Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Muchu Lesi
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu 610299, China
University of Chinese Academy of Sciences, Beijing 100190, China
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu 610299, China
Dan Hirsh Shugar
Water, Sediment, Hazards, and Earth-surface Dynamics (waterSHED) Lab,
Department of Geoscience, University of Calgary, Alberta, T2N 1N4, Canada
Jida Wang
Department of Geography and Geospatial Sciences, Kansas State
University, Manhattan, KS 66506, USA
Qian Deng
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu 610299, China
University of Chinese Academy of Sciences, Beijing 100190, China
Huayong Chen
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu 610299, China
Jianrong Fan
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu 610299, China
Related authors
No articles found.
Jinshui Wang, Jiangang Chen, Lu Zeng, Fei Yang, Xiao Li, Wanyu Zhao, and Huayong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-772, https://doi.org/10.5194/egusphere-2025-772, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Debris flows after wildfires threaten buildings, but assessing vulnerability remains challenging. This study develops a quantitative model to evaluate building vulnerability to postfire debris flows in Yajiang County. Field surveys and numerical simulations were used to analyze debris flow and quantify intensity. The results highlight differences in vulnerability models compared to previous studies, and provides a systematic framework for risk management strategies in wildfire-affected areas.
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Brahma Dutt Vishwakarma, Jeffrey Kargel, Dan Shugar, Umesh Haritishaya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
EGUsphere, https://doi.org/10.5194/egusphere-2024-4033, https://doi.org/10.5194/egusphere-2024-4033, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the eventual disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock-ice mixtures called rock glaciers. This paper explores these scenarios.
Kaiheng Hu, Manish Raj Gouli, Hao Li, Yong Nie, Yifan Shu, Shuang Liu, Pu Li, and Xiaopeng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-884, https://doi.org/10.5194/egusphere-2024-884, 2024
Preprint archived
Short summary
Short summary
An integrated approach comprising a field survey, remote sensing, and hydrodynamic modeling was applied to investigate the Rijieco Glacial Lake Outburst Flood (GLOF) in 1991. The flood caused devastating ecological consequences, like sedimentation and the expansion of an inland lake, which has not yet recovered after three decades. The results help understand the ecological impacts of outburst floods on the Tibetan inland lake system and make future flood hazard assessments more robust.
Alton C. Byers, Marcelo Somos-Valenzuela, Dan H. Shugar, Daniel McGrath, Mohan B. Chand, and Ram Avtar
The Cryosphere, 18, 711–717, https://doi.org/10.5194/tc-18-711-2024, https://doi.org/10.5194/tc-18-711-2024, 2024
Short summary
Short summary
In spite of enhanced technologies, many large cryospheric events remain unreported because of their remoteness, inaccessibility, or poor communications. In this Brief communication, we report on a large ice-debris avalanche that occurred sometime between 16 and 21 August 2022 in the Kanchenjunga Conservation Area (KCA), eastern Nepal.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Chunqiao Song, Chenyu Fan, Jingying Zhu, Jida Wang, Yongwei Sheng, Kai Liu, Tan Chen, Pengfei Zhan, Shuangxiao Luo, Chunyu Yuan, and Linghong Ke
Earth Syst. Sci. Data, 14, 4017–4034, https://doi.org/10.5194/essd-14-4017-2022, https://doi.org/10.5194/essd-14-4017-2022, 2022
Short summary
Short summary
Over the last century, many dams/reservoirs have been built globally to meet various needs. The official statistics reported more than 98 000 dams/reservoirs in China. Despite the availability of several global-scale dam/reservoir databases, these databases have insufficient coverage in China. Therefore, we present the China Reservoir Dataset (CRD), which contains 97 435 reservoir polygons. The CRD reservoirs have a total area of 50 085.21 km2 and total storage of about 979.62 Gt.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Cited articles
Ashraf, A., Naz, R., and Iqbal, M. B.: Altitudinal dynamics of glacial lakes
under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges,
Geomorphology, 283, 72–79, https://doi.org/10.1016/j.geomorph.2017.01.033,
2017.
