Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5643-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5643-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global balanced wind derived from SABER temperature and pressure observations and its validations
Henan Engineering Laboratory for Big Data Statistical Analysis and
Optimal Control, School of Mathematics and Information Sciences, Henan
Normal University, Xinxiang, 453000, China
State Key Laboratory of Space Weather, Center for Space Science and
Applied Research, Chinese Academy of Sciences, Beijing, 100190, China
Jiyao Xu
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather, Center for Space Science and
Applied Research, Chinese Academy of Sciences, Beijing, 100190, China
School of Astronomy and Space Science, University of the Chinese
Academy of Science, Beijing, 100049, China
Atmospheric and Planetary Sciences, Hampton University, Hampton, VA
23668, USA
now at: Catholic University of America, Washington, DC 20064, USA
You Yu
Key Laboratory of Ionospheric Environment, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
Paulo P. Batista
Heliophysics, Planetary Science and Aeronomy Division, National
Institute for Space Research (INPE), Sao Jose dos Campos, Sao Paulo, Brazil
Vania F. Andrioli
State Key Laboratory of Space Weather, Center for Space Science and
Applied Research, Chinese Academy of Sciences, Beijing, 100190, China
Heliophysics, Planetary Science and Aeronomy Division, National
Institute for Space Research (INPE), Sao Jose dos Campos, Sao Paulo, Brazil
Zhengkuan Liu
State Key Laboratory of Space Weather, Center for Space Science and
Applied Research, Chinese Academy of Sciences, Beijing, 100190, China
Center for Atmospheric and Space Sciences, Utah State University,
Logan, UT 84322, USA
Chi Wang
State Key Laboratory of Space Weather, Center for Space Science and
Applied Research, Chinese Academy of Sciences, Beijing, 100190, China
Ziming Zou
State Key Laboratory of Space Weather, Center for Space Science and
Applied Research, Chinese Academy of Sciences, Beijing, 100190, China
Guozhu Li
Key Laboratory of Ionospheric Environment, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
James M. Russell III
Atmospheric and Planetary Sciences, Hampton University, Hampton, VA
23668, USA
Related authors
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
Atmos. Chem. Phys., 25, 9719–9736, https://doi.org/10.5194/acp-25-9719-2025, https://doi.org/10.5194/acp-25-9719-2025, 2025
Short summary
Short summary
This study explores intense concentric gravity waves (CGWs) based on ground-based and multi-satellite observations over southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convection and enabled by weaker wind fields, these CGWs reached the mesopause and thermosphere. Consistent detection via OI and OH airglow emissions confirms their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Shuai Liu, Guoying Jiang, Bingxian Luo, Xiao Liu, Jiyao Xu, Yajun Zhu, and Wen Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2610, https://doi.org/10.5194/egusphere-2025-2610, 2025
Short summary
Short summary
Disruptions of Quasi-Biennial Oscillation modulate the migrating diurnal tide in the mesosphere and lower thermosphere. During the events, wavelengths and phases of the tide remain unchanged, but its amplitude strengthens. The enhancement of water vapor radiative heating, ozone radiative heating and latent heating may contribute to the amplification of the tide amplitude. These features provide insights into the dynamical coupling of troposphere, stratosphere, mesosphere and lower thermosphere.
Xiao Liu, Jiyao Xu, Jia Yue, Yangkun Liu, and Vania F. Andrioli
Atmos. Chem. Phys., 24, 10143–10157, https://doi.org/10.5194/acp-24-10143-2024, https://doi.org/10.5194/acp-24-10143-2024, 2024
Short summary
Short summary
Disagreement in long-term trends in the high-latitude mesosphere temperature should be elucidated using one coherent measurement over a long period. Using SABER measurements at high latitudes and binning the data based on yaw cycle, we focus on long-term trends in the mean temperature and mesopause in the high-latitude mesosphere–lower-thermosphere region, which has been rarely studied via observations but is more sensitive to dynamic changes.
