Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4719-2022
https://doi.org/10.5194/essd-14-4719-2022
Data description paper
 | 
28 Oct 2022
Data description paper |  | 28 Oct 2022

Colombian soil texture: building a spatial ensemble model

Viviana Marcela Varón-Ramírez, Gustavo Alfonso Araujo-Carrillo, and Mario Antonio Guevara Santamaría

Related authors

The first rainfall erosivity database in Mexico: facing challenges of leveraging legacy climate data
Viviana Marcela Varón-Ramírez, Douglas Andrés Gómez-Latorre, Carlos Eduardo Arroyo-Cruz, Alberto Gómez-Tagle, Blanca Lucía Prado Pano, Ronald Roger Gutierrez Llantoy, Deyanira Lobo-Luján, and Mario Antonio Guevara
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-530,https://doi.org/10.5194/essd-2024-530, 2025
Preprint under review for ESSD
Short summary
Improving the Latin America and Caribbean Soil Information System (SISLAC) database enhances its usability and scalability
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024,https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Pedology
A China dataset of soil properties for land surface modelling (version 2, CSDLv2)
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Lu Li, Xiaolin Sun, Ye Zhang, Hongbin Liang, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 517–543, https://doi.org/10.5194/essd-17-517-2025,https://doi.org/10.5194/essd-17-517-2025, 2025
Short summary
An integrated dataset of ground hydrothermal regimes and soil nutrients monitored in some previously burned areas in hemiboreal forests in Northeast China during 2016–2022
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024,https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
Niels H. Batjes, Luis Calisto, and Luis M. de Sousa
Earth Syst. Sci. Data, 16, 4735–4765, https://doi.org/10.5194/essd-16-4735-2024,https://doi.org/10.5194/essd-16-4735-2024, 2024
Short summary
BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024,https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024,https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary

Cited articles

Aitchison, J.: The statistical analysis of compositional data, Chapman and Hall, Blackburn Press, 460 pp., ISBN-10 1930665784, 1986. a
Amirian-Chakan, A., Minasny, B., Taghizadeh-Mehrjardi, R., Akbarifazli, R., Darvishpasand, Z., and Khordehbin, S.: Some practical aspects of predicting texture data in digital soil mapping, Soil Till. Res., 194, 104289, https://doi.org/10.1016/j.still.2019.06.006, 2019. a, b, c
Angelini, M., Kempen, B., Heuvelink, G., Temme, A., and Ransom, M.: Extrapolation of a structural equation model for digital soil mapping, Geoderma, 367, 114226, https://doi.org/10.1016/j.geoderma.2020.114226, 2020. a
Angelini, M. E., Heuvelink, G. B., Kempen, B., and Morrás, H. J.: Mapping the soils of an Argentine Pampas region using structural equation modelling, Geoderma, 281, 102–118, https://doi.org/10.1016/j.geoderma.2016.06.031, 2016. a
Araujo, M. A., Zinn, Y. L., and Lal, R.: Soil parent material, texture and oxide contents have little effect on soil organic carbon retention in tropical highlands, Geoderma, 300, 1–10, https://doi.org/10.1016/j.geoderma.2017.04.006, 2017. a
Download
Short summary
These are the first national soil texture maps obtained via digital soil mapping. We built clay, sand, and silt maps using spatial assembling with the best possible predictions at different depths. Also, we identified the better model for each pixel. This work was done to address the lack of soil texture maps in Colombia, and it can provide soil information for water-related applications, ecosystem services, and agricultural and crop modeling.
Share
Altmetrics
Final-revised paper
Preprint