Azam, M. F., Kargel, J. S., Shea, J. M., Nepal, S., Haritashya, U. K.,
Srivastava, S., Maussion, F., Qazi, N., Chevallier, P., Dimri, A. P.,
Kulkarni, A. V., Cogley, J. G., and Bahuguna, I.: Glaciohydrology of the
Himalaya-Karakoram, Science, 373, f3668,
https://doi.org/10.1126/science.abf3668, 2021.
Battamo, A. Y., Varis, O., Sun, P., Yang, Y., Oba, B. T., and Zhao, L.:
Mapping socio-ecological resilience along the seven economic corridors of
the Belt and Road Initiative, J. Clean. Prod., 309, 127341,
https://doi.org/10.1016/j.jclepro.2021.127341, 2021.
Bhambri, R., Hewitt, K., Kawishwar, P., Kumar, A., Verma, A., Snehmani,
Tiwari, S., and Misra, A.: Ice-dams, outburst floods, and movement
heterogeneity of glaciers, Karakoram, Global Planet. Change, 180, 100–116,
https://doi.org/10.1016/j.gloplacha.2019.05.004, 2019.
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa,
V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian glacier response
to climate revealed by multi-temporal satellite observations since the
1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y,
2021.
Bolch, T., Pieczonka, T., Mukherjee, K., and Shea, J.: Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s, The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, 2017.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999,
2017.
Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha,
F., and Kraaijenbrink, P. D. A.: Heterogeneous Influence of Glacier
Morphology on the Mass Balance Variability in High Mountain Asia, J.
Geophys. Res.-Earth., 124, 1331–1345, https://doi.org/10.1029/2018JF004838,
2019.
Carrivick, J. L. and Quincey, D. J.: Progressive increase in number and
volume of ice-marginal lakes on the western margin of the Greenland Ice
Sheet, Global Planet. Change, 116, 156–163,
https://doi.org/10.1016/j.gloplacha.2014.02.009, 2014.
Carrivick, J. L. and Tweed, F. S.: Proglacial lakes: character, behaviour
and geological importance, Quaternary Sci. Rev., 78, 34–52,
https://doi.org/10.1016/j.quascirev.2013.07.028, 2013.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal
impacts of glacier outburst floods, Global Planet. Change, 144, 1–16,
https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Carrivick, J. L., Tweed, F. S., Sutherland, J. L., and Mallalieu, J.: Toward
Numerical Modeling of Interactions Between Ice-Marginal Proglacial Lakes and
Glaciers, Front. Earth Sci., 8, 577068,
https://doi.org/10.3389/feart.2020.577068, 2020.
Carrivick, J. L., How, P., Lea, J. M., Sutherland, J. L., Grimes, M., Tweed,
F. S., Cornford, S., Quincey, D. J., and Mallalieu, J.: Ice-Marginal
Proglacial Lakes Across Greenland: Present Status and a Possible Future,
Geophys. Res. Lett., 49, e2022GL099276,
https://doi.org/10.1029/2022GL099276, 2022.
Chen, F., Zhang, M., Guo, H., Allen, S., Kargel, J. S., Haritashya, U. K., and Watson, C. S.: Annual 30-meter Dataset for Glacial Lakes in High Mountain Asia from 2008 to 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.4275164, 2020.
Chen, F., Zhang, M., Guo, H., Allen, S., Kargel, J. S., Haritashya, U. K., and Watson, C. S.: Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017, Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, 2021.
Chen, X., Cui, P., You, Y., Cheng, Z., Khan, A., Ye, C., and Zhang, S.:
Dam-break risk analysis of the Attabad landslide dam in Pakistan and
emergency countermeasures, Landslides, 14, 675–683,
https://doi.org/10.1007/s10346-016-0721-7, 2017.
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015.