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
Xiao Liu, Jiyao Xu, Jia Yue, and Vania F. Andrioli
Atmos. Chem. Phys., 23, 6145–6167, https://doi.org/10.5194/acp-23-6145-2023, https://doi.org/10.5194/acp-23-6145-2023, 2023
Short summary
Short summary
Winds are important in characterizing atmospheric dynamics and coupling. However, it is difficult to directly measure the global winds from the stratosphere to the lower thermosphere. We developed a global zonal wind dataset according to the gradient wind theory and SABER and meteor radar observations. Using the dataset, we studied the intra-annual, inter-annual, and long-term variations. This is helpful to understand the variations and coupling of the stratosphere to the lower thermosphere.
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary
Short summary
We use ground-based airglow network observations, reanalysis data, and satellite observations to explore the propagation process of concentric gravity waves (CGWs) excited by a typhoon between the troposphere, stratosphere, mesosphere, and thermosphere. We find that CGWs in the mesosphere are generated directly by the typhoon but the CGW observed in the thermosphere may be excited by CGW dissipation in the mesosphere, rather than directly excited by a typhoon and propagated to the thermosphere.
Xiao Liu, Jiyao Xu, Jia Yue, and Hanli Liu
Atmos. Chem. Phys., 20, 14437–14456, https://doi.org/10.5194/acp-20-14437-2020, https://doi.org/10.5194/acp-20-14437-2020, 2020
Short summary
Short summary
Large wind shears in the mesosphere and lower thermosphere are recognized as a common phenomenon. Simulation and ground-based observations show that the main contributor of large wind shears is gravity waves. We present a method of deriving wind shears induced by gravity waves according to the linear theory and using the global temperature observations by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry). Our results agree well with observations and model simulations.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
Atmos. Chem. Phys., 25, 9719–9736, https://doi.org/10.5194/acp-25-9719-2025, https://doi.org/10.5194/acp-25-9719-2025, 2025
Short summary
Short summary
This study explores intense concentric gravity waves (CGWs) based on ground-based and multi-satellite observations over southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convection and enabled by weaker wind fields, these CGWs reached the mesopause and thermosphere. Consistent detection via OI and OH airglow emissions confirms their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Shuai Liu, Guoying Jiang, Bingxian Luo, Xiao Liu, Jiyao Xu, Yajun Zhu, and Wen Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2610, https://doi.org/10.5194/egusphere-2025-2610, 2025
Short summary
Short summary
Disruptions of Quasi-Biennial Oscillation modulate the migrating diurnal tide in the mesosphere and lower thermosphere. During the events, wavelengths and phases of the tide remain unchanged, but its amplitude strengthens. The enhancement of water vapor radiative heating, ozone radiative heating and latent heating may contribute to the amplification of the tide amplitude. These features provide insights into the dynamical coupling of troposphere, stratosphere, mesosphere and lower thermosphere.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Jianyuan Wang, Na Li, Wen Yi, Xianghui Xue, Iain M. Reid, Jianfei Wu, Hailun Ye, Jian Li, Zonghua Ding, Jinsong Chen, Guozhu Li, Yaoyu Tian, Boyuan Chang, Jiajing Wu, and Lei Zhao
Atmos. Chem. Phys., 24, 13299–13315, https://doi.org/10.5194/acp-24-13299-2024, https://doi.org/10.5194/acp-24-13299-2024, 2024
Short summary
Short summary
We present the impact of quasi-biennial oscillation (QBO) disruption events on diurnal tides over the low- and mid-latitude MLT region observed by a meteor radar chain. By using a global atmospheric model and reanalysis data, it is found that the stratospheric QBO winds can affect the mesospheric diurnal tides by modulating the subtropical ozone variability in the upper stratosphere and the interaction between tides and gravity waves in the mesosphere.
