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Abstract. Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability
and underlying mechanisms beyond the instrumental period that is critically needed for climate modeling, predic-
tion and attribution. Based on 2912 annually resolved proxy series mainly derived from tree rings and historical
documents, we present a set of standard precipitation index (SPI) reconstructions for each year (November–
October), covering the whole of Asia, and for the wet season (i.e., November–April for western Asia and May–
October for the others) since 1700, with the spatial resolution of 2.5◦. To screen the optimal candidate proxies
for SPI reconstruction in each grid from available proxies in its connected region with a homogeneous rainfall
regime and similar precipitation variability, a new approach is developed by adopting the grid-location-dependent
division derived from the instrumental SPI data. The validation shows that these reconstructions are effective for
most of Asia. The assessment of data quality compared with gauge precipitation before calibration time indicates
that our reconstruction has high quality to show the precipitation variability in most of the study areas, except
for a few grids in western Russia, the coastal area of southeast Asia and northern Japan. The full dataset can be
obtained from https://doi.org/10.57760/sciencedb.01829 (Y. Liu et al., 2022).

1 Introduction

Asia bears the brunt of flood and drought disasters and is as-
sociated more than any other continent with extensive social
and economic damages due to its large and heterogeneous
landmass plus its high population densities in the southern
and eastern regions (Lee et al., 2020; Wei et al., 2020). At the
national level, 7 of the top 10 countries in the world with the
largest number of population affected by climate-related dis-
asters (mainly flood and drought) are located in Asia (CRED
and UNISDR, 2015). However, the inter-annual, decadal and
centennial spatiotemporal variability of Asian precipitation
and the underlying mechanisms have not been fully charac-
terized, which limits the performance of precipitation projec-
tion for the next decades to hundred years (Seth et al., 2019;
Wang et al., 2021; F. Liu et al., 2022). Long-term, spatially
resolved and high-quality precipitation datasets are needed to
address these issues. Unfortunately, the global precipitation

observation network only covers the past century (Sun et al.,
2018), while the data for the first half period in Asia is at low
confidence levels (Hartmann et al., 2013). Therefore, proxy-
based precipitation reconstructions are essential to quantify
the precipitation variability beyond the instrumental period.

Up to now, there have been four gridded datasets to re-
construct summer (or the warm season) precipitation vari-
ability in mid–low latitude Asia for the past hundreds of
years (Cook et al., 2010a; Feng et al., 2013; Shi et al., 2018,
2017) by using tree-ring chronologies only or by merging
multi-proxies. For example, using 327 tree-ring chronologies
mainly located in the Tibetan Plateau and Mongolia, Cook et
al. (2010a) reconstructed the gridded (2.5◦

× 2.5◦) summer
(June–August, JJA) Palmer drought severity index (PDSI)
over monsoon Asia during 1300–2005. By weighted merg-
ing 453 tree-ring-width chronologies and 71-site dryness–
wetness grade series derived from Chinese historical docu-
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ments (local gazettes), Shi et al. (2018) reconstructed a grid-
ded Asian summer precipitation dataset for 1470–2013. Sim-
ilar reconstructions were also conducted for North America
(Cook et al., 2010b; Stahle et al., 2020), Europe (Cook et
al., 2015, 2020) and for Oceania (Palmer et al., 2015). More-
over, by using a data assimilation (DA) approach to com-
bine 2978 proxy data with the physical constraints of the
atmosphere–ocean climate model together, a globally grid-
ded (2.0◦

× 2.0◦) hydroclimate index dataset over the Com-
mon Era was also reconstructed (Steiger et al., 2018), in-
cluding PDSI and the standardized precipitation evapotran-
spiration index (SPEI) for JJA, DJF (December–February)
and April to the next March. These datasets extend records
back in time and provide valuable efforts on improving the
gridded paleoclimate reconstruction by synthesizing multi-
proxies from individual sites with spatiotemporal inhomo-
geneity.

However, intercomparisons of the abovementioned four
gridded precipitation–drought variability reconstructions in
monsoon Asia (Cook et al., 2010a; Feng et al., 2013; Shi
et al., 2017, 2018) with independent instrumental observa-
tion data show notable differences among them, caused by
proxies and methods for calibration, particularly dominated
by the number and sample distribution of proxies used, as
well as the seasonal sensitivity of the individual proxy to
precipitation anomalies (Liu et al., 2021). For example, in
the reconstruction from only tree-ring proxies, the explained
variance in regions with sparse proxies (e.g., eastern China,
mainland southeast Asia) is usually less than 20 % (Cook et
al., 2010a). By merging tree-ring and documentary proxies
in the reconstruction, the result is believed to illustrate large-
scale rainfall variability faithfully but has more uncertainties
in representing regional rainfall anomalies (Shi et al., 2018).
Moreover, the precipitation over Asia has a complex spatial
pattern, with the temporal variability on intra-seasonal and
inter-annual scales (Hsu et al., 2014) due to different rainfall
regimes in space (Awan et al., 2015; Conroy and Overpeck,
2011). Therefore, the sensitivity of individual proxies to
precipitation anomalies has evident regional differences be-
tween seasons. In addition, many new proxies achieved in re-
cent years are not utilized in the above-mentioned four grid-
ded reconstructions in monsoon Asia (e.g., Shah et al., 2007;
Sass-Klaassen et al., 2007; Arsalani et al., 2018, 2015; Chen
et al., 2016; Zhang et al., 2017; Pumijumnong et al., 2020;
Xu et al., 2015; Buckley et al., 2017; Ukhvatkina et al., 2021;
Akkemik et al., 2020; Kostyakova et al., 2017; Kucherov,
2010; Xu et al., 2013; Borgaonkar et al., 2010). All of these
motivate us to initiate this new gridded (2.5◦

× 2.5◦) recon-
struction effort on seasonal to annual precipitation variability
over the past 300 years in the whole of Asia, including the
western and northern Asia not covered in the four gridded
datasets developed in previous studies (Cook et al., 2010a;
Feng et al., 2013; Shi et al., 2018, 2017). Noting that most of
Russian territory is located in Asia, to keep the data integrity

at the national level, the whole Russian territory is included
in this study.