Emmer, A. and Cuřín, V.: Can a dam type of an alpine lake be
derived from lake geometry? A negative result, J. Mt. Sci., 18, 614–621,
https://doi.org/10.1007/s11629-020-6003-9, 2021.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, G2004,
https://doi.org/10.1029/2005RG000183, 2007.
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial
lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009,
Global Planet. Change, 75, 47–55,
https://doi.org/10.1016/j.gloplacha.2010.10.003, 2011.
Hanshaw, M. N. and Bookhagen, B.: Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru, The Cryosphere, 8, 359–376, https://doi.org/10.5194/tc-8-359-2014, 2014.
Hewitt, K.: The Karakoram Anomaly? Glacier Expansion and the “Elevation
Effect”, Karakoram Himalaya, Mt. Res. Dev., 25, 332–340,
https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2, 2005.
Hewitt, K. (Ed.): Glaciers of the Karakoram Himalaya, Advances in Asian
Human-Environmental Research, Springer, Dordrecht, 363 pp.,
https://doi.org/10.1007/978-94-007-6311-1_1, 2014.
How, P., Messerli, A., Mätzler, E., Santoro, M., Wiesmann, A., Caduff,
R., Langley, K., Bojesen, M. H., Paul, F., Kääb, A., and Carrivick,
J. L.: Greenland-wide inventory of ice marginal lakes using a multi-method
approach, Sci. Rep.-UK, 11, 4481, https://doi.org/10.1038/s41598-021-83509-1,
2021.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.:
Remote sensing based assessment of hazards from glacier lake outbursts: a
case study in the Swiss Alps, Can. Geotech. J., 39, 316–330,
https://doi.org/10.1139/t01-099, 2002.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140,
https://doi.org/10.1038/s41558-017-0049-x, 2018.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless
SRTM data V4, International Centre for Tropical Agriculture (CIAT),
http://srtm.csi.cgiar.org (last access: 5 March 2021), 2008.
Jiang, S., Nie, Y., Liu, Q., Wang, J., Liu, L., Hassan, J., Liu, X., and Xu,
X.: Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution
in the Gyirong River Basin, Central Himalayas, between 1988 and 2015, Remote
Sens., 10, 986, https://doi.org/10.3390/rs10070986, 2018.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324,
2012.
Lesi, M., Nie, Y., Shugar, D. H., Wang, J., Deng, Q., Chen, H., and Fan, J.:
Landsat and Sentinel-derived glacial lake dataset in the China-Pakistan
Economic Corridor from 1990 to 2020, Mountain Science Data Center [data set],
https://doi.org/10.12380/Glaci.msdc.000001,
2022.
Li, D., Shangguan, D., and Anjum, M. N.: Glacial Lake Inventory Derived from
Landsat 8 OLI in 2016–2018 in China–Pakistan Economic Corridor,
ISPRS Int. J. Geo-Inf., 9, 294, https://doi.org/10.3390/ijgi9050294, 2020.
Li, Z., Deng, X., and Zhang, Y.: Evaluation and convergence analysis of
socio-economic vulnerability to natural hazards of Belt and Road Initiative
countries, J. Clean. Prod., 282, 125406,
https://doi.org/10.1016/j.jclepro.2020.125406, 2021.
Liu, Q. and Mayer, C.: Distribution and interannual variability of
supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor
Mountains, Central Asia, Environ. Res. Lett., 10, 14014,
https://doi.org/10.1088/1748-9326/10/1/014014, 2015.
Liu, Q., Mayer, C., Wang, X., Nie, Y., Wu, K., Wei, J., and Liu, S.:
Interannual flow dynamics driven by frontal retreat of a lake-terminating
glacier in the Chinese Central Himalaya, Earth Planet. Sc. Lett., 546,
116450, https://doi.org/10.1016/j.epsl.2020.116450, 2020.
Lyons, E. A., Sheng, Y., Smith, L. C., Li, J., Hinkel, K. M., Lenters, J.