Xiao Liu, Jiyao Xu, Jia Yue, Yangkun Liu, and Vania F. Andrioli
Atmos. Chem. Phys., 24, 10143–10157, https://doi.org/10.5194/acp-24-10143-2024, https://doi.org/10.5194/acp-24-10143-2024, 2024
Short summary
Short summary
Disagreement in long-term trends in the high-latitude mesosphere temperature should be elucidated using one coherent measurement over a long period. Using SABER measurements at high latitudes and binning the data based on yaw cycle, we focus on long-term trends in the mean temperature and mesopause in the high-latitude mesosphere–lower-thermosphere region, which has been rarely studied via observations but is more sensitive to dynamic changes.
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Xiao Liu, Jiyao Xu, Jia Yue, and Vania F. Andrioli
Atmos. Chem. Phys., 23, 6145–6167, https://doi.org/10.5194/acp-23-6145-2023, https://doi.org/10.5194/acp-23-6145-2023, 2023
Short summary
Short summary
Winds are important in characterizing atmospheric dynamics and coupling. However, it is difficult to directly measure the global winds from the stratosphere to the lower thermosphere. We developed a global zonal wind dataset according to the gradient wind theory and SABER and meteor radar observations. Using the dataset, we studied the intra-annual, inter-annual, and long-term variations. This is helpful to understand the variations and coupling of the stratosphere to the lower thermosphere.
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary
Short summary
We use ground-based airglow network observations, reanalysis data, and satellite observations to explore the propagation process of concentric gravity waves (CGWs) excited by a typhoon between the troposphere, stratosphere, mesosphere, and thermosphere. We find that CGWs in the mesosphere are generated directly by the typhoon but the CGW observed in the thermosphere may be excited by CGW dissipation in the mesosphere, rather than directly excited by a typhoon and propagated to the thermosphere.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Zhaohai He, Jiyao Xu, Ilan Roth, Chi Wang, and Lei Dai
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-4, https://doi.org/10.5194/angeo-2021-4, 2021
Revised manuscript not accepted
Short summary
Short summary
We presented sharp descent in proton fluxes is accompanied by the corresponding depression of SYM-H index, with a one-to-one correspondence, regardless of the storm intensity in our previous work [Xu et al., 2019]. This paper is a further study of the possible mechanisms, and to quantitified evaluate the effect of full adiabatic changes. Inner belt is not very stable as previous announced especially for the out zone of the inner belt. It is necessary to survey characteristics of protons.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Xiao Liu, Jiyao Xu, Jia Yue, and Hanli Liu
Atmos. Chem. Phys., 20, 14437–14456, https://doi.org/10.5194/acp-20-14437-2020, https://doi.org/10.5194/acp-20-14437-2020, 2020
Short summary
Short summary
Large wind shears in the mesosphere and lower thermosphere are recognized as a common phenomenon. Simulation and ground-based observations show that the main contributor of large wind shears is gravity waves. We present a method of deriving wind shears induced by gravity waves according to the linear theory and using the global temperature observations by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry). Our results agree well with observations and model simulations.
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
Cited articles
Abe, S., Umemura, N., Koyama, Y., Tanaka, Y., Yagi, M., Yatagai, A.,
Shinbori, A., Ueno, S., Sato, Y., and Kaneda, N.: Progress of the IUGONET
system – Metadata database for upper atmosphere ground-based observation
data, Earth Planets Space, 66, 1–7, https://doi.org/10.1186/1880-5981-66-133, 2014.
Andrioli, V. F., Clemesha, B. R., Batista, P. P., and Schuch, N. J.:
Atmospheric tides and mean winds in the meteor region over Santa Maria
(29.7∘ S; 53.8∘ W), J. Atmos. Sol.-Terr. Phys.,
71, 1864–1876, https://doi.org/10.1016/j.jastp.2009.07.005, 2009.
Andrioli, V. F., Fritts, D. C., Batista, P. P., Clemesha, B. R., and Janches, D.: Diurnal variation in gravity wave activity at low and middle latitudes, Ann. Geophys., 31, 2123–2135, https://doi.org/10.5194/angeo-31-2123-2013, 2013.
