Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1087-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1087-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry
CLS, Ramonville Saint Agne, 31250, France
Antoine Delepoulle
CLS, Ramonville Saint Agne, 31250, France
Evan Mason
IMEDEA, Esporles, Mallorca, 07190, Spain
Rosemary Morrow
LEGOS, Toulouse, 31400, France
Yannice Faugère
CLS, Ramonville Saint Agne, 31250, France
Gérald Dibarboure
CNES, 18 Avenue Edouard Belin, Toulouse, 31400, France
Related authors
No articles found.
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Michel Tchilibou, Simon Barbot, Loren Carrere, Ariane Koch-Larrouy, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 21, 1469–1486, https://doi.org/10.5194/os-21-1469-2025, https://doi.org/10.5194/os-21-1469-2025, 2025
Short summary
Short summary
MIOST24 (Multivariate Inversion of Ocean Surface Topography 2024) annual and monthly internal tide (IT) atlases, based on 25 years of altimetry data and an updated wavelength database, are presented for the Indo-Philippine archipelago and the Amazon shelf. The atlases show monthly IT variability and a better correction of IT in altimetry data than with MIOST22 (MIOST 2022) and HRET (High-Resolution Empirical Tide). The results support the development of a global MIOST24.
Pierre-Yves Le Traon, Gérald Dibarboure, Jean-Michel Lellouche, Marie-Isabelle Pujol, Mounir Benkiran, Marie Drevillon, Yann Drillet, Yannice Faugère, and Elisabeth Remy
Ocean Sci., 21, 1329–1347, https://doi.org/10.5194/os-21-1329-2025, https://doi.org/10.5194/os-21-1329-2025, 2025
Short summary
Short summary
By providing all weather, global, and real-time observations of sea level, a key variable to constrain ocean analysis and forecasting systems, satellite altimetry has had a profound impact on the development of operational oceanography. This paper provides an overview of the development and evolution of satellite altimetry and operational oceanography over the past 20 years from the launch of Jason-1 in 2001 to the launch of SWOT (Surface Water and Ocean Topography) in 2022.
Hélène Etienne, Clément Ubelmann, Fabrice Ardhuin, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-2890, https://doi.org/10.5194/egusphere-2025-2890, 2025
Short summary
Short summary
This study analyzes near-inertial oscillations (NIOs) in ocean surface currents using drifter data and the LLC2160 ocean-atmosphere model. It finds that NIOs have a typical spatial decorrelation scale around 100 km, varying with latitude. The model accurately captures these patterns, supporting the ODYSEA concept mission's goal to measure surface currents via Doppler radar and reduce NIO-related data aliasing for better ocean monitoring.
Clément Ubelmann, J. Thomas Farrar, Bertrand Chapron, Lucile Gaultier, Laura Gómez-Navarro, Marie-Hélène Rio, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-1149, https://doi.org/10.5194/egusphere-2025-1149, 2025
Short summary
Short summary
This study models wind-driven ocean currents using observed wind stress and an empirically estimated impulse response function based on drifting buoys. By convolving this function with wind forcing from ERA5, the estimates align well with independent observations across latitudes. Additionally, the response function serves as a valuable indicator of subsurface properties.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig Donlon
Ocean Sci., 21, 343–358, https://doi.org/10.5194/os-21-343-2025, https://doi.org/10.5194/os-21-343-2025, 2025
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first phase. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ± 0.1 mm yr-1 (16–84 % confidence level) on a global scale for time intervals between the tandem phases of 4 years or more.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
Ocean Sci., 21, 325–342, https://doi.org/10.5194/os-21-325-2025, https://doi.org/10.5194/os-21-325-2025, 2025
Short summary
Short summary
Sea level observations along the swaths of the new SWOT (Surface Water and Ocean Topography) mission were used to characterize internal tides at three semidiurnal frequencies off the Amazon shelf in the tropical Atlantic during the SWOT calibration/validation period. The atlases were derived using harmonic analysis and principal component analysis. The SWOT-derived internal tide atlas outperforms the reference atlas previously used to correct SWOT observations.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Tréboutte, and Clément Ubelmann
Ocean Sci., 21, 283–323, https://doi.org/10.5194/os-21-283-2025, https://doi.org/10.5194/os-21-283-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath-altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
Ocean Sci., 21, 63–80, https://doi.org/10.5194/os-21-63-2025, https://doi.org/10.5194/os-21-63-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, and Lionel Renault
Ocean Sci., 19, 1413–1435, https://doi.org/10.5194/os-19-1413-2023, https://doi.org/10.5194/os-19-1413-2023, 2023
Short summary
Short summary
Oceanic eddies are the structures carrying most of the energy in our oceans. They are key to climate regulation and nutrient transport. We prepare for the Surface Water and Ocean Topography mission, studying eddy dynamics in the region south of Africa, where the Indian and Atlantic oceans meet, using models and simulated satellite data. SWOT will provide insights into the structures smaller than what is currently observable, which appear to greatly contribute to eddy kinetic energy and strain.
