May 2007, 99–108, https://doi.org/10.2312/GFZ.b103-08056, 2007.
Schneider, U., Finger, P., Meyer-Christoffer, A., Rustemeier, E., Ziese, M.,
and Becker, A.: Evaluating the Hydrological Cycle over Land Using the
Newly-Corrected Precipitation Climatology from the Global Precipitation
Climatology Centre (GPCC), Atmosphere, 8, 52,
https://doi.org/10.3390/atmos8030052, 2017.
Sekaran, U.: Research methods for business: a skill-building approach, 4th edn., John
Wiley & Sons, New York, ISBN 0-471-20366-1, 2003.
Seth, A., Giannini, A., Rojas, M., Rauscher, S. A., Bordoni, S., Singh, D.,
and Camargo, S. J.: Monsoon Responses to Climate Changes – Connecting Past,
Present and Future, Current Climate Change Reports, 5, 63–79,
https://doi.org/10.1007/s40641-019-00125-y, 2019.
Shah, S. K., Bhattacharyya, A., and Chaudhary, V.: Reconstruction of
June–September precipitation based on tree-ring data of teak (Tectona grandis L.) from Hoshangabad, Madhya Pradesh, India, Dendrochronologia, 25,
57–64, https://doi.org/10.1016/j.dendro.2007.02.001, 2007.
Shi, F., Zhao, S., Guo, Z., Goosse, H., and Yin, Q.: Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years, Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, 2017.
Shi, H., Wang, B., Cook, E. R., Liu, J., and Liu, F.: Asian Summer
Precipitation over the Past 544 Years Reconstructed by Merging Tree Rings
and Historical Documentary Records, J. Climate, 31, 7845–7861,
https://doi.org/10.1175/Jcli-D-18-0003.1, 2018.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas,
J.: The leading mode of Indian Summer Monsoon precipitation variability
during the last millennium, Geophys. Res. Lett., 38, L15703,
https://doi.org/10.1029/2011gl047713, 2011.
Stahle, D. W., Cook, E. R., Burnette, D. J., Torbenson, M. C. A., Howard, I.
M., Griffin, D., Diaz, J. V., Cook, B. I., Williams, A. P., Watson, E.,
Sauchyn, D. J., Pederson, N., Woodhouse, C. A., Pederson, G. T., Meko, D.,
Coulthard, B., and Crawford, C. J.: Dynamics, Variability, and Change in
Seasonal Precipitation Reconstructions for North America, J. Climate, 33,
3173–3195, https://doi.org/10.1175/jcli-d-19-0270.1, 2020.
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A
reconstruction of global hydroclimate and dynamical variables over the
Common Era, Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018.
Sun, Q. H., Miao, C. Y., Duan, Q. Y., Ashouri, H., Sorooshian, S., and Hsu,
K. L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation,
and Intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018.
Tao, S., Fu, C., Zeng, Z., and Zhang, Q.: Two Long-Term Instrumental
Climatic Data Bases of the People's Republic of China (NDP039), ESS-DIVE [data set],
https://doi.org/10.3334/CDIAC/cli.ndp039, 1997.
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K.
A., and Lin, P. N.: A High-Resolution Millennial Record of the South Asian
Monsoon from Himalayan Ice Cores, Science, 289, 1916–1919,
https://doi.org/10.1126/science.289.5486.1916, 2000.
Ukhvatkina, O., Omelko, A., Kislov, D., Zhmerenetsky, A., Epifanova, T., and Altman, J.: Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin' Mountain range, Clim. Past, 17, 951–967, https://doi.org/10.5194/cp-17-951-2021, 2021.
Vaganov, E. A., Anchukaitis, K. J., and Evans, M. N.: How Well Understood
Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of
the Climatic Control on Conifer Tree-Ring Growth Dynamics, vol. 11, in:
Dendroclimatology, edited by: Hughes, M. K., Swetnam, T. W., and Diaz, H.
