Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term ash dispersal dataset of the Sakurajima Taisho eruption for ashfall disaster countermeasure
Haris Rahadianto
CORRESPONDING AUTHOR
Department of Social Informatics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
Disaster Prevention Research Institute, Kyoto University, Uji
611-0011, Japan
Hirokazu Tatano
Disaster Prevention Research Institute, Kyoto University, Uji
611-0011, Japan
Masato Iguchi
Sakurajima Volcano Research Center, Disaster Prevention Research
Institute, Kyoto University, Sakurajima 851-1419, Japan
Hiroshi L. Tanaka
Center for Computational Sciences, Division of Global Environmental
Science, University of Tsukuba, Ibaraki 305-8577, Japan
Tetsuya Takemi
Disaster Prevention Research Institute, Kyoto University, Uji
611-0011, Japan
Sudip Roy
Department of Computer Science and Engineering, Indian Institute of
Technology Roorkee, Roorkee, Uttarakhand 247-667, India
Related authors
No articles found.
Vinay Kumar, Shigeo Yoden, Matthew H. Hitchman, Tetsuya Takemi, and Kosuke Ito
EGUsphere, https://doi.org/10.5194/egusphere-2025-3420, https://doi.org/10.5194/egusphere-2025-3420, 2025
Short summary
Short summary
This study provides an insightful view on possible teleconnections between the stratospheric QBO and global monsoon system which vary on a seasonal and regional basis. It is observed that the QBO has dynamical teleconnections with different regional monsoons where prominent dynamical circulations prevail, and primarily modulates these circulations, thereby influencing the associated precipitation patterns. The findings would enable us to improve long-range forecasting for global monsoon system.
Shao-Yi Lee, Sicheng He, and Tetsuya Takemi
Nat. Hazards Earth Syst. Sci., 25, 2225–2253, https://doi.org/10.5194/nhess-25-2225-2025, https://doi.org/10.5194/nhess-25-2225-2025, 2025
Short summary
Short summary
The authors performed verification on the relationships between extreme monsoon rainfall over Japan and Pacific sea surface temperature variability in the “database for Policy Decision-making for Future climate changes” (d4PDF). Observations showed widespread weak relationships between hourly extremes and the warming mode but reversed relationships between daily extremes and the decadal variability mode. Biases in d4PDF could be explained by the monsoon's slower movement over Japan in the model.
Cited articles
Abe, N.: Sentence BERT Base Japanese Model, Python, Colorful Scoop, https://huggingface.co/colorfulscoop/sbert-base-ja
(last access: 31 January 2022), 2021.
Agirre, E., Cer, D., Diab, M., and Gonzalez-Agirre, A.: SemEval-2012 Task 6:
A pilot on semantic textual similarity, in: Proceedings of the Sixth
International Workshop on Semantic Evaluation (SemEval 2012), SEM 2012: The
First Joint Conference on Lexical and Computational Semantics, Montréal,
Canada, 385–393, https://aclanthology.org/S12-1051 (last access: 31 January 2022), 2012.
Arsov, N., Dukovski, M., Evkoski, B., and Cvetkovski, S.: A Measure of
Similarity in Textual Data Using Spearman's Rank Correlation Coefficient,
arXiv [preprint], https://doi.org/10.48550/arXiv.1911.11750, 2019.
Ayris, P. M. and Delmelle, P.: The immediate environmental effects of tephra
emission, B. Volcanol., 74, 1905–1936,
https://doi.org/10.1007/s00445-012-0654-5, 2012.
Barsotti, S., Andronico, D., Neri, A., Del Carlo, P., Baxter, P. J.,
Aspinall, W. P., and Hincks, T.: Quantitative assessment of volcanic ash
hazards for health and infrastructure at Mt. Etna (Italy) by numerical
simulation, J. Volcanol. Geoth. Res., 192, 85–96,
https://doi.org/10.1016/j.jvolgeores.2010.02.011, 2010.
Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., and
Karlsdóttir, S.: Assessing impact to infrastructures due to tephra
fallout from Öræfajökull volcano (Iceland) by using a
scenario-based approach and a numerical model, Front. Earth Sci., 6, 196,
https://doi.org/10.3389/feart.2018.00196, 2018.
Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., and Höskuldsson, A.: A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 1: Hazard assessment, Nat. Hazards Earth Syst. Sci., 14, 2265–2287, https://doi.org/10.5194/nhess-14-2265-2014, 2014.
Biass, S., Bonadonna, C., di Traglia, F., Pistolesi, M., Rosi, M., and
Lestuzzi, P.: Probabilistic evaluation of the physical impact of future
tephra fallout events for the Island of Vulcano, Italy, B. Volcanol, 78,
37, https://doi.org/10.1007/s00445-016-1028-1, 2016.
Biass, S., Todde, A., Cioni, R., Pistolesi, M., Geshi, N., and Bonadonna,
C.: Potential impacts of tephra fallout from a large-scale explosive
eruption at Sakurajima volcano, Japan, B. Volcanol., 79, 73,
https://doi.org/10.1007/s00445-017-1153-5, 2017.
Bonadonna, C.: Probabilistic modelling of tephra dispersion, in: Statistics
in Volcanology, Special Publications of IAVCEI, 1, edited by: Mader, H. M.,
Coles, S. G., Connor, C. B., and Connor, L. J., The Geological Society of
London on behalf of The International Association of Volcanology and
Chemistry of the Earth's Interior, 243–259,
https://doi.org/10.1144/IAVCEI001.19, 2006.
Bonadonna, C., Ernst, G. G. J., and Sparks, R. S. J.: Thickness variations
and volume estimates of tephra fall deposits: The importance of particle
Reynolds number, J. Volcanol. Geoth. Res., 81, 173–187,
https://doi.org/10.1016/S0377-0273(98)00007-9, 1998.
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments
in modelling and monitoring of volcanic ash clouds: Outcomes from the first
IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, B.
Volcanol., 74, 1–10, https://doi.org/10.1007/s00445-011-0508-6, 2012.
Bonadonna, C., Biass, S., Menoni, S., and Gregg, C. E.: Assessment of risk
associated with tephra-related hazards, in: Forecasting and Planning for
Volcanic Hazards, Risks, and Disasters, 2, edited by: Schroeder, J. F.,
volume edited by: Papale, P., Elsevier, 329–378, https://doi.org/10.1016/B978-0-12-818082-2.00008-1, 2021.
Central Disaster Management Council, Executive Committee for Disaster
Prevention: Impacts of Ashfall and Countermeasures in the Tokyo Metropolitan
Area: Mt. Fuji Eruption Case, Working Group on Ashfall
Countermeasures for Large-Scale Eruptions, Cabinet Office, Government of
Japan, http://www.bousai.go.jp/kazan/kouikikouhaiworking/index.html
(last access: 26 August 2021), 2020 (in Japanese).
Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia, L.:
SemEval-2017 Task 1: Semantic textual similarity – Multilingual and
cross-lingual focused evaluation, in: Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), 11th International Workshop
on Semantic Evaluation (SemEval-2017), Vancouver, Canada, 1–14,
https://doi.org/10.18653/v1/S17-2001, 2017.
Colorful Scoop: https://colorfulscoop.com/, last access: 27 January 2022.
Damby, D. E., Horwell, C. J., Baxter, P. J., Delmelle, P., Donaldson, K.,
Dunster, C., Fubini, B., Murphy, F. A., Nattrass, C., Sweeney, S., Tetley,
T. D., and Tomatis, M.: The respiratory health hazard of tephra from the
2010 Centennial eruption of Merapi with implications for occupational mining
of deposits, J. Volcanol. Geoth. Res., 261, 376–387,
https://doi.org/10.1016/j.jvolgeores.2012.09.001, 2013.
Database of Weather Charts for Hundred Years:
http://agora.ex.nii.ac.jp/digital-typhoon/weather-chart/, last access: 3 January 2022.
Environmental Systems Research Institute (ESRI): ArcGIS Pro 2.7, https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (last access: 31 January 2022), 2017.
Environmental Systems Research Institute (ESRI): Human geography base
[basemap], https://www.arcgis.com/home/item.html?id=2afe5b807fa74006be6363fd243ffb30 (last access: 5 November 2022), 2022.
DeepL translator: https://www.deepl.com/translator/, last access: 27 January 2022.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: BERT: Pretraining of
Deep Bidirectional Transformers for Language Understanding, arXiv [preprint], https://doi.org/10.48550/arXiv.1810.04805, 2019.