D., and Wang, J.: Quantifying sources of error in multitemporal multisensor
lake mapping, Int. J. Remote Sens., 34, 7887–7905,
https://doi.org/10.1080/01431161.2013.827343, 2013.
Martín, C. N. S., Ponce, J. F., Montes, A., Balocchi, L. D., Gorza, C.,
and Andrea, C.: Proglacial landform assemblage in a rapidly retreating
cirque glacier due to temperature increase since 1970, Fuegian Andes,
Argentina, Geomorphology, 390, 107861,
https://doi.org/10.1016/j.geomorph.2021.107861, 2021.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv., 5, v7266,
https://doi.org/10.1126/sciadv.aav7266, 2019.
McFeeters, S. K.: The use of the Normalized Difference Water Index (NDWI) in
the delineation of open water features, Int. J. Remote Sens., 17, 1425–1432,
https://doi.org/10.1080/01431169608948714, 1996.
Miles, E. S., Watson, C. S., Brun, F., Berthier, E., Esteves, M., Quincey, D. J., Miles, K. E., Hubbard, B., and Wagnon, P.: Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya, The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, 2018.
Nie, Y., Zhang, Y., Liu, L., and Zhang, J.: Glacial change in the vicinity
of Mt. Qomolangma (Everest), central high Himalayas since 1976, J. Geogr.
Sci., 20, 667–686, https://doi.org/10.1007/s11442-010-0803-8, 2010.
Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A
regional-scale assessment of Himalayan glacial lake changes using satellite
observations from 1990 to 2015, Remote Sens. Environ., 189, 1–13,
https://doi.org/10.1016/j.rse.2016.11.008, 2017.
Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., and Liu, S.: An inventory
of historical glacial lake outburst floods in the Himalayas based on remote
sensing observations and geomorphological analysis, Geomorphology, 308,
91–106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
Nie, Y., Liu, W., Liu, Q., Hu, X., and Westoby, M. J.: Reconstructing the
Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya:
Evolution, process and impacts, Geomorphology, 370, 107393,
https://doi.org/10.1016/j.geomorph.2020.107393, 2020.
Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S.,
Nepal, S., Samyn, D., Hewitt, K., and Chen, X.: Glacial change and
hydrological implications in the Himalaya and Karakoram, Nat. Rev. Earth
Environ., 2, 91–106, https://doi.org/10.1038/s43017-020-00124-w, 2021.
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C.: Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2, Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, 2020.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt,
G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich,
J., and Sharp, M. J.: The Randolph Glacier Inventory: a globally complete
inventory of glaciers, J. Glaciol., 60, 537–552,
https://doi.org/10.3189/2014JoG13J176, 2014.
Post, A. and Mayo, L. R.: Glacier dammed lakes and outburst floods in
Alaska, U.S. Geological Survey, Report 455, 1–10,
https://doi.org/10.3133/ha455, 1971.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from
drought stress, Nature, 569, 649–654,
https://doi.org/10.1038/s41586-019-1240-1, 2019.
Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J.
M., Hambrey, M. J., and Glasser, N. F.: Early recognition of glacial lake
hazards in the Himalaya using remote sensing datasets, Global Planet.
Change, 56, 137–152, https://doi.org/10.1016/j.gloplacha.2006.07.013, 2007.
Rabus, B., Eineder, M., Roth, A., and Bamler, R.: The shuttle radar
topography mission–a new class of digital elevation models acquired by
spaceborne radar, Isprs J. Photogramm., 57, 241–262,
https://doi.org/10.1016/S0924-2716(02)00124-7, 2003.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6, National Snow and Ice Data Center [data set], https://doi.org/10.7265/4m1f-gd79, 2017.
Rick, B., McGrath, D., Armstrong, W., and McCoy, S. W.: Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019, The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, 2022.
