Articles | Volume 14, issue 4
Earth Syst. Sci. Data, 14, 1901–1916, 2022
https://doi.org/10.5194/essd-14-1901-2022
Earth Syst. Sci. Data, 14, 1901–1916, 2022
https://doi.org/10.5194/essd-14-1901-2022
Data description paper
26 Apr 2022
Data description paper | 26 Apr 2022

Large ensemble of downscaled historical daily snowfall from an earth system model to 5.5 km resolution over Dronning Maud Land, Antarctica

Nicolas Ghilain et al.

Related authors

Quantifying the contribution of forcing and three prominent modes of variability on historical climate
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-55,https://doi.org/10.5194/cp-2022-55, 2022
Preprint under review for CP
Short summary
Internal climate variability and spatial temperature correlations during the past 2000 years
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2022-570,https://doi.org/10.5194/egusphere-2022-570, 2022
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
EGUsphere, https://doi.org/10.5194/egusphere-2022-94,https://doi.org/10.5194/egusphere-2022-94, 2022
Short summary
Process-based Estimate of Global-mean Sea-level Changes in the Common Era
Gangadharan Nidheesh, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-2,https://doi.org/10.5194/esd-2022-2, 2022
Preprint under review for ESD
Short summary
Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinea Coast rainfall
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022,https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary

Related subject area

Snow and Sea Ice
The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021)
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022,https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary
A new Greenland digital elevation model derived from ICESat-2 during 2018–2019
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022,https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Reconstruction of a daily gridded snow water equivalent product for the land region above 45° N based on a ridge regression machine learning approach
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022,https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
Xiaoyi Shen, Chang-Qing Ke, and Haili Li
Earth Syst. Sci. Data, 14, 619–636, https://doi.org/10.5194/essd-14-619-2022,https://doi.org/10.5194/essd-14-619-2022, 2022
Short summary
The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021,https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary

Cited articles

Agosta, C., Favier, V., Krinner, G., Gallée, H., Fettweis, X., and Genthon, C.: High-resolution modelling of the Antarc10 tic surface mass balance, application for the twentieth, twenty first and twenty second centuries, Clim. Dynam., 3247–3260, https://doi.org/10.1007/s00382-013-1903-9, 2013. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b
Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica, The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, 2015. a
Bromwich, D. H., Nicolas, J. P., and Monaghan, A. J.: An assessment of precipitation changes over Antarctica and the Southern ocean since 1989 in contemporary global reanalyses, J. Climate, 24, 4189–4209, https://doi.org/10.1175/2011JCLI4074.1, 2011. a
Cofino, A. S., Ancell, R., San-Martin, D., Herrera, S., Guttierez, J. M., and Manzanas, R.: An open-source Matlab toolbox for Meteorology & Climate, https://www.meteo.unican.es/en/software/meteolab (last access: 19 April 2022), 2013. a
Download
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.