Andrioli, V. F., Batista, P. P., Clemesha, B. R., Schuch, N. J., and Buriti, R. A.: Multi-year observations of gravity wave momentum fluxes at low and middle latitudes inferred by all-sky meteor radar, Ann. Geophys., 33, 1183–1193, https://doi.org/10.5194/angeo-33-1183-2015, 2015.
Baldwin, M. P. and O'Sullivan, D.: Stratospheric Effects of ENSO-Related
Tropospheric Circulation Anomalies, J. Climate, 8, 649–667,
https://doi.org/10.1175/1520-0442(1995)008<0649:SEOERT>2.0.CO;2, 1995.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001.
Batista, P. P., Clemesha, B. R., Tokumoto, A. S., and Lima, L. M.: Structure
of the mean winds and tides in the meteor region over Cachoeira Paulista,
Brazil (22.7∘ S,45∘ W) and its comparison with models.
J. Atmos. Sol.-Terr. Phys., 66, 623–636,
https://doi.org/10.1016/j.jastp.2004.01.014, 2004.
Batubara, M., Suryana, R., Manik, T., and Sitompul, P.: Kototabang – West
Sumatera meteor radar: System design and initial results of a large scale
meteor echo, Proc. 2011 6th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA
2011, 17–21, https://doi.org/10.1109/TSSA.2011.6095399, 2011.
Becker, E. and Vadas, S. L.: Secondary gravity waves in the winter
mesosphere: results from a high-resolution global circulation model, J.
Geophys. Res.-Atmos., 123, 2605–2627, https://doi.org/10.1002/2017JD027460, 2018.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc.,
96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017.
Diallo, M., Riese, M., Birner, T., Konopka, P., Müller, R., Hegglin, M. I., Santee, M. L., Baldwin, M., Legras, B., and Ploeger, F.: Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016, Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, 2018.
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G.,
Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y.,
Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C.
A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S., Reid,
I. M., and Vincent, R. A.: An empirical model of the Earth's horizontal wind
fields: HWM07, J. Geophys. Res., 113, A12304,
https://doi.org/10.1029/2008JA013668, 2008.
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E.,
Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J.
D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The
quiet time thermosphere, Earth Space Sci., 2, 301–319,
https://doi.org/10.1002/2014EA000089, 2015.
Emmert, J. T., Drob, D. P., Shepherd, G. G., Hernandez, G., Jarvis, M. J.,
Meriwether, J. W., Niciejewski, R. J., Sipler, D. P., and Tepley, C. A.:
DWM07 global empirical model of upper thermospheric storm-induced
disturbance winds, J. Geophys. Res., 113, A11319,
https://doi.org/10.1029/2008JA013541, 2008.
Englert, C. R., Harlander, J. M., Brown, C. M., Marr, K. D., Miller, I. J.,
Stump, J. E., Hancock, J., Peterson, J. Q., Kumler, J., Morrow, W. H.,
Mooney, T. A., Ellis, S., Mende, S. B., Harris, S. E., Stevens, M. H.,
Makela, J. J., Harding, B. J., and Immel, T. J.: Michelson Interferometer for
Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and
Calibration, Space Sci. Rev., 212, 553–584,
https://doi.org/10.1007/s11214-017-0358-4, 2017.
Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G.,
Russell, J. M., and Riese, M.: Implications for atmospheric dynamics derived
from global observations of gravity wave momentum flux in stratosphere and
mesosphere, J. Geophys. Res.-Atmos., 116, 1–24,
https://doi.org/10.1029/2011JD015821, 2011.
Ern, M., Ploeger, F., Preusse, P., Gille, J. C., Gray, L. J., Kalisch, S.,
Mlynczak, M. G., Russell, J. M., and Riese, M.: Interaction of gravity waves
with the QBO: A satellite perspective, J. Geophys. Res.-Atmos., 119,
2329–2355, https://doi.org/10.1002/2013JD020731, 2014.
Ern, M., Diallo, M., Preusse, P., Mlynczak, M. G., Schwartz, M. J., Wu, Q., and Riese, M.: The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations, Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, 2021.