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, https://doi.org/10.5194/os-19-363-2023, 2023
Short summary
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Mounir Benkiran, Pierre-Yves Le Traon, and Gérald Dibarboure
Ocean Sci., 18, 609–625, https://doi.org/10.5194/os-18-609-2022, https://doi.org/10.5194/os-18-609-2022, 2022
Short summary
Short summary
The SSH analysis and 7 d forecast error will be globally reduced by almost 50 %. Surface current forecast errors should be equivalent to today’s surface current analysis errors or alternatively will be improved (variance error reduction) by 30 % at the surface and 50 % for 300 m depth.
The resolution capabilities will be drastically improved and will be closer to 100 km wavelength as opposed to today where they are above 250 km (on average).
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Sandrine Mulet, Marie-Hélène Rio, Hélène Etienne, Camilia Artana, Mathilde Cancet, Gérald Dibarboure, Hui Feng, Romain Husson, Nicolas Picot, Christine Provost, and P. Ted Strub
Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, https://doi.org/10.5194/os-17-789-2021, 2021
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation by allowing the sea level to be monitored with very good spatiotemporal coverage. However, only the sea level anomalies are retrieved; to monitor the whole oceanic signal a temporal mean (called mean dynamic topography, MDT) must be added to these anomalies. In this study we present the newly updated CNES-CLS18 MDT. An evaluation of this new solution shows significant improvements in both strong currents and coastal areas.
Cited articles
Abernathey, R. and Haller, G.: Transport by Lagrangian Vortices in the Eastern Pacific, J. Phys. Oceanogr., 48, 667–685, https://doi.org/10.1175/JPO-D-17-0102.1, 2018.
AVISO+ User Service: META3.1exp public repository, https://data.aviso.altimetry.fr/aviso-gateway/data/META3.1exp_DT/ AVISO+ User Service [data set], last access: 8 March 2022.
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure,
G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci.,
15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019.
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R., Cronin, M., Hermes, J., Lutjeharms, J., Quartly, G., Tozuka, T., Baker-Yeboah, S., Bornman, T., Cipollini, P., Dijkstra, H., Hall, I., Park, W., Peeters, F., Penven, P., Ridderinkhof, H., and Zinke, J.: SCOR/WCRP/IAPSO Working Group 136, Nature, 472, 429–436, https://doi.org/10.1038/nature09983, 2011.
Beron-Vera, F. J., Olascoaga, M. J., and Goni, G. J.: Oceanic mesoscale eddies as revealed by Lagrangian coherent structures, Geophys. Res. Lett., 35, L12603, https://doi.org/10.1029/2008GL033957, 2008.
Brach, L., Deixonne, P., Bernard, M.-F., Durand, E., Desjean, M.-C., Perez, E., van Sebille, E., and ter Halle, A.: Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre, Mar.
Pollut. Bull., 126, 191–196, https://doi.org/10.1016/j.marpolbul.2017.10.077, 2018.
Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B., and Thorrold, S. R.: Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone, P. Natl. Acad. Sci. USA, 116, 17187–17192, https://doi.org/10.1073/pnas.1903067116, 2019.