Eliasson, J., Yoshitani, J., Weber, K., Yasuda, N., Iguchi, M., and Vogel,
A.: Airborne measurement in the ash plume from mount Sakurajima: Analysis of
gravitational effects on dispersion and fallout, Int. J. Atmos. Sci., 2014,
1–16, https://doi.org/10.1155/2014/372135, 2014.
Fero, J., Carey, S. N., and Merrill, J. T.: Simulation of the 1980 eruption
of Mount St. Helens using the ash-tracking model PUFF, J. Volcanol.
Geoth. Res., 175, 355–366,
https://doi.org/10.1016/j.jvolgeores.2008.03.029, 2008.
Fero, J., Carey, S. N., and Merrill, J. T.: Simulating the dispersal of
tephra from the 1991 Pinatubo eruption: Implications for the formation of
widespread ash layers, J. Volcanol. Geoth. Res., 186, 120–131,
https://doi.org/10.1016/j.jvolgeores.2009.03.011, 2009.
Folch, A.: A review of tephra transport and dispersal models: Evolution,
current status, and future perspectives, J. Volcanol. Geoth. Res.,
235–236, 96–115,
https://doi.org/10.1016/j.jvolgeores.2012.05.020, 2012.
Folch, A., Costa, A., Durant, A., and Macedonio, G.: A model for wet
aggregation of ash particles in volcanic plumes and clouds: 2. Model
application, J. Geophys. Res., 115, B09202, https://doi.org/10.1029/2009JB007176, 2010.
Folch, A., Costa, A., and Basart, S.: Validation of the FALL3D ash
dispersion model using observations of the 2010 Eyjafjallajökull
volcanic ash clouds, Atmos. Environ., 48, 165–183,
https://doi.org/10.1016/j.atmosenv.2011.06.072, 2012.
Hampton, S. J., Cole, J. W., Wilson, G., Wilson, T. M., and Broom, S.:
Volcanic ashfall accumulation and loading on gutters and pitched roofs from
laboratory empirical experiments: Implications for risk assessment, J. Volcanol. Geoth. Res., 304, 237–252,
https://doi.org/10.1016/j.jvolgeores.2015.08.012, 2015.
Hattori, Y., Suto, H., Toshida, K., and Hirakuchi, H.: Development of
Estimation Method for Tephra Transport and Dispersal Characteristics with
Numerical Simulation Technique (part 1) – Meteorological Effects on Ash
Fallout with Shinmoe-dake Eruption, Central Research Institute
of Electric Power Industry (CRIEPI), Japan, https://criepi.denken.or.jp/hokokusho/pb/reportDetail?reportNoUkCode=N14004
(last access: 21 November 2022), 2013 (in Japanese).
Hattori, Y., Suto, H., Toshida, K., and Hirakuchi, H.: Development of
Estimation Method for Tephra Transport and Dispersal Characteristics with
Numerical Simulation Technique (part 2) – A Method of Selecting
Meteorological Conditions and the Effects on Ash Deposition and
Concentration in Air for Kanto-Area, Central Research
Institute of Electric Power Industry (CRIEPI), Japan, https://criepi.denken.or.jp/hokokusho/pb/reportDetail?reportNoUkCode=O15004
(last access: 21 November 2022), 2016 (in Japanese).
Hickey, J., Gottsmann, J., Nakamichi, H., and Iguchi, M.: Thermomechanical
controls on magma supply and volcanic deformation: Application to Aira
caldera, Japan, Sci. Rep.-UK, 6, 32691,
https://doi.org/10.1038/srep32691, 2016.
Hoyer, S. and Hamman, J. J.: xarray: N-D labeled Arrays and Datasets in
Python, J. Open Res. Softw., 5, p. 10,
https://doi.org/10.5334/jors.148, 2017.
Hugging Face: The AI community building the future, https://huggingface.co/, last access: 27 January 2022.
Iguchi, M.: Sakurajima Taisho Eruption, 100th Anniversary of the Disaster
Prevention in Sakurajima, Kyoto University, Kyoto, Japan, https://www.dpri.kyoto-u.ac.jp/news/2362/ (last access: 18 December 2019), 2014 (in Japanese).