2 Data and method

2.1 The study area and the framework for grid SPI
reconstruction

The spatial coverage of our reconstruction is shown in Fig. 1,
and the reconstructed target is standard precipitation index
(SPI). In this vast study area, there are many climatic types
with heterogeneous precipitation; specifically, the wet season
in western Asia and the southwestern part of central Asia
is mainly from November–April, but that in the rest of the
regions is May–October due to different rainfall regimes in
different regions (Bombardi et al., 2019; Peng et al., 2020).
Thus, we reconstructed the annual (November–October) SPI
for the entire study area, as well as the November–April
SPI in western Asia and the southwestern part of central
Asia and the May–October SPI in the other regions for the
wet season. The flow chart of the reconstruction procedures
is shown in Fig. 2. It is noted that there exists a complex
spatial coherence pattern for the precipitation variation on
scales of inter-annual, decadal and longer in the study area,
which means the spatial representativeness of the individ-
ual proxy is dominated by the location in the context of the
region (e.g., shape and area) with coherent rainfall regime
and variation. Therefore, we develop a new approach to se-
lect proxies for each grid SPI reconstruction by adopting the
grid-location-dependent division (GLDD) derived from the
instrumental SPI data, instead of selecting proxies usually
from an isotropic search radius for all grids in many previous
studies (e.g., Cook et al., 2010a; Shi et al., 2018). The meth-
ods for reconstruction (including GLDD), searching candi-
date proxies for calibration, and validation will be presented
in Sect. 2.4.

2.2 Instrumental data for calibration and spatial pattern
of wet season identification

In our study, the grid size for SPI reconstruction is set
as 2.5◦

× 2.5◦. The instrumental data used for calibra-
tion are resized from the 0.5◦

× 0.5◦ gridded monthly SPI
data for 1948–2019 calculated by NOAA’s land precip-
itation product (Chen et al., 2002), which was down-
loaded via IRI/LDEO Climate Data Library (http://iridl.
ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/, last ac-
cess: 21 May 2022). As pointed out by previous studies
(Bombardi et al., 2019; Peng et al., 2020; Nieto et al., 2019),
moisture sources are different across Asia throughout the
year, and the wet season could be roughly classified as two
terms of November–April and May–October. Therefore, to
identify the spatial pattern of the wet season for SPI recon-
struction in the 2.5◦

× 2.5◦ gridded scale induced by different
regional rainfall regimes, the monthly precipitation data for
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Figure 1. The study area and the spatial difference of rainfall
regime, with the wettest bimester (two consecutive months) shown
by the monthly GPCP precipitation data from 1948–2019. The dot
marker indicates that the grid lacks a clear wet season. Annual
(November–October) SPI is reconstructed for all non-gray grids,
while wet season (November–April and May–October) SPI is re-
constructed in regions with black and brown boundaries respec-
tively.

1948–2019 by GPCC (Schneider et al., 2017) is also used
to calculate two consecutive months with the most rainfall
amount in a year (Fig. 1). It is shown that, in most parts of the
study area, the wettest two consecutive months are in May–
October. However, in western Asia (excluding the south cor-
ner of the Arabian Peninsula), the southwest part of central
Asia and the tropical zone south to 10◦ N, the wettest two
consecutive months are in November–April. Moreover, there
also exist a few grids (dot marked in Fig. 1) that have no dis-
tinct wet season (Bombardi et al., 2019). Thus, we exclude
the dotted grids in wet season SPI reconstruction.

2.3 Proxy data preparation

There are a total of 2912 annually resolved proxy series from
Asia and adjacent land areas (Eastern Europe and Alaska) for
reconstruction, of which 2792 are derived from tree-rings,
115 from historical documents, 4 from ice cores, and 1 from
a stalagmite. Their spatial and temporal distribution is shown
in Fig. 3. It is noted that all of the proxy series have at least 20
records overlapped with the instrumental period since 1948
to ensure a sufficient sample size for calibration and valida-
tion and more than 30 records before 1948 for reconstruction.
The data source and standardized processes for each type of
proxy series are described below.

Tree-ring data are mainly (2772) from the Interna-
tional Tree-Ring Data Bank (ITRDB), maintained by the
World Data Center for Paleoclimatology (WDC-P, https://
www.ncei.noaa.gov/products/paleoclimatology, last access:
28 October 2022), including 1854 tree-ring width records,
828 tree-ring density records, 67 tree-ring latewood percent