Fleming, E. L., Chandra, S., Barnett, J. J., and Corney, M.: Zonal mean
temperature, pressure, zonal wind and geopotential height as function of
latitude, Adv. Space Res., 10, 11–59,
https://doi.org/10.1016/0273-1177(90)90386-E, 1990.
Forbes, J. M.: Tidal and planetary waves, Geophys. Monogr. Ser.,
87, 67–87, https://doi.org/10.1029/GM087p0067, 1995.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1–64, https://doi.org/10.1029/2001RG000106,
2003.
Gan, Q., Du, J., Ward, W. E., Beagley, S. R., Fomichev, V. I., and Zhang, S.:
Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its
comparison with SABER 3. Space science International CAWSES-II Symposium,
Earth Planets Space, 66, 1–24, https://doi.org/10.1186/1880-5981-66-103, 2014.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2) [data set], J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gu, S. Y., Li, T., Dou, X., Wu, Q., Mlynczak, M. G., and Russell, J. M.:
Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI, J.
Geophys. Res., 118, 1624–1639. https://doi.org/10.1002/jgrd.50191,
2013.
Hayashi, H., Koyama, Y., Hori, T., Tanaka, Y., Abe, S., Shinbori, A.,
Kagitani, M., Kouno, T., Yoshida, D., UeNo, S., Kaneda, N., Yoneda, M.,
Umemura, N., Tadokoro, H., and Motoba, T.: Inter-university upper atmosphere
global observation network (IUGONET) [data set], Data Sci. J., 12, 179–184,
https://doi.org/10.2481/dsj.WDS-030, 2013.
Hays, P. B., Abreu, V. J., Dobbs, M. E., Gell, D. A., Grassl, H. J., and
Skinner, W. R.: The high-resolution doppler imager on the Upper Atmosphere
Research Satellite, J. Geophys. Res., 98, 10713–10723,
https://doi.org/10.1029/93JD00409, 1993.
Harding, B. J., Makela, J. J., Englert, C. R., Marr, K. D., Harlander, J.
M., England, S. L., and Immel, T. J.: The MIGHTI Wind Retrieval Algorithm:
Description and Verification, Space Sci. Rev., 212, 585–600,
https://doi.org/10.1007/s11214-017-0359-3, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019.
Immel, T. J., England, S. L., Mende, S. B., Heelis, R. A., Englert, C. R.,
Edelstein, J., Frey, H. U., Korpela, E. J., Taylor, E. R., Craig, W. W.,
Harris, S. E., Bester, M., Bust, G. S., Crowley, G., Forbes, J. M.,
Gérard, J. C., Harlander, J. M., Huba, J. D., Hubert, B., Kamalabadi,
F., Makela, J. J., Maute, A. I., Meier, R. R., Raftery, C., Rochus, P.,
Siegmund, O. H. W., Stephan, A. W., Swenson, G. R., Frey, S., Hysell, D. L.,
Saito, A., Rider, K. A., and Sirk, M. M.: The Ionospheric Connection Explorer
Mission: Mission Goals and Design, Space Sci. Rev., 214, 1–36, 2018.
Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, 2020.
Killeen, T. L., Wu, Q., Solomon, S. C., Ortland, D. A., Skinner, W. R.,
Niciejewski, R. J., and Gell, D. A.: TIMED Doppler Interferometer: Overview
and recent results, J. Geophys. Res., 111, A1S010,
https://doi.org/10.1029/2005JA011484, 2006.
Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W.: Applied Linear
Statistical Model (Fifth Editon), The McGraw-Hill Irwin Series: Operations
and Decision Sciences, McGraw-Hill/Irwin, New York, chap. 6, 214–247, 2005.
Li, G., Ning, B., Hu, L., Chu, Y. H., Reid, I. M., and Dolman, B. K.: A
comparison of lower thermospheric winds derived from range spread and
specular meteor trail echoes, J. Geophys. Res., 117, A03310,
https://doi.org/10.1029/2011JA016847, 2012.