Iguchi, M.: Method for real-time evaluation of discharge rate of volcanic
ash – Case study on intermittent eruptions at the Sakurajima volcano,
Japan, J. Disaster Res., 11, 4–14,
https://doi.org/10.20965/jdr.2016.p0004, 2016.
Iguchi, M., Nakamichi, H., and Tameguri, T.: Integrated study on forecasting
volcanic hazards of Sakurajima volcano, Japan, J. Disaster Res., 15,
174–186, https://doi.org/10.20965/jdr.2020.p0174, 2020.
Japan Meteorological Agency: Daily Weather Chart,
https://www.data.jma.go.jp/fcd/yoho/hibiten/, last access: 3 January 2022.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and
Wilson, T. M.: Volcanic risk assessment: Quantifying physical vulnerability
in the built environment, J. Volcanol. Geoth. Res., 276, 105–120,
https://doi.org/10.1016/j.jvolgeores.2014.03.002, 2014.
Jenkins, S. F., Wilson, T. M., Magill, C., Miller, V., Stewart, C., Blong,
R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash
fall hazard and risk, in: Global Volcanic Hazards and Risk, edited by:
Loughlin, S. C., Sparks, S., Brown, S. K., Jenkins, S. F., and Vye-Brown,
C., Cambridge University Press, Cambridge, 173–222,
https://doi.org/10.1017/CBO9781316276273.005, 2015.
Jenkins, S. F., Magill, C. R., and Blong, R. J.: Evaluating relative tephra
fall hazard and risk in the Asia-Pacific region, Geosphere, 14, 492–509,
https://doi.org/10.1130/GES01549.1, 2018.
Jurafsky, D. and James, M. H.: Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, Prentice Hall, Upper Saddle River, NJ, ISBN 978-0-13-095069-7, 2000.
Kagoshima City, Crisis Management Division: Sakurajima Volcano Hazard Map,
Kagoshima Municipal Government, Kagoshima, Japan, https://www.city.kagoshima.lg.jp/kurashi/bosai/bosai/sakurajima/english.html
(last access: 21 November 2022), 2010.
Kitagawa, K.: Living with an active volcano: Informal and community learning
for preparedness in south of Japan, in: Observing the Volcano World, edited
by: Fearnley, C. J., Bird, D. K., Haynes, K., McGuire, W. J., and Jolly, G.,
Springer International Publishing, Cham, 677–689,
https://doi.org/10.1007/11157_2015_12, 2015.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Kobayashi, T.: Geology of Sakurajima volcano: A review, Bull. Volcanol. Soc.
Jpn., 27, 277–292, 1982.
Koto, B.: The great eruption of Sakura-Jima, J. Coll. Sci. Imperial Univ.
Tokyo, 38, 1–237, 1916.
Kratzmann, D. J., Carey, S. N., Fero, J., Scasso, R. A., and Naranjo, J.-A.:
Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson
volcano, Chile, J. Volcanol. Geoth. Res., 190,
337–352, https://doi.org/10.1016/j.jvolgeores.2009.11.021,
2010.
Kyushu Regional Development Bureau and Osumi Office of the Rivers and
National Highways: Sakurajima volcano wide area disaster prevention map, Minist. Land Infrastruct. Transp. Tourism Sakurajima, Kagoshima,
Japan, https://www.qsr.mlit.go.jp/osumi/contents/jigyo/sand/prevention/management.html
(last access: 7 October 2020), 2017 (in
Japanese).
Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P.:
Lagrangian modeling of the atmosphere: An introduction, in: Lagrangian
Modeling of the Atmosphere, American Geophysical Union, Washington, DC, USA,
1–15, ISBN 978-0-87590-490-0, 2012.
Macedonio, G., Costa, A., Scollo, S., and Neri, A.: Effects of eruption
source parameter variation and meteorological dataset on tephra fallout
hazard assessment: Example from Vesuvius (Italy), J. Appl. Volcanol., 5, 5,
https://doi.org/10.1186/s13617-016-0045-2, 2016.