records, 22 tree-ring stable oxygen isotope (δ18O) records
and 1 tree-ring blue-intensity record. Most sites have two
categories of data, i.e., original raw tree-ring measurements
and tree-ring index chronologies derived from raw measure-
ments. However, the index chronologies are not used di-
rectly in this study because they were standardized by var-
ious methods which are not described in the online metadata,
and some of the methods may result in a substantial loss of
long-term fluctuations (Coulthard et al., 2020). To maximally
preserve the climatic-related low-frequency variance, we re-
calculate the chronologies from 2644 available raw measure-
ment files by removing the growth trend with age-dependent
splines (Melvin et al., 2007). In a few cases where age-
dependent splines contain zeros or negative values, a more
flexible curve, the Friedman variable span smoother (Fried-
man, 1984), is used to fit the growth trend. In addition, some
trees experience disturbances during their lifespan, which
could cause abrupt growth increases or reductions (Altman,
2020). To eliminate this effect, the running mean technique
(Altman et al., 2014) is applied to identify the disturbance
event, then separate growth curves are fitted before and af-
ter this year. Finally, the 51-year sliding expressed popula-
tion signal (EPS) is calculated, and the threshold of 0.85 is
used to determine the first reliable year of a chronology. The
above procedures are also applied for sites with raw mea-
surements only. The other 128 tree-ring records from ITRDB
only have chronologies; EPS is not available, and thus we use
the minimum sample size of 5 to determine the first reliable
year. Besides ITRDB, 17 tree-ring width chronologies and
3 tree-ring δ18O chronologies that indicate local precipita-
tion or drought from recently published papers are included
in our study (Shah et al., 2007; Sass-Klaassen et al., 2007;
Arsalani et al., 2018, 2015; Chen et al., 2016; Zhang et al.,
2017; Pumijumnong et al., 2020; Xu et al., 2015; Buckley
et al., 2017; Ukhvatkina et al., 2021; Akkemik et al., 2020;
Kostyakova et al., 2017; Kucherov, 2010; Xu et al., 2013;
Borgaonkar et al., 2010). Compared with the tree-ring net-
work used in previous studies over the monsoon Asia region
(Cook et al., 2010a; Feng et al., 2013; Shi et al., 2017, 2018),
a total of 113 ring-width chronologies are added in our study.

It is worth noting that part of the sites consists of both
tree-ring width and density chronologies. According to the
principle of dendroclimatology, the availability of soil water
affects the growth rate and formation of wood, both within a
season and the longer term; thus, tree-ring width is expected
to be positively correlated with precipitation via this direct
response (Vaganov et al., 2011; Wettstein et al., 2011). For
tree-ring density chronologies, they are usually correlated
with temperature variation and scarcely used in precipitation
reconstruction (Briffa et al., 2002). However, due to multiple
types of climate and complex topography in the vast study
area, the tree-ring density chronologies and width chronolo-
gies with negative correlations to precipitation may also indi-
cate precipitation variation well (George, 2014), and the use
of such tree-ring predictors in hydro-climate reconstruction
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Figure 2. The flow chart of SPI reconstruction over Asia for 1700–2000 in this study.

has been discussed in prior studies (e.g., Cook et al., 2020).
Therefore, we reconstruct two versions of SPI: one excludes
tree-ring width chronologies negatively correlated to precip-
itation and tree-ring density chronologies (hereafter called
“Version A”), the other includes all tree-ring chronologies
(hereafter called “Version B”).

The proxy from historical documents is mainly the
dryness–wetness grade series for 120 sites in China for the
past 500 years (henceforth referred to as DW120) by the Chi-
nese Academy of Meteorological Science (CAMS, 1981).
The grades were calibrated based on descriptions of droughts
and floods and their impacts during the wet season, mainly
recorded in Chinese local gazettes, using ideal frequency cri-
teria of all time, roughly 10 % for grades 1 and 5 (heavy
flood and severe drought), 20 %–30 % for grades 2 and 4
(flood and drought), and 30 %–40 % for grade 3 (normal).
This grade dataset originally ended in 1979 (CAMS, 1981)
and was extended to 2000 (Zhang et al., 2003; Zhang and
Liu, 1993), which becomes an essential dataset to reconstruct
summer precipitation over the Asia monsoon domain (Feng
et al., 2013; Shi et al., 2017, 2018). However, DW120 con-
tains a large proportion of missing data because there are
only 26 040 grade records since 1700 (Fig. 4a), which limits
the spatial and temporal coverage of data for gridded SPI re-

construction. Therefore, we update this dataset by two steps.
The first is adding the missing data in DW120 from another
dryness–wetness grade dataset for 63 sites in central eastern
China (DW63) developed by Zhang (1996). It is noted that all
sites of DW63 are included in DW120, and the grading crite-
ria for DW63 are the same as DW120. Since DW63 was re-
constructed from more abundant historical documents (such
as the drought and flood descriptions recorded in the mem-
oirs and archives of the Qing Dynasty), it had fewer missing
records, with 100 % data availability after 1700. Therefore,
all missing records of DW120 in central eastern China are
added from DW63, which supplements 2045 grade records in
total. The second step is interpolation from the isoline map of
DW120 for individual years when most sites have available
data (CAMS, 1981), which supplements 4121 grade records.
Since DW63 was reconstructed by the same grading criteria
as DW120, both the 2045 added grade records from DW63
and the 4121 added records from the yearly isoline map of
DW120 match with the original available data. This updated
DW120 finally contains 32 206 grade records since 1700,
which is a 23.7 % increase compared with the original ver-
sion (Fig. 4b). Unfortunately, no data are available before the
20th century for 10 sites in western China and one site in
northeastern China (cross marked in Fig. 4b); thus, only 109
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Figure 3. Spatial (a) and temporal (b) distribution of proxies.

sites in China are selected for our SPI reconstruction. An-
other documentary-based dryness–wetness grade series since
1781 is from Mumbai, India, which also consists of five
grades calibrated against the percentage of rainfall anoma-
lies derived from instrumental data in their overlapped period
(Adamson and Nash, 2014). In addition, the series of wet-
season (May–October) rainy days for five sites in Japan are
also included. These series were extracted from the histor-
ical diaries (https://www.ncei.noaa.gov/access/paleo-search/
study/5412, last access: 25 October 2022) and merged with
instrumental data (Kamiguchi et al., 2010) by the method
from Murata (1992).