Castelao, R. M.: Mesoscale eddies in the South Atlantic Bight and the Gulf
Stream Recirculation region: Vertical structure, J. Geophys. Res.-Oceans, 119, 2048–2065, https://doi.org/10.1002/2014JC009796, 2014.
Chaigneau, A., Gizolme, A., and Grados, C.: Mesoscale eddies off Peru in
altimeter records: Identification algorithms and eddy spatio-temporal patterns, Prog. Oceanogr., 79, 106–119, https://doi.org/10.1016/j.pocean.2008.10.013, 2008.
Chaigneau, A., Eldin, G., and Dewitte, B.: Eddy activity in the four major
upwelling systems from satellite altimetry (1992–2007), Prog. Oceanogr., 83, 117–123, https://doi.org/10.1016/j.pocean.2009.07.012, 2009.
Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., and Pizarro, O.: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A
composite analysis from altimetry and Argo profiling floats, J. Geophys.
Res.-Oceans, 116, C11025, https://doi.org/10.1029/2011JC007134, 2011.
Chambault, P., Baudena, A., Bjorndal, K. A., Santos, M. A. R., Bolten, A. B., and Vandeperre, F.: Swirling in the ocean: Immature loggerhead turtles seasonally target old anticyclonic eddies at the fringe of the North Atlantic gyre, Prog. Oceanogr., 175, 345–358, https://doi.org/10.1016/j.pocean.2019.05.005, 2019.
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global
observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606,
https://doi.org/10.1029/2007GL030812, 2007.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chi, L., Wolfe, C. L. P., and Hameed, S.: The Distinction Between the Gulf
Stream and Its North Wall, Geophys. Res. Lett., 46, 8943–8951,
https://doi.org/10.1029/2019GL083775, 2019.
Christie, M. R., Tissot, B. N., Albins, M. A., Beets, J. P., Jia, Y., Ortiz,
D. M., Thompson, S. E., and Hixon, M. A.: Larval Connectivity in an Effective Network of Marine Protected Areas, PLOS ONE, 5, e15715, https://doi.org/10.1371/journal.pone.0015715, 2010.
Delepoulle, A., Mason, E., Busché, C., Pegliasco, C., Capet, A., Troupin, C., and Koldunov, N.: AntSimi/py-eddy-tracker: META3.1 Article (v3.3.1), Zenodo [code], https://doi.org/10.5281/zenodo.6333989, 2022.
de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W., and Veth, C.: Observations of the flow in the Mozambique Channel, Geophys. Res. Lett., 29, 140-1–140-3, https://doi.org/10.1029/2001GL013714, 2002.
Dilmahamod, A. F., Aguiar-González, B., Penven, P., Reason, C. J. C., De
Ruijter, W. P. M., Malan, N., and Hermes, J. C.: SIDDIES Corridor: A Major
East-West Pathway of Long-Lived Surface and Subsurface Eddies Crossing the
Subtropical South Indian Ocean, J. Geophys. Res.-Oceans, 123, 5406–5425,
https://doi.org/10.1029/2018JC013828, 2018.
Doglioli, A. M., Blanke, B., Speich, S., and Lapeyre, G.: Tracking coherent
structures in a regional ocean model with wavelet analysis: Application to
Cape Basin eddies, J. Geophys. Res., 112, C05043, https://doi.org/10.1029/2006JC003952, 2007.
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nat. Commun., 5, 1–6, https://doi.org/10.1038/ncomms4294, 2014.
El Aouni, A.: A hybrid identification and tracking of Lagrangian mesoscale
eddies, Phys. Fluids, 33, 036604, https://doi.org/10.1063/5.0038761, 2021.
Faghmous, J. H., Le, M., Uluyol, M., Kumar, V., and Chatterjee, S. B.: A
parameter-free spatio-temporal pattern mining model to catalog global ocean
dynamics, in: Proceedings – IEEE International Conference on Data Mining,
ICDM, 13th IEEE International Conference on Data Mining, ICDM 2013, 151–160, https://doi.org/10.1109/ICDM.2013.162, 2013.