Maeda, S., Hirahara, S., Hagiya, S., Murai, H., and Oikawa, Y.: Forecasting Changes in Seasonal Progress in Future Climate (based on
the changes of Westerly Wind),
http://wind.gp.tohoku.ac.jp/yamase/reports/meeting5.html (last access: 9 January 2020), Climate
Information Division, Global Environment and Ocean Department, Japan
Meteorological Agency, 2012 (in Japanese).
Ministry of Land, Infrastructure, and Tourism: Airport Management Status, https://www.mlit.go.jp/koku/15_bf_000185.html, last access: 1 September 2022.
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean,
K., Durant, A., Ewert, J. W., Neri, A., Rose, W. I., Schneider, D., Siebert,
L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C.
F.: A multidisciplinary effort to assign realistic source parameters to
models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21,
https://doi.org/10.1016/j.jvolgeores.2009.01.008, 2009.
Mita, K., Ishimine, Y., Iwamatsu, A., Kamikozuru, H., Koga, M., Takeda, N.,
Nakamura, T., Matsumoto, S., Iguchi, M., Baba, M., Yamaguchi, K., Shimokawa,
E., and Maki, M.: Tentative Reports on the Traffic Countermeasures for a
Large-Scale Eruption of Sakurajima Volcano. Case Study: Ash Deposit on
Kagoshima City, Earthquake and Volcanic Disaster Prevention
Center, Kagoshima University, https://bousai.kagoshima-u.ac.jp/3107/ (last access: 1 October 2021), 2018 (in Japanese).
Miyaji, N., Kan'no, A., Kanamaru, T., and Mannen, K.: High-resolution
reconstruction of the Hoei eruption (AD 1707) of Fuji volcano, Japan, J. Volcanol. Geoth. Res., 207, 113–129,
https://doi.org/10.1016/j.jvolgeores.2011.06.013, 2011.
Morton, B. R., Taylor, S. G., and Turner, J. S.: Turbulent gravitational
convection from maintained and instantaneous sources, P. R.
Soc. Lond. A, 234, 1–23, https://doi.org/10.1098/rspa.1956.0011, 1956.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an
estimate of explosive magnitude for historical volcanism, J. Geophys. Res.,
87, 1231, https://doi.org/10.1029/JC087iC02p01231, 1982.
Nishimura, T.: Source mechanisms of volcanic explosion earthquakes: Single
force and implosive sources, J. Volcanol. Geoth. Res., 86, 97–106,
https://doi.org/10.1016/S0377-0273(98)00088-2, 1998.
Omori, F.: The Sakura-Jima eruption and earthquakes, Bulletin of the
Imperial Earthquake Investigation Committee, University of Tokyo, 8, 1–630, https://repository.dl.itc.u-tokyo.ac.jp/search?search_type=2&q=7234
(last access: 2 September 2020),
1914.
Peng, J. and Peterson, R.: Attracting structures in volcanic ash transport,
Atmos. Environ., 48, 230–239,
https://doi.org/10.1016/j.atmosenv.2011.05.053, 2012.
Poulidis, A. P. and Takemi, T.: A 1998–2013 climatology of Kyushu, Japan:
Seasonal variations of stability and rainfall, Int. J. Climatol., 37,
1843–1858, https://doi.org/10.1002/joc.4817, 2017.
Poulidis, A. P., Takemi, T., Iguchi, M., and Renfrew, I. A.: Orographic
effects on the transport and deposition of volcanic ash: A case study of
Mount Sakurajima, Japan, J. Geophys. Res.-Atmos., 122, 9332–9350,
https://doi.org/10.1002/2017JD026595, 2017.
Poulidis, A. P., Takemi, T., Shimizu, A., Iguchi, M., and Jenkins, S. F.:
Statistical analysis of dispersal and deposition patterns of volcanic
emissions from MT. Sakurajima, Japan, Atmos. Environ., 179, 305–320,
https://doi.org/10.1016/j.atmosenv.2018.02.021, 2018.
Rahadianto, H. and Tatano, H.: 62 Years Simulated Sakurajima Taisho Eruption
Ashfall Deposit Data (1958–2019), Disaster Prevention Research Institute,
Kyoto University, Japan [data set],
https://doi.org/10.17603/ds2-vw5f-t920, 2020.