The rest of the proxy series, derived from four ice cores
in the Himalayas and one stalagmite in India, are also down-
loaded from WDC-P and have been proven to indicate hydro-
climatic change by prior studies (Thompson et al., 2000;
Sinha et al., 2011; Qin et al., 2002). It is worth noting that
the δ18O ratio series of the ice core from East Rongbuk
Glacier is unequally spaced, with a mean temporal resolution
of 0.082 years, which is simply re-sampled to an annually re-
solved series by averaging data in the same year.

2.4 Method for grid SPI reconstruction with
grid-location-dependent division

Since there are many climatic types with heterogeneous pre-
cipitation in the study area, and since the spatial represen-
tativeness of an individual proxy is sensitive to location, we
develop a new approach to identify the region for searching
proxies (called “searching region” hereafter) to reconstruct
SPI in each grid. This approach is developed according to
the regional division of the coherence of inter-annual pre-
cipitation variations in the context of the spatial pattern of
rainfall regimes to ensure the proxies in the searching re-
gion can indicate SPI variability in the target grid well. We
divided the regions from the spatial pattern of the correla-
tion coefficient (CC) between the SPI of each target grid for
SPI reconstruction and the other grids within the study area,
which is calculated from instrumental SPI data. The search-
ing region is defined as all connected grids surrounding the
target grid with CCs passing 0.05 significance level. Thus,
this searching region has the robust coherence of precipita-
tion variability and rainfall regimes with the target grid, and
the proxies in this region have the best spatial representative-
ness in relation to the target grid. Since this regional division
is dependent on the grid location by rolling the target grid,
this approach was called “grid-location-dependent division
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Figure 4. The proportion of available data for DW120 in the original version (a) and after updating (b). Sites with a cross marker in (b) are
excluded in the reconstruction.

(GLDD)” in our study (Fig. 2). Moreover, we use best sub-
set regression (BSR) to identify optimal combinations of the
candidate proxies for calibration in each grid SPI reconstruc-
tion based on available proxies in different intervals (Fig. 2)
because the proxies are unevenly distributed in space and
time. The following shows the November–October SPI re-
construction for a grid of 90.0–92.5◦ E and 27.5–30.0◦ N (lo-
cated in southwest China) as an example of the detailed steps.

Firstly, the spatial SPI correlation field of the target grid
is calculated, and the regions with positively significant (p <
0.05) correlation coefficients are identified (Fig. 5a). It shows
that the target grid and its adjacent grids have significant cor-
relations that cover an irregular shape (i.e., not a circle-like
shape, with an isotropic radius from the target grid, or other
regular shape) in southwest China, which means there exists
robust coherence for SPI variation. This is because the rain-
fall regime and precipitation for that region are usually dom-
inated by the same atmospheric circulation systems (Zhang
and Wang, 2021). Besides, there are some other remote re-
gions (e.g., the Malay Archipelago, the Russian Plain, and
regions around the New Siberian Islands) that show signif-
icant correlations to the target grid. However, prior studies
have reported that the long-distance precipitation telecon-
nection patterns are usually unstable over a long-term pe-
riod, since they are linked by large-scale atmospheric circu-
lations or propagating waves (Wu, 2016; Boers et al., 2019).
Therefore, the candidate proxies for the target grid SPI recon-
struction should be searched only from the connected region
(Fig. 5b), and there are a total of 43 proxies for the candidate
proxy selection.

Secondly, the correlations between the target grid SPI
and each series of 43 proxies in the searching region are
calculated to select the candidate proxies by the threshold
of the 0.1 significance level for the correlations. Note that
prior summer precipitation could affect the tree-ring for-
mation in the next year (Wettstein et al., 2011); thus 1-
year-lagged tree-ring chronologies are also included for the

November–October SPI reconstruction. However, the prox-
ies with highly positive correlations may lead to multi-
linearity effects in the regression equation for calibration.
Thus, we also calculate the correlations among all 43 proxy
series, and if any pair of proxy series shows an extremely
high positive correlation (i.e., r > 0.90 and p < 0.0001) in
their common period, the shorter one will be excluded from
the pool of candidate proxies. By this step, a total of eight
proxy series (including five tree-ring width series, one tree-
ring δ18O series and two dryness–wetness grade series) are
selected for BSR in the following step (Fig. 5b).

Thirdly, the calibration equation is established by using
BSR for each time segment, depending on the length of the
candidate proxy series. According to the start and end year
of all eight candidate proxy series, the time of proxy avail-
ability should be classified into six segments, in which there
are eight candidate proxies for 1772–1997, seven candidate
proxies for two segments in 1745–1771 and 1998–2000 re-
spectively, six candidate proxies for 1743–1744, five candi-
date proxies for 1739–1742 and four candidate proxies for
1700–1738 (Fig. 5c). Moreover, to avoid the overfitting in
the regression induced by redundant independent variables
(Lever et al., 2016), if there are more than five candidate
proxies, only five proxy series with the top five significance
levels for the correlations with target SPI are retained for the
regression. This is because the sample length to develop cal-
ibration equations for reconstruction is about 50 years usu-
ally, and the sample size should preferably be 10 times (or
more) the number of variables for BSR, according to the
principle of statistics (Sekaran, 2003). Thus, three individ-
ual segments (1743–1744, 1745–1771 and 1772–1997) re-
tain the same five proxies (i.e., two tree-ring width series,
one tree-ring δ18O series and two DW120 series), and they
could be regarded as one segment of 1743–1997. Then, we
use BSR to establish four calibration equations for SPI recon-
struction in 1700–1738, 1739–1742, 1743–1997 and 1998–
2000 respectively, in which the best subset selection is de-
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Figure 5. Demonstration of a grid SPI reconstruction for showing proxy selection by the GLDD approach. (a) The target grid (yellow square)
and regions (light blue) that have significantly (at least p < 0.05) positively correlated SPI change. (b) The searching region connected with
the target grid and proxies in it. A proxy marker with a black edge means it is significantly (at least p < 0.1) correlated with SPI change
in the target grid. (c) Temporal coverage of picked proxy series and derived four segments based on available proxies. Proxies are listed in
ascending order of p value from bottom to top. When a segment has more than five proxies, the bottom five (solid patch) are used in BSR,
and the others (cross patch) are excluded. Proxies that remained in the final BSR model are marked with plus signs. (d) Reconstructed SPI
series and calibration R2a for each segment.