F., Springer, Dordrecht, Netherlands, 37–75,
https://doi.org/10.1007/978-1-4020-5725-0_3, 2011.
Wang, B., Biasutti, M., Byrne, M. P., Castro, C., Chang, C. P., Cook, K.,
Fu, R., Grimm, A. M., Ha, K. J., Hendon, H., Kitoh, A., Krishnan, R., Lee,
J. Y., Li, J. P., Liu, J., Moise, A., Pascale, S., Roxy, M. K., Seth, A.,
Sui, C. H., Turner, A., Yang, S., Yun, K. S., Zhang, L. X., and Zhou, T. J.:
Monsoons Climate Change Assessment, B. Am. Meteorol. Soc., 102, E1–E19,
https://doi.org/10.1175/BAMS-D-19-0335.1, 2021.
Wang, S. and Zhao, Z.: An analyses of historical data of droughts and floods
in last 500 years in China, Acta Geographica Sinica, 34, 329–341,
https://doi.org/10.11821/xb197904005, 1979 (in Chinese).
Wei, K., Ouyang, C., Duan, H., Li, Y., Chen, M., Ma, J., An, H., and Zhou,
S.: Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in
Southern China, The Innovation, 1, 100038,
https://doi.org/10.1016/j.xinn.2020.100038, 2020.
Wettstein, J. J., Littell, J. S., Wallace, J. M., and Gedalof, Z. e.:
Coherent Region-, Species-, and Frequency-Dependent Local Climate Signals in
Northern Hemisphere Tree-Ring Widths, J. Climate, 24, 5998–6012,
https://doi.org/10.1175/2011JCLI3822.1, 2011.
Wu, R.: Relationship between Indian and East Asian summer rainfall
variations, Adv. Atmos. Sci., 34, 4–15,
https://doi.org/10.1007/s00376-016-6216-6, 2016.
Xu, C., Sano, M., and Nakatsuka, T.: A 400-year record of hydroclimate
variability and local ENSO history in northern Southeast Asia inferred from
tree-ring δ18O, Palaeogeogr. Palaeocl.,
386, 588–598, https://doi.org/10.1016/j.palaeo.2013.06.025, 2013.
Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., and Li, Z.: A tree-ring
cellulose δ18O-based July–October precipitation reconstruction
since AD 1828, northwest Thailand, J. Hydrol., 529, 433–441,
https://doi.org/10.1016/j.jhydrol.2015.02.037, 2015.
Zhang, D. and Liu, C.: Continuation (1980–1992) of the “Yearly Charts of
Dryness/ Wetness in China for the last 500-Years Period”, Meteorological
Monthly, 19, 41–45, 1993 (in Chinese).
Zhang, D., Li, X., and Liang, Y.: Continuation (1992–2000) of the “Yearly
Charts of Dryness/Wetness in China for the Last 500-Years Period”, Quarterly
Journal of Applied Meteorology, 14, 379–388, 2003 (in Chinese).
Zhang, P. Y.: Climate Change in China during Historical Times, Shandong
Science and Technology Press, Jinan, ISBN 7-5331-1823-5, 1996 (in Chinese).
Zhang, R. B., Shang, H. M., Yu, S. L., He, Q., Yuan, Y. J., Bolatov, K., and
Mambetov, B. T.: Tree-ring-based precipitation reconstruction in southern
Kazakhstan, reveals drought variability since AD 1770, Int. J. Climatol.,
37, 741–750, 2017.
Zhang, Y. and Wang, K.: Global precipitation system size, Environ. Res. Lett.,
16, 054005, https://doi.org/10.1088/1748-9326/abf394, 2021.
Zheng, J., Wu, M., Hao, Z., and Zhang, X.: Spatial pattern of decadal
variation of summer precipitation in Eastern China: Comparison of
observation and CESM control simulation, Geogr. Res., 35, 14–24,
https://doi.org/10.11821/dlyj201601002, 2016 (in Chinese).
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal...
Altmetrics
Final-revised paper
Preprint