Rathje, E. M., Dawson, C., Padgett, J. E., Pinelli, J.-P., Stanzione, D.,
Adair, A., Arduino, P., Brandenberg, S. J., Cockerill, T., Dey, C., Esteva,
M., Haan, F. L., Hanlon, M., Kareem, A., Lowes, L., Mock, S., and Mosqueda,
G.: DesignSafe: New cyberinfrastructure for natural hazards engineering,
Nat. Hazards Rev., 18, 06017001,
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000246, 2017.
Reimers, N. and Gurevych, I.: Sentence-BERT: Sentence Embeddings Using
Siamese BERT-Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1908.10084, 2019.
Reimers, N. and Gurevych, I.: Making Monolingual Sentence Embeddings
Multilingual Using Knowledge Distillation, arXiv [preprint], https://doi.org/10.48550/arXiv.2004.09813, 2020.
Scollo, S., Prestifilippo, M., Coltelli, M., Peterson, R. A., and Spata, G.:
A statistical approach to evaluate the tephra deposit and ash concentration
from PUFF model forecasts, J. Volcanol. Geoth. Res., 200, 129–142,
https://doi.org/10.1016/j.jvolgeores.2010.12.004, 2011.
Searcy, C., Dean, K., and Stringer, W.: PUFF: A high-resolution volcanic ash
tracking model, J. Volcanol. Geoth. Res., 80, 1–16,
https://doi.org/10.1016/S0377-0273(97)00037-1, 1998.
Selva, J., Costa, A., De Natale, G., Di Vito, M. A., Isaia, R., and
Macedonio, G.: Sensitivity test and ensemble hazard assessment for tephra
fallout at Campi Flegrei, Italy, J. Volcanol. Geoth. Res., 351, 1–28,
https://doi.org/10.1016/j.jvolgeores.2017.11.024, 2018.
Shimbori, T., Aikawa, Y., Fukui, K., Hashimoto, A., Seino, N., and Yamasato,
H.: Quantitative tephra fall prediction with the JMA mesoscale tracer
transport model for volcanic ash: A case study of the eruption at Asama
volcano in 2009, Pap. Meteorol. Geophys., 61, 13–29,
https://doi.org/10.2467/mripapers.61.13, 2009 (in Japanese).
Singhal, A.: Modern Information Retrieval: A Brief Overview,
IEEE Data Engineering Bulletin, 24, 35–43, https://dblp.org/rec/journals/debu/Singhal01 (last access: 4 January 2022),
2001.
Takebayashi, M., Onishi, M., and Iguchi, M.: Large volcanic eruptions and
their influence on air transport: The case of Japan, J. Air Transp. Manag.,
97, 102136, https://doi.org/10.1016/j.jairtraman.2021.102136,
2021.
Tanaka, H. L.: Development of A prediction scheme for volcanic ash fall from
redoubt volcano, Alaska, in: Proceedings of the First International
Symposium on Volcanic Ash and Aviation Safety, First International Symposium
on Volcanic Ash and Aviation Safety, 283–291,
https://doi.org/10.3133/b2047, 1994.
Tanaka, H. L. and Iguchi, M.: Numerical simulations of volcanic ash plume
dispersal for Sakura-Jima using real-time emission rate estimation, J.
Disaster Res., 14, 160–172,
https://doi.org/10.20965/jdr.2019.p0160, 2019.
Tanaka, H. L. and Yamamoto, K.: Numerical simulation of volcanic plume
dispersal from usu volcano in Japan on 31 March 2000 using PUFF model, Earth
Planets Space, 54, 743–752,
https://doi.org/10.1186/BF03351727, 2002.
Tanaka, H. L., Iguchi, M., and Nakada, S.: Numerical simulations of volcanic
ash plume dispersal from Kelud volcano in Indonesia on February 13, 2014, J.
Disaster Res., 11, 31–42,
https://doi.org/10.20965/jdr.2016.p0031, 2016.
Tanaka, H. L., Nakamichi, H., and Iguchi, M.: PUFF Model Prediction of Volcanic Ash Plume Dispersal for Sakurajima Using MP Radar Observation, Atmosphere, 11, 1240, https://doi.org/10.3390/atmos11111240, 2020.