termined by maximizing the coefficient of efficiency (CE)
(Cook et al., 1994), calculated by a state-of-the-art 4-fold
rolling-window cross-validation procedure (Nguyen et al.,
2020). Another commonly used validation parameter, reduc-
tion of error (RE), is also calculated from the same proce-
dure. Finally, the target SPI series for the full time is con-
structed by merging the reconstructions for individual seg-
ments (Fig. 5d). As the reconstructions for different segments
were calibrated from different equations with different vari-
ances and predicted sums of squares, the magnitudes of the
reconstructed SPI for a specific segment had to be adjusted
using the variance matching method with respect to the stan-
dard deviations of the predictands in common years during
the calibration period (McCarroll et al., 2015).

3 Results and discussion

The dataset includes four SPI reconstructions: (1) the
November–October SPI reconstruction for the whole of
Asia without using tree-ring density chronologies and width
chronologies with negative correlations to precipitation
(November–October SPI Version A); (2) the November–
October SPI reconstruction for the whole of Asia, adding
tree-ring density chronologies and width chronologies with
negative correlations to precipitation (November–October
SPI Version B); (3) the wet-season SPI reconstruction for the
extra-tropical Asia (November–April SPI for western Asia
and May–October SPI for the rest of the regions) without
using tree-ring density chronologies and width chronologies
with negative correlations to precipitation (wet season SPI
Version A); (4) the wet season SPI reconstruction for the
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extra-tropical Asia (November–April SPI for western Asia
and May–October SPI for the rest of the regions), adding
tree-ring density chronologies and width chronologies with
negative correlations to precipitation (wet season SPI Ver-
sion B). Each of them is stored in a NetCDF file (.nc) and
contains five three-dimensional (longitude × latitude × time)
variables, including reconstructed SPI, adjusted coefficient
of determination (R2a), validation RE, validation CE and the
number of proxies used for construction (nPrx).

3.1 Validity of the reconstruction

Figure 6 show the spatial patterns of R2a, RE and CE for the
November–October SPI reconstruction since 1700 by a 50-
year interval. It shows that CE in most of the study areas is
positive. Although a few grids have negative CE, especially
before 1800, most of them still have positive RE. These re-
sults mean the reconstruction is effective, in which the area
with R2a > 0.2 accounts for 36.1 % of grids in Asia in 1700
and extends to 66.1 % in 1950 due to more and more avail-
able proxies. Since 1700, the areas with R2a > 0.4 are dis-
tributed in a broad region from the southwest coast of the
Caspian Sea to Balkhash Lake to eastern China and in some
grids in the northern Far East, northern India and the west-
ern mainland Southeast Asia. R2a gradually passed 0.4 from
1750 to 1800 over Turkey, the West Siberian Plain, central
Asia, Mongolia and India. The highest R2a (more than 0.6)
appeared in central eastern China throughout the entire 300-
year period.

By adding tree-ring density chronologies and width
chronologies with negative correlations to precipitation in
the November–October SPI reconstruction (i.e., Version B),
the number of grids with ineffective reconstruction is signif-
icantly reduced, and the R2a for most of the grids is sig-
nificantly increased (Fig. 7). Compared to the November–
October SPI reconstruction Version A (Fig. 6), the area with
R2a > 0.2 in Version B accounts for 59.3 % of grids in Asia
in 1700 and extends to 85.1 % in 1950. In particular, R2a

increased by 0.2–0.3 in central to eastern Russia and by 0.1
to 0.2 in other regions, except for the Arabian Peninsula and
eastern China.

Likewise, for the wet-season SPI reconstruction, it is also
effective in most grids (Fig. 8), in which the area with
R2a > 0.2 accounts for 37.3 % of grids in Asia in 1700 and
extends to 61.5 % in 1950. Compared with the November–
October SPI Version A (Fig. 6), the wet-season SPI recon-
struction shows significantly higher R2a (0.1–0.2) for the
region on the east of the Caspian Sea, slightly higher R2a

(around 0.1) for most grids in high-latitude zones, and a re-
duced R2a around 0.1 in eastern China. For the wet-season
SPI reconstruction with added tree-ring density chronologies
and width chronologies with negative correlations to precip-
itation, the percentage of areas with R2a > 0.2 in 1700 and
1950 is 58.1 % and 83.9 % respectively (Fig. 9). The differ-
ence in skill metrics between two wet-season SPI versions

(Figs. 8 and 9) is similar to that between two November–
October SPI versions (Figs. 6 and 7).