Rose, A., Mckee, J., Sims, K., Bright, E., Reith, A., and Urban, M.:
LandScan Global 2020, Oak Ridge National Laboratory, https://doi.org/10.48690/1523378, 2021.
Rounce, D. R., Hock, R., and Shean, D. E.: Glacier Mass Change in High
Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution
Model (PyGEM), Front. Earth Sci., 7, 331,
https://doi.org/10.3389/feart.2019.00331, 2020.
Roy, D. P., Wulder, M. A., Loveland, T. R., C. E., W., Allen, R. G.,
Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R.,
Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F.,
Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D.,
Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee,
Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R.,
Vogelmann, J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product
vision for terrestrial global change research, Remote Sens. Environ., 145,
154–172, https://doi.org/10.1016/j.rse.2014.02.001, 2014.
Sakai, A.: Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia , The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, 2019.
Salerno, F., Thakuri, S., D'Agata, C., Smiraglia, C., Manfredi, E. C.,
Viviano, G., and Tartari, G.: Glacial lake distribution in the Mount Everest
region: Uncertainty of measurement and conditions of formation, Global
Planet. Change, 92–93, 30–39,
https://doi.org/10.1016/j.gloplacha.2012.04.001, 2012.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and
Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia
Glacier Mass Balance, Front. Earth Sci., 7, 363,
https://doi.org/10.3389/feart.2019.00363, 2020.
Sheng, Y., Song, C., Wang, J., Lyons, E. A., Knox, B. R., Cox, J. S., and
Gao, F.: Representative lake water extent mapping at continental scales
using multi-temporal Landsat-8 imagery, Remote Sens. Environ., 185, 129–141,
https://doi.org/10.1016/j.rse.2015.12.041, 2016.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020a.
Shugar, D., Burr, A., Haritashya, U. K., Kargel, J., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman, K.: High Mountain Asia Near-Global Multi-Decadal Glacial Lake Inventory, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/UO20NYM3YQB4, 2020b.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar,
A., Schwanghart, W., McBride, S., de Vries, M., Mergili, M., Emmer, A.,
Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier, E.,
Carrivick, J. L., Clague, J. J., Dokukin, M., Dunning, S. A., Frey, H.,
Gascoin, S., Haritashya, U. K., Huggel, C., Kaab, A., Kargel, J. S.,
Kavanaugh, J. L., Lacroix, P., Petley, D., Rupper, S., Azam, M. F., Cook, S.
J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes, J., Gnyawali, K. R.,
Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal,
S., Muhuri, A., Noetzli, J., Paul, F., Rashid, I., Sain, K., Steiner, J.,
Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice
avalanche caused the 2021 disaster at Chamoli, Indian Himalaya, Science,
373, 300–306, https://doi.org/10.1126/science.abh4455, 2021.
Ullah, S., You, Q., Ali, A., Ullah, W., Jan, M. A., Zhang, Y., Xie, W., and
Xie, X.: Observed changes in maximum and minimum temperatures over China-
Pakistan economic corridor during 1980–2016, Atmos. Res., 216, 37–51,
https://doi.org/10.1016/j.atmosres.2018.09.020, 2019.
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.: Increasing
dependence of lowland populations on mountain water resources, Nat. Sustain.,
3, 917–928, https://doi.org/10.1038/s41893-020-0559-9, 2020.
Wang, J., Sheng, Y., and Tong, T. S. D.: Monitoring decadal lake dynamics
across the Yangtze Basin downstream of Three Gorges Dam, Remote Sens.
Environ., 152, 251–269, https://doi.org/10.1016/j.rse.2014.06.004, 2014.
Wang, J., Sheng, Y., and Wada, Y.: Little impact of the Three Gorges Dam on
recent decadal lake decline across China's Yangtze Plain, Water Resour.
Res., 53, 3854–3877, https://doi.org/10.1002/2016WR019817, 2017.
Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y.,
MacDonald, G. M., Brun, F., Schmied, H. M., Marston, R. A., and Wada, Y.:
Recent global decline in endorheic basin water storages, Nat. Geosci., 11,
926–932, https://doi.org/10.1038/s41561-018-0265-7, 2018.