Tilling, R. I., Topinka, L. J., and Swanson, D. A.: Eruptions of Mount St. Helens: Past, Present, and Future, Rev. ed. 1990, Reston, Va., U.S. Department of the Interior, Geological Survey, https://hdl.handle.net/2027/uc1.31210014851362 (last access: 20 July 2021), 1990.
Todde, A., Cioni, R., Pistolesi, M., Geshi, N., and Bonadonna, C.: The 1914
Taisho eruption of Sakurajima volcano: Stratigraphy and dynamics of the
largest explosive event in Japan during the twentieth century, B.
Volcanol., 79, 72, https://doi.org/10.1007/s00445-017-1154-4,
2017.
Tsukui, M.: Ash-fall distribution of 1779 an'ei eruption, Sakurajima
volcano: Revealed by historical documents, Bull.
Volcanological Soc. Jpn., 56, 89–94,
https://doi.org/10.18940/kazan.56.2-3_89, 2011 (in Japanese).
Unidata: NetCDF, UCAR/Unidata,
https://doi.org/10.5065/D6H70CW6, 2021.
Wallace, J. M. and Hobbs, P. V.: Atmospheric Science: An Introductory
Survey, 2nd ed, Academic Press, Amsterdam, Paris, ISBN 978-0-12-732951-2, 2006.
Webley, P. and Mastin, L.: Improved prediction and tracking of volcanic ash
clouds, J. Volcanol. Geoth. Res., 186, 1–9,
https://doi.org/10.1016/j.jvolgeores.2008.10.022, 2009.
Webley, P. W., Atkinson, D., Collins, R. L., Dean, K., Fochesatto, J., Sassen, K., Cahill, C. F., Prata, A., Flynn, C. J., and Mizutani, K.: Predicting and Validating the Tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano, B. Am. Meteorol. Soc., 89, 1647–1658, https://doi.org/10.1175/2008BAMS2579.1, 2008.
Webley, P. W., Dean, K., Peterson, R., Steffke, A., Harrild, M., and Groves, J.: Dispersion modeling of volcanic ash clouds: North Pacific eruptions, the past 40 years: 1970–2010, Nat. Hazards, 61, 661–671, https://doi.org/10.1007/s11069-011-0053-9, 2012.
Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D.
M., Cole, J. W., Wardman, J., Wilson, G., and Barnard, S. T.: Volcanic ash
impacts on critical infrastructure, Phys. Chem. Earth Parts A B C, 45–46,
5–23, https://doi.org/10.1016/j.pce.2011.06.006, 2012.
Yamasato, H., Funasaki, J., and Takagi, Y.: The Japan Meteorological
Agency's Volcanic Disaster Mitigation Initiatives, National Research
Institute for Earth Science and Disaster Prevention, Japan, Technical Note, National Research Institute for Earth Science and Disaster Prevention (NIED), No. 380 101–107, 2013.
Yasui, M., Takahashi, M., Ishihara, K., and Miki, D.: Records on the
1914–1915 eruption of Sakurajima volcano, Japan, Bull.
Volcanol. Soc. Jpn., 41, 75–107, 2006 (in Japanese).
Yasui, M., Takahashi, M., Ishihara, K., and Miki, D.: Eruptive Style and Its
Temporal Variation through the 1914–1915 Eruption of Sakurajima Volcano,
52, Southern Kyushu, Japan, Bulletin of The Volcanological
Society of Japan, 161–186,
https://doi.org/10.18940/kazan.52.3_161, 2007 (in Japanese).
Zuccaro, G., Leone, M. F., Del Cogliano, D., and Sgroi, A.: Economic impact
of explosive volcanic eruptions: A simulation-based assessment model applied
to Campania region volcanoes, J. Volcanol. Geoth. Res., 266, 1–15,
https://doi.org/10.1016/j.jvolgeores.2013.09.002, 2013.
Short summary
We simulated the Taisho (1914) eruption of Sakurajima volcano under various weather conditions to show how a similar eruption would affect contemporary Japan in a worst-case scenario. We provide the dataset of projected airborne ash concentration and deposit over all of Japan to support risk assessment and planning for disaster management. Our work extends previous analyses of local risks to cover distal locations in Japan where a large population could be exposed to devastating impacts.
We simulated the Taisho (1914) eruption of Sakurajima volcano under various weather conditions...
Altmetrics
Final-revised paper
Preprint