3.2 Data quality and usability

Compared to three reconstructions of summer (JJA or May–
September) precipitation (or PDSI) in monsoon Asia by pre-
vious studies (Cook et al., 2010a; Feng et al., 2013; Shi et al.,
2018), the R2a in the calibration period of our May–October
SPI reconstructions (Figs. 8p and 9p) are 10 % higher than
that of the best one in three reconstructions over the south
Tibetan Plateau to the eastern India subcontinent, the west-
ern mainland Southeast Asia and northwest China. More-
over, our reconstruction has a slightly higher R2a in parts of
Mongolia, central Asia and eastern China than that in other
reconstructions. In particular, R2a in eastern China in our
reconstruction is about 40 % higher than that from the recon-
struction by only tree-ring data (Cook et al., 2010a). These
improvements are not only because more proxy data (includ-
ing the DWI derived from Chinese historical documents and
the tree-ring data published recently) are added but also be-
cause of the development of the reconstruction method that
selects proxies by the GLDD approach from a connected
searching region with significantly positive correlations to
the target grid SPI.

In addition, the maps of correlation between our wet-
season SPI reconstructions and four reconstructions in mon-
soon Asia by previous studies show that most grids pass the
0.01 significance level (Figs. 10–11). Specifically, for the
correlation (Figs. 10a, 11a) between our wet-season SPI re-
construction Versions A and B and the JJA precipitation re-
construction by Shi et al. (2018), 63.2 % and 64.1 % of all
grids passed the 0.01 significance level, in which the value
of the correlation coefficients for central eastern China are
almost higher than 0.60. Similar results are also found for
the correlations between our reconstruction versus the May–
September precipitation anomaly reconstruction by Shi et
al. (2017) in China (Figs. 10b, 11b) and the May–September
precipitation reconstruction over monsoon Asia (Figs. 10c,
11c) by Feng et al. (2013). Even for the correlations between
our wet-season SPI reconstruction versus JJA PDSI recon-
struction for monsoon Asian (Figs. 10d, 11d) by Cook et
al. (2010a) only using tree rings, 57.4 % (for our reconstruc-
tion Version A versus JJA PDSI reconstruction) and 58.8 %
(for our reconstruction Version B versus JJA PDSI recon-
struction) of all grids passed the 0.01 significance level.

To further assess the quality of reconstructed data, we
compare our November–October SPI reconstruction with
gauge precipitation at those weather stations with at least 30-
year records before 1948, in which the precipitation data are
from the Global Historical Climatology Network monthly
dataset version 2 (GHCNmv2, https://www.ncei.noaa.gov/
pub/data/ghcn/v2/, last access: 21 May 2022) and the long-
term instrumental climatic databases of the People’s Repub-
lic of China (Tao et al., 1997). We calculate the correlations
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Figure 6. R2a, RE and CE for November–October SPI reconstruction by multi-proxies without using tree-ring density chronologies and
width chronologies with negative correlations to precipitation.

between the November–October precipitation anomaly per-
centage and November–October SPI reconstruction in corre-
sponding grids (Fig. 12). Noting that the length of instrumen-
tal data before 1948 varies for different weather stations, i.e.,
the degrees of freedom for calculating these correlations are
different station by station, we show the significance level for
all positive correlations station by station instead of the value
of correlation coefficients directly, with levels of p ≤ 0.01,
0.01< p ≤ 0.05, 0.05< p ≤ 0.1 and p > 0.1 (Fig. 12). The
result shows that the correlations for most sites, especially
in eastern and southern Asia, pass the significance level of
0.1, though the correlation is not significant for parts of sta-
tions in central Asia, western Asia, the coastal area in south-
east Asia and western Russia. For example, in the six sites
(Haerbin, Beijing, Qingdao, Shanghai, Yichang and Shan-
tou) evenly distributed across eastern China (Fig. 12), all the

correlations between reconstruction and observation pass the
0.01 significance level (Fig. 13). Moreover, the reconstruc-
tions could reproduce the most extreme years, e.g., 1853,
1871, 1890, 1893, 1920 and 1921 in Beijing; 1875, 1876,
1889, 1891, 1892, 1921, 1929, 1931 and 1934 in Shanghai;
and 1889, 1897, 1900, 1902, 1920, 1928, 1935 and 1937 in
Yichang (Fig. 13). The high p values (i.e., p > 0.1) of the
poor positive correlation or negative correlation in parts of
stations (e.g., in India or southeast Asia) might be induced
by uncertainties from reconstructions based on few available
proxies and observations in early times because the instru-
mental data from these station usually extend to the 1880s
and before (e.g., several stations in India extend to 1836),
with missing records and the frequent use of defective rain
gauges in the early times. This assessment indicates that our
reconstruction is of high quality for showing the precipita-
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Figure 7. R2a, RE and CE for November–October SPI reconstruction by multi-proxies, including tree-ring density chronologies and width
chronologies with negative correlations to precipitation.

tion variability in most of the study areas, except for a few
grids in western Russia, the coastal area of southeast Asia
and northern Japan. Thus, these datasets could be used to
further study the spatiotemporal variability and underlying
mechanisms of Asian precipitation since the pre-industrial
era that is critically needed for climate modeling, prediction
and attribution.

For example, we use the dataset of November–October
SPI Version B to investigate the spatiotemporal pattern of
hydroclimate variability over Asia for 1700–2000 by empir-
ical orthogonal function (EOF) analysis. Figure 14a shows
the first 10 eigenvalues and their 95 % confidence uncertainty
intervals generated by the method from North et al. (1982).
We find that only the first leading eigenvalue is independent,
while the uncertainty intervals of other eigenvalues are over-
lapped, and the cumulative explained variance of the first 10

eigenvalues only accounts for 30.83 % of the total (Fig. 14b).
Such results indicate that there exist multiple spatial patterns
of precipitation in Asia. Here, we show some major charac-
teristics for the first four modes, including spatial patterns
(Fig. 14c–f), temporal changes (Fig. 15) and their correla-
tions with winter sea surface temperature anomalies (SSTAs)
after the high-pass filter (Fig. 16). It is noted that the gridded
SSTA data are from ERSSTv5 over 1854–2000 (Huang et al.,
2017).