Liu, H.-L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A.,
and Pedatella, N. M.: Gravity waves simulated by high-resolution Whole
Atmosphere Community Climate Model, Geophys. Res. Lett., 41, 9106–9112,
https://doi.org/10.1002/2014GL062468, 2014.
Liu, X., Yue, J., Xu, J., Garcia, R. R., Russell, J. M., Mlynczak, M., Wu,
D. L., and Nakamura, T.: Variations of global gravity waves derived from 14
years of SABER temperature observations, J. Geophys. Res., 122,
6231–6249, https://doi.org/10.1002/2017JD026604, 2017.
Liu, X., Xu, J., Yue, J., Yu, Y., Batista, P. P, Andrioli, V. F., Liu, Z.,
Yuan, T., Wang, C., Zou, Z., Li, G., and Russell III, J. M.: Global Balanced
Wind Derived from SABER Temperature and Pressure Observations and its
Validations, V1, NSSDC Space Science Article Data Repository [data set and code],
https://doi.org/10.12176/01.99.00574, 2021.
Matsumoto, N., Shinbori, A., Riggin, D. M., and Tsuda, T.: Measurement of momentum flux using two meteor radars in Indonesia, Ann. Geophys., 34, 369–377, https://doi.org/10.5194/angeo-34-369-2016, 2016.
McLandress, C.: On the importance of gravity waves in the middle atmosphere
and their parameterization in general circulation models, J. Atmos.
Sol.-Terr. Phys., 60, 1357–1383, https://doi.org/10.1016/S1364-6826(98)00061-3,
1998.
McLandress, C., Ward, W. E., Fomichev, V. I., Semeniuk, K., Beagley, S. R.,
McFarlane, N. A., and Shepherd, T. G.: Large-scale dynamics of the mesosphere
and lower thermosphere: An analysis using the extended Canadian Middle
Atmosphere Model, J. Geophys. Res., 111, D17111,
https://doi.org/10.1029/2005JD006776, 2006.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2 [data set], Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Newman, P. A., Coy, L., Pawson, S., and Lait, L. R.: The anomalous change
in the QBO in 2015–2016. Geophys. Res. Lett., 43, 8791–8797,
https://doi.org/10.1002/2016GL070373, 2016.
Niciejewski, R., Wu, Q., Skinner, W., Gell, D., Cooper, M., Marshall, A.,
Killeen, T., Solomon, S., and Ortland, D.: TIMED doppler interferometer on
the thermosphere ionosphere mesosphere energetics and dynamics satellite:
Data product overview, J. Geophys. Res., 111, A11S90, https://doi.org/10.1029/2005JA011513, 2006.
Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K.,
Anstey, J. A., Schenzinger, V., and Zhang, C.: An unexpected disruption of
the atmospheric quasi-biennial oscillation, Science, 353, 1424–1427,
https://doi.org/10.1126/science.aah4156, 2016.
Randel, W. J.: The Evaluation of Winds from Geopotential Height Data in the
Stratosphere, J. Atmos. Sci., 44, 3097–3120,
https://doi.org/10.1175/1520-0469(1987)044<3097:TEOWFG>2.0.CO;2,
1987.
Rao, N. V., Tsuda, T., Gurubaran, S., Miyoshi, Y., and Fujiwara, H.: On the
occurrence and variability of the terdiurnal tide in the equatorial
mesosphere and lower thermosphere and a comparison with the Kyushu-GCM, J.
Geophys. Res., 116, D02117, https://doi.org/10.1029/2010JD014529,
2011.
Rao, N. V., Tsuda, T., Riggin, D. M., Gurubaran, S., Reid, I. M., and
Vincent, R. A.: Long-term variability of mean winds in the mesosphere and
lower thermosphere at low latitudes, J. Geophys. Res., 117, A10312,
https://doi.org/10.1029/2012JA017850, 2012.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D.,
Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M.,
Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J.,
Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.:
Assessment of the quality of the version 1.07 temperature-versus-pressure
profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res.,
113, D17101, https://doi.org/10.1029/2008JD010013, 2008.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, Jr., J. J.,
and Esplin, R. W.: Overview of the SABER experiment and preliminary
calibration results, Proc. SPIE, 3756, 277–288,
https://doi.org/10.1117/12.366382, 1999.