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.: A daily global mesoscale ocean eddy dataset from satellite altimetry, Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28, 2015.
Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and Strutton, P. G.: Regional variations in the influence of mesoscale eddies on
near-surface chlorophyll, J. Geophys. Res.-Oceans, 119, 8195–8220,
https://doi.org/10.1002/2014JC010111, 2014.
Gilchrist, R. M., Hall, R. A., Bacon, J. C., Rees, J. M., and Graham, J. A.:
Increased dispersion of oil from a deep water seabed release by energetic
mesoscale eddies, Mar. Pollut. Bull., 156, 111258, https://doi.org/10.1016/j.marpolbul.2020.111258, 2020.
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G.-K.: Eddy-induced reduction of
biological production in eastern boundary upwelling systems, Nat. Geosci., 4, 787–792, https://doi.org/10.1038/ngeo1273, 2011.
Haller, G.: Dynamic rotation and stretch tensors from a dynamic polar
decomposition, J. Mech. Phys. Solids, 86, 70–93, https://doi.org/10.1016/j.jmps.2015.10.002, 2016.
Halo, I., Backeberg, B., Penven, P., Ansorge, I., Reason, C., and Ullgren, J. E.: Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models, Deep-Sea Res. Pt. II, 100, 38–53, https://doi.org/10.1016/j.dsr2.2013.10.015, 2014.
Ioannou, A., Stegner, A., Le Vu, B., Taupier-Letage, I., and Speich, S.:
Dynamical Evolution of Intense Ierapetra Eddies on a 22 Year Long Period:
Dynamical Evolution Of Intense IEs, J. Geophys. Res.-Oceans, 122, 9276–9298, https://doi.org/10.1002/2017JC013158, 2017.
Isern-Fontanet, J., García-Ladona, E., and Font, J.: Identification of
Marine Eddies from Altimetric Maps, J. Atmos. Ocean. Tech., 20, 772–778, https://doi.org/10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2, 2003.
Keppler, L., Cravatte, S., Chaigneau, A., Pegliasco, C., Gourdeau, L., and
Singh, A.: Observed Characteristics and Vertical Structure of Mesoscale Eddies in the Southwest Tropical Pacific, J. Geophys. Res.-Oceans, 123,
2731–2756, https://doi.org/10.1002/2017JC013712, 2018.
Kurian, J., Colas, F., Capet, X., McWilliams, J. C., and Chelton, D. B.: Eddy properties in the California Current System, J. Geophys. Res.-Oceans, 116, C08027, https://doi.org/10.1029/2010JC006895, 2011.
Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A., Pegliasco, C., and
Stegner, A.: Anticyclonic Eddies Connecting the Western Boundaries of Indian
and Atlantic Oceans, J. Geophys. Res.-Oceans, 123, 7651–7677,
https://doi.org/10.1029/2018JC014270, 2018.
Laxenaire, R., Speich, S., and Stegner, A.: Evolution of the Thermohaline
Structure of One Agulhas Ring Reconstructed from Satellite Altimetry and
Argo Floats, J. Geophys. Res.-Oceans, 124, 8969–9003, https://doi.org/10.1029/2018JC014426, 2019.
Le Hénaff, M., Kourafalou, V. H., Morel, Y., and Srinivasan, A.: Simulating the dynamics and intensification of cyclonic Loop Current Frontal
Eddies in the Gulf of Mexico, J. Geophys. Res.-Oceans, 117, C02034, https://doi.org/10.1029/2011JC007279, 2012.
Le Vu, B., Stegner, A., and Arsouze, T.: Angular Momentum Eddy Detection and
Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation, J.
Atmos. Ocean. Tech., 35, 739–762, https://doi.org/10.1175/JTECH-D-17-0010.1, 2018.
Li, Q.-Y., Sun, L., and Lin, S.-F.: GEM: a dynamic tracking model for
mesoscale eddies in the ocean, Ocean Sci., 12, 1249–1267,
https://doi.org/10.5194/os-12-1249-2016, 2016.