The spatial pattern of EOF1 has strong negative loadings
over central Russia and a broad region from western Asia
to central Asia to western China, while dominant positive
loadings can be observed over the monsoon region and east-
ern Russia (Fig. 14c). The time series for EOF1 has power-
ful inter-annual fluctuations over the considered period and
significant decadal fluctuations in 1770–1820 (Fig. 15a). Its
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Figure 8. R2a, RE and CE for wet-season SPI reconstruction by multi-proxies without using tree-ring density chronologies and width
chronologies with negative correlations to precipitation; the black line indicates the boundary of the region in which the wet season is
November–April, as that in Fig. 1.

high-frequency change (10-year high-pass filter) shows strik-
ing negative correlations with winter SSTA in the central
equatorial Pacific and Indian Oceans but positive correlations
in the western tropical Pacific Ocean (Fig. 16a), which sug-
gests that this mode is strongly affected by coupling oscilla-
tion in tropical oceans, i.e., Indo-Pacific tripole (Lian et al.,
2013).

The EOF2 shows a teleconnected pattern, with positive
loadings over western Asia, India, northern China and west-
ern and eastern Russia but negative loadings in the rest of the
regions (Fig. 14d). The energy bands of the time series for
EOF2 are similar to those for EOF1, while its decadal fluc-
tuations are expressed in 1840–1900 (Fig. 15b). The inter-
annual fluctuation of this mode is significantly correlated
with winter SSTA only in the eastern tropical Pacific Ocean

(Fig. 16b), which indicates that EOF2 is dominated by El
Niño–Southern Oscillation (ENSO).

The EOF3 and EOF4 both show multi-pole spatial patterns
(Fig. 14e–f), and their time series are dominated by decadal
to multi-decadal scale fluctuations (Fig. 15c–d). They ex-
press some significant decadal precipitation patterns in spe-
cific regions. For instance, precipitation over eastern China
has two major patterns of decadal variation (Zheng et al.,
2016): one is a dipole pattern divided by the Huai River,
and it is consistent with EOF3 in our study (Fig. 14e); the
other is a four-zone pattern (centered in southern China, the
Yangtze River Valley, the North China Plain and northeastern
China) which is similar to EOF4 (Fig. 14f). In contrast, the
high-frequency fluctuations are relatively weak for these two
EOFs, and their links with SSTA are not significant.
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Figure 9. R2a, RE and CE for wet-season SPI reconstruction by multi-proxies, including tree-ring density chronologies and width chronolo-
gies with negative correlations to precipitation; the black line indicates the boundary of the region in which the wet season is November–April,
as that in Fig. 1.

3.3 Effectiveness of GLDD and Uncertainty

Limited by the spatial coverage and uneven distribution of
available proxies, to reconstruct the grid dataset on past cli-
mate for large scales such as continental, hemispherical or
global, it is necessary to search the proxy for calibration
from a large area (so-called “searching region”, usually).
In previous studies on past temperature (Christiansen and
Ljungqvist, 2017) or hydro-climate reconstruction (Cook et
al., 2010a; Shi et al. 2017, 2018), the searching region for
each grid is set as a circular area with the same isotropic
searching radius (ISR). However, as pointed out by Chris-
tiansen and Ljungqvist (2017) from the investigation on spa-
tial decorrelation length in the Northern Hemispheric tem-
perature field, the searching radius for different target grids

varies from less than 1000 to more than 6000 km, relying on
target grid location and the searching direction along with
the spatial pattern of coherence of temperature variation at
different time scales. Since the spatial heterogeneity of pre-
cipitation variation is more evident than that of temperature
variation, the proxy for a target hydroclimate reconstruction
should be more sensitive to location and the searching direc-
tion.

Compared with searching proxies using isotropic search-
ing radius, GLDD searches proxies for each target grid from
the surrounding region where the precipitation variability and
rainfall regime are robustly coherent with that of the target
grid. As shown in Fig. 17, there are evident differences in
the maximum (Fig. 17a) and minimum distances (Fig. 17b)
from the boundary of the searching region to each target grid
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Figure 10. The maps of correlation between the wet-season SPI
reconstruction Version A of this study and four reconstructions in
monsoon Asia by previous studies of Shi et al. (2018) (a), Shi et
al. (2017) (b), Feng et al. (2013) (c) and Cook et al. (2010a) (d)
respectively. Correlation values significant at 99 % confidence are
shown by dot marker.

Figure 11. Same as Fig. 10 but for the wet-season SPI reconstruc-
tion Version B.

across Asia. The maximum distance is 1000–2000 km for
most grids in China, Mongolia, and central and northwest-
ern Russia; 2000–3000 km for most grids in India, central
Asia and southwestern and eastern Russia; 3000–4000 km in
the Arabian Peninsula; and more than 4000 km for tropical
islands. However, the minimum distance is only 250–750 km
for most grids of the study area, except very few grids in
the tropics. The difference between the maximum and min-
imum distances (Fig. 17c) could reach 2000 km or more in
regions with high topographic complexity, which means that

Figure 12. Correlations between November–October precipita-
tion anomaly percentage for weather stations with at least 30-year
records before 1948 from GHCNm and November–October SPI re-
construction in corresponding grids. The six selected sites in eastern
China are shown with black edges, and the comparisons between
observation and reconstruction year by year in these sites will be
shown as examples in Fig. 13.