Wang, X., Ding, Y., Liu, S., Jiang, L., Wu, K., Jiang, Z., and Guo, W.:
Changes of glacial lakes and implications in Tian Shan, Central Asia, based
on remote sensing data from 1990 to 2010, Environ. Res. Lett., 8, 44052,
https://doi.org/10.1088/1748-9326/8/4/044052, 2013.
Wang, X., Liu, S., and Zhang, J.: A new look at roles of the cryosphere in
sustainable development, Adv. Clim. Chang. Res., 10, 124–131,
https://doi.org/10.1016/j.accre.2019.06.005, 2019.
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, 2020.
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Cataloging data set of high Asian ice lakes, National Cryosphere Desert Data Center [data set], https://doi.org/10.12072/casnw.064.2019.db, 2021.
Wangchuk, S. and Bolch, T.: Mapping of glacial lakes using Sentinel-1 and
Sentinel-2 data and a random forest classifier: Strengths and challenges,
Sci. Remote Sens., 2, 100008,
https://doi.org/https://doi.org/10.1016/j.srs.2020.100008, 2020.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D.
J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed
glacial lakes, Earth-Sci. Rev., 134, 137–159,
https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Williamson, A. G., Banwell, A. F., Willis, I. C., and Arnold, N. S.: Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland, The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, 2018.
Wu, R., Liu, G., Zhang, R., Wang, X., Li, Y., Zhang, B., Cai, J., and Xiang,
W.: A Deep Learning Method for Mapping Glacial Lakes from the Combined Use
of Synthetic-Aperture Radar and Optical Satellite Images, Remote Sens., 12,
4020, https://doi.org/10.3390/rs12244020, 2020.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W.
B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T.,
Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote,
E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status
of Landsat program, science, and applications, Remote Sens. Environ., 225,
127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019.
Yao, C., Wang, X., Zhao, X., Wei, J., and Zhang, Y.: Temporal and Spatial
Changes of Glacial Lakes in the China-Pakistan Economic Corridor from 1990
to 2018, J. Glaciol. Geocryol., 42, 33–42,
https://doi.org/10.7522/j.issn.1000-0240.2020.0009, 2020.
Yao, T., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X.
X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y.,
Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric
circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2,
663–667, https://doi.org/10.1038/NCLIMATE1580, 2012.
Yao, X., Liu, S., Han, L., Sun, M., and Zhao, L.: Definition and
classification system of glacial lake for inventory and hazards study, J.
Geogr. Sci., 28, 193–205, https://doi.org/10.1007/s11442-018-1467-z, 2018.
Zhang, G.: Data on glacial lakes in the TPE (V1.0) (1990, 2000, 2010). National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Hydrology.tpe.249459.file, 2018.
Zhang, G., Yao, T., Xie, H., Wang, W., and Yang, W.: An inventory of glacial
lakes in the Third Pole region and their changes in response to global
warming, Global Planet. Change, 131, 148–157,
https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.
Zhang, M., Chen, F., and Tian, B.: An automated method for glacial lake
mapping in High Mountain Asia using Landsat 8 imagery, J. Mt. Sci., 15,
13–24, https://doi.org/10.1007/s11629-017-4518-5, 2018.
Zhao, W., Xiong, D., Wen, F., and Wang, X.: Lake area monitoring based on
land surface temperature in the Tibetan Plateau from 2000 to 2018, Environ.
Res. Lett., 15, 084033, https://doi.org/10.1088/1748-9326/ab9b41, 2020.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M.,
Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W., and Stoffel, M.:
Increasing risk of glacial lake outburst floods from future Third Pole
deglaciation, Nat. Clim. Change, 11, 411–417,
https://doi.org/10.1038/s41558-021-01028-3, 2021.
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from...
Altmetrics
Final-revised paper
Preprint