Liu, Y., Chen, G., Sun, M., Liu, S., and Tian, F.: A Parallel SLA-Based
Algorithm for Global Mesoscale Eddy Identification, J. Atmos. Ocean. Tech., 33, 2743–2754, https://doi.org/10.1175/JTECH-D-16-0033.1, 2016.
Liu, Y., Wilson, C., Green, M. A., and Hughes, C. W.: Gulf Stream Transport
and Mixing Processes via Coherent Structure Dynamics, J. Geophys. Res.-Oceans, 123, 3014–3037, https://doi.org/10.1002/2017JC013390, 2018.
Martínez-Moreno, J., Hogg, A. M., Kiss, A. E., Constantinou, N. C., and
Morrison, A. K.: Kinetic Energy of Eddy-Like Features From Sea Surface Altimetry, J. Adv. Model. Earth Syst., 11, 3090–3105, https://doi.org/10.1029/2019MS001769, 2019.
Mason, E., Pascual, A., and McWilliams, J. C.: A New Sea Surface Height-Based Code for Oceanic Mesoscale Eddy Tracking, J. Atmos. Ocean. Tech., 31, 1181–1188, https://doi.org/10.1175/JTECH-D-14-00019.1, 2014.
Melnichenko, O., Amores, A., Maximenko, N., Hacker, P., and Potemra, J.:
Signature of mesoscale eddies in satellite sea surface salinity data, J.
Geophys. Res.-Oceans, 122, 1416–1424, https://doi.org/10.1002/2016JC012420, 2017.
Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., and Béranger, K.: Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities, J.
Geophys. Res.-Oceans, 119, 8603–8626, https://doi.org/10.1002/2014JC010176, 2014.
Morrow, R. and Le Traon, P.-Y.: Recent advances in observing mesoscale ocean
dynamics with satellite altimetry, Adv. Space Res., 50, 1062–1076,
https://doi.org/10.1016/j.asr.2011.09.033, 2012.
Morrow, R., Birol, F., Griffin, D., and Sudre, J.: Divergent pathways of cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31, L24311,
https://doi.org/10.1029/2004GL020974, 2004.
Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A
Vector Geometry–Based Eddy Detection Algorithm and Its Application to a
High-Resolution Numerical Model Product and High-Frequency Radar Surface
Velocities in the Southern California Bight, J. Atmos. Ocean. Tech., 27, 564–579, https://doi.org/10.1175/2009JTECHO725.1, 2010.
Pascual, A., Faugère, Y., Larnicol, G., and Le Traon, P.-Y.: Improved
description of the ocean mesoscale variability by combining four satellite
altimeters, Geophys. Res. Lett., 33, L02611, https://doi.org/10.1029/2005GL024633, 2006.
Pegliasco, C.: Structure verticale des tourbillons de mésoéchelle
dans les quatre grands systèmes d'upwelling de bord Est, PhD Thesis,
Université Paul Sabatier-Toulouse III, Toulouse, https://tel.archives-ouvertes.fr/tel-01427163 (last access: 8 March 2022), 2015.
Pegliasco, C., Delepoulle, A., and Faugère, Y.: Mesoscale Eddy Trajectories Atlas Delayed-Time all satellites: version META3.1exp DT allsat
(3.1exp DT allsat), AVISO+ [data set], https://doi.org/10.24400/527896/A01-2021.001, 2021a.
Pegliasco, C., Delepoulle, A., and Faugère, Y.: Mesoscale Eddy Trajectories Atlas Delayed-Time two satellites: version META3.1exp DT twosat
(3.1exp DT twosat), AVISO+ [data set], https://doi.org/10.24400/527896/A01-2021.002, 2021b.
Pegliasco, C., Chaigneau, A., Morrow, R., and Dumas, F.: Detection and tracking of mesoscale eddies in the Mediterranean Sea: A comparison between the Sea Level Anomaly and the Absolute Dynamic Topography fields, Adv. Space Res., 68, 401–419, https://doi.org/10.1016/j.asr.2020.03.039, 2021c.