Figure 13. Comparisons between November–October precipita-
tion anomaly percentage for six sites across eastern China from
Tao et al. (1997) and November–October SPI reconstruction in
corresponding grids. (a) Harbin (126.62◦ E, 45.68◦ N), (b) Bei-
jing (116.28◦ E, 39.93◦ N), (c) Qingdao (120.33◦ E, 36.07◦ N), (d)
Shanghai (121.43◦ E, 31.17◦ N), (e) Yichang (111.30◦ E, 30.70◦ N)
and (f) Shantou (116.68◦ E, 23.40◦ N). Their locations are also
shown in Fig. 12.

the searching region is always in an irregular shape. Thus, for
the area (e.g., the Tibetan Plateau and surrounding area) with
complicated topography and multiplex hydroclimate varia-
tion, GLDD could identify the unique searching region (in-
cluding shape and size) rigorously for each target grid. For
the area with a homogeneous hydroclimate variability and

https://doi.org/10.5194/essd-14-5717-2022 Earth Syst. Sci. Data, 14, 5717–5735, 2022



5730 Y. Liu et al.: SPI dataset over Asia since 1700

Figure 14. EOF analysis of November–October SPI reconstruction
in Asia. (a) The first 10 eigenvalues and their 95 % uncertainty in-
tervals. (b) The cumulative explained variance of the first 10 eigen-
values. (c–f) Spatial patterns of EOF1–EOF4.

Figure 15. Temporal change and wavelet power spectrum of the
time series (PC) for EOF1–EOF4 (a–d) shown in Fig. 14. PC is
shown after normalization with a 10-year low-pass filter (black) ap-
plied to each. Spectral bands significant above the 90 % level are
shown by black contours.

rainfall regime, GLDD could capture the proxies far from the
target grid, which could reconstruct well in the areas where
proxy data are not present, such as the east of the Caspian
Sea. Therefore, GLDD could search the optimal proxies for
hydroclimate reconstruction for each grid and consequently
improve the quality of the reconstructed dataset (see the
overall improvement of R2a compared with prior studies in
Sect. 3.2). For example, the R2a of our reconstruction for
the grid of 90.0–92.5◦ E and 27.5–30.0◦ N in Fig. 5 reached
40.8 %, which is 10.9 % higher than that of Shi et al.’s (2018)
reconstruction by merging tree ring and documentary records
together via ISR.

Yet, in this study, there still exist limitations and uncertain-
ties. First, GLDD could only search the candidate proxies for
the reconstruction in a target grid from its connected grids,
where the precipitation variability and rainfall regime are ro-
bustly coherent with the target grid, and excludes the prox-
ies from a teleconnected pattern. Thus, the candidate proxies
for the target grids are usually limited by GLDD compared
to the ISR approach. This might not only enlarge the uncer-
tainty but also induce missing data in the reconstruction for
an area with large spatial heterogeneity of precipitation varia-
tion and rainfall regimes due to very few available candidate
proxies, such as central Russia and the Arabian Peninsula.
Second, for tree-ring proxies, we use the same standardiza-
tion method to build chronologies when raw measurements
are available. However, about 4.5 % of the tree-ring proxies
do not have raw measurement files; thus, we have to use the
processed chronologies with various standardization meth-
ods from different data providers. As the test for some sites,
the difference between chronologies could reach a maximum
of 20 % from different standardization methods (Li et al.,
2011). This may also induce uncertainty in the reconstruc-
tion. Thirdly, for documentary proxies, DW120 may use in-
strumental precipitation data to identify the dryness–wetness
grades since 1951, especially after 1979, which might lead
to overestimations of the calibration and verification metrics
in eastern China. Fortunately, the data of dryness–wetness
grades before 1950 are completely derived from historical
documents (Wang and Zhao, 1979). Thus, comparisons be-
tween Figs. 12–13 and 6–7 by each site grid could help us
to assess the overestimation, and the result shows that the
overestimation of R2a in this reconstruction is about 10 %
on average over eastern China.

4 Data availability

The dataset (Y. Liu et al., 2022) can be accessed at https:
//doi.org/10.57760/sciencedb.01829. This dataset is licensed
under a CC BY-SA 4.0 license.
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Figure 16. Field correlations between SSTA in winter and time series of EOF1 (a) and EOF2 (b) after the 10-year high-pass filter. Correlation
values significant at 95 % confidence are shown by a dot marker.

Figure 17. The maximum (a) and minimum (b) distance from the boundary of the searching region to the target point and their difference
(c) for each grid.

5 Conclusions

In this study, we use a multi-proxy (mainly from tree rings
and historical documents with clear annual dating) network
containing 2912 series to reconstruct SPI for the wet season
(November–April for west Asia and May–October for the
other regions) and annual (November–October) timescales
since 1700 over Asia, with a spatial resolution of 2.5◦

× 2.5◦.
Compared to the previous studies (Cook et al., 2010a; Feng
et al., 2013; Shi et al. 2017, 2018), our reconstruction
is conducted at the grid level by an improved calibration
method, which could search proxies for a target grid by a
new approach of GLDD from its connected areas within a
sub-region having homogeneous rainfall regimes and simi-
lar precipitation variability. Meanwhile, many new proxies
were used, mainly including additional 113 tree-ring width
chronologies in the monsoon Asia and more than 6100 dry–
wet grade data (23.7 %) from historical documents in China.
These additional proxies evidently improve the coverage and
distribution of proxies and their temporal homogeneity due to
the reconstructed period being limited to 300 years only. This
dataset is the first SPI reconstruction covering the whole of
Asia based on pure proxies (without long-term observations
or climate model constraints) and can be used to more clearly
investigate the Asian precipitation change since 1700 and to
test the paleoclimate simulation in the industrial period.
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