Penven, P., Echevin, V., Pasapera, J., Colas, F., and Tam, J.: Average
circulation, seasonal cycle, and mesoscale dynamics of the Peru Current
System: A modeling approach, J. Geophys. Res.-Oceans, 110, C10021,
https://doi.org/10.1029/2005JC002945, 2005.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016.
py-eddy-tracker: Welcome to py-eddy-tracker’s documentation!, https://py-eddy-tracker.readthedocs.io/en/v3.3.1/, last access: 8 March 2022.
Rio, M.-H., Pascual, A., Poulain, P.-M., Menna, M., Barceló, B., and
Tintoré, J.: Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and
oceanographic in situ data, Ocean Sci., 10, 731–744,
https://doi.org/10.5194/os-10-731-2014, 2014.
Rubio, A., Blanke, B., Speich, S., Grima, N., and Roy, C.: Mesoscale eddy
activity in the southern Benguela upwelling system from satellite altimetry
and model data, Prog. Oceanogr., 83, 288–295, https://doi.org/10.1016/j.pocean.2009.07.029, 2009.
SALP-MU-P-EA-23126-CLS: Mesoscale Eddy Trajectories Atlas Product Handbook,
https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_eddytrajectory_META2018.pdf, last access: August 2020.
Schmitz, W. J.: Cyclones and Westward Propagation in the Shedding of Anticyclonic Rings from the Loop Current, in: Circulation in the Gulf of
Mexico: Observations and Models, American Geophysical Union (AGU), 241–261,
https://doi.org/10.1029/161GM18, 2005.
Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J., and Ridderinkhof,
H.: Eddies and variability in the Mozambique Channel, Deep-Sea Res. Pt. II, 50, 1987–2003, https://doi.org/10.1016/S0967-0645(03)00042-0, 2003.
Siegel, D. A., Court, D. B., Menzies, D. W., Peterson, P., Maritorena, S., and Nelson, N. B.: Satellite and in situ observations of the bio-optical
signatures of two mesoscale eddies in the Sargasso Sea, Deep-Sea Res. Pt. II, 55, 1218–1230, https://doi.org/10.1016/j.dsr2.2008.01.012, 2008.
Staaterman, E., Paris, C. B., and Helgers, J.: Orientation behavior in fish
larvae: A missing piece to Hjort's critical period hypothesis, J. Theor. Biol., 304, 188–196, https://doi.org/10.1016/j.jtbi.2012.03.016, 2012.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224,
https://doi.org/10.5194/os-15-1207-2019, 2019.
Tian, F., Wu, D., Yuan, L., and Chen, G.: Impacts of the efficiencies of
identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data, Int. J. Remote Sens., 41, 2835–2860, https://doi.org/10.1080/01431161.2019.1694724, 2020.
Waterman, S. and Hoskins, B. J.: Eddy Shape, Orientation, Propagation, and
Mean Flow Feedback in Western Boundary Current Jets, J. Phys. Oceanogr., 43,
1666–1690, https://doi.org/10.1175/JPO-D-12-0152.1, 2013.
Yi, J., Du, Y., He, Z., and Zhou, C.: Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly, Ocean Sci., 10, 39–48, https://doi.org/10.5194/os-10-39-2014, 2014.
You, Z., Liu, L., Bethel, B. J., and Dong, C.: Feature Comparison of Two
Mesoscale Eddy Datasets Based on Satellite Altimeter Data, Remote Sens., 14,
116, https://doi.org/10.3390/rs14010116, 2022.
Zhang, Z., Zhang, Y., Wang, W., and Huang, R. X.: Universal structure of
mesoscale eddies in the ocean, Geophys. Res. Lett., 40, 3677–3681,
https://doi.org/10.1002/grl.50736, 2013.
Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale eddies, Science, 345, 322–324, https://doi.org/10.1126/science.1252418, 2014.
Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., and Wan, X.:
Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea, Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349, 2016.
Zu, Y., Sun, S., Zhao, W., Li, P., Liu, B., Fang, Y., and Samah, A. A.:
Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea, Acta Oceanol. Sin., 38,
29–38, https://doi.org/10.1007/s13131-018-1222-4, 2019.
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and...
Altmetrics
Final-revised paper
Preprint