ABER team: level2a_V2_07, available at: https://spdf.gsfc.nasa.gov/pub/data/timed/saber/, last access: March 2020.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E.,
Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F.,
Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V,
Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K.
A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb
Sounder temperature and geopotential height measurements, J. Geophys. Res.,
113, D15S11, https://doi.org/10.1029/2007jd008783, 2008.
She, C. Y.: Initial full-diurnal-cycle mesopause region lidar observations:
Diurnal-means and tidal perturbations of temperature and winds over Fort
Collins, CO (41∘ N, 105∘ W), J. Atmos. Sol.-Terr.
Phys., 66, 663–674, https://doi.org/10.1016/j.jastp.2004.01.037, 2004.
Shepherd, G. G., Thuillier, G., Cho, Y. M., Duboin, M. L., Evans, W. F. J.,
Gault, W. A., Hersom, C., Kendall, D. J. W., Lathuillre, C., Lowe, R. P.,
McDade, I. C., Rochon, Y. J., Shepherd, M. G., Solheim, B. H., Wang, D. Y.,
and Ward, W. E.: The wind imaging interferometer (WINDII) on the upper
atmosphere research satellite: A 20 year perspective, Rev. Geophys., 50,
1–38, https://doi.org/10.1029/2012RG000390, 2012.
Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J.: The semiannual
oscillation of the tropical zonal wind in the middle atmosphere derived from
satellite geopotential height retrievals, J. Atmos. Sci., 74, 2413–2425,
https://doi.org/10.1175/JAS-D-17-0067.1, 2017.
Stevens, M. H., Englert, C. R., Harlander, J. M., England, S. L., Marr, K.
D., Brown, C. M., and Immel, T. J.: Retrieval of Lower Thermospheric
Temperatures from O2 A Band Emission: The MIGHTI Experiment on ICON, Space
Sci. Rev., 214, 2–9, https://doi.org/10.1007/s11214-017-0434-9, 2018.
Swinbank, R. and Ortland, D. A.: Compilation of wind data for the Upper
Atmosphere Research Satellite (UARS) Reference Atmosphere Project [data set], J.
Geophys. Res., 108, 4615, https://doi.org/10.1029/2002jd003135, 2003.
Wang, C.: New chains of space weather monitoring stations in China, Sp.
Weather, 8, S08001, https://doi.org/10.1029/2010SW000603, 2010.
Watanabe, S. and Miyahara, S.: Quantification of the gravity wave forcing of
the migrating diurnal tide in a gravity wave-resolving general circulation
model, J. Geophys. Res., 114, D07110, https://doi.org/10.1029/2008JD011218,
2009.
Wu, Q., Killeen, T. L., Ortland, D. A., Solomon, S. C., Gablehouse, R. D.,
Johnson, R. M., Skinner, W. R., Niciejewski, R. J., and Franke, S. J.: TIMED
Doppler interferometer (TIDI) observations of migrating diurnal and
semidiurnal tides, J. Atmos. Sol.-Terr. Phys., 68, 408–417,
https://doi.org/10.1016/j.jastp.2005.02.031, 2006.
Wu, Q., Ortland, D. A., Killeen, T. L., Roble, R. G., Hagan, M. E., Liu, H.
L., Solomon, S. C., Xu, J., Skinner, W. R., and Niciejewski, R. J.: Global
distribution and interannual variations of mesospheric and lower
thermospheric neutral wind diurnal tide: 1. Migrating tide, J. Geophys. Res.
113, A05308, https://doi.org/10.1029/2007JA012542, 2008.
Xiong, J., Wan, W., Ding, F., Liu, L., Ning, B., and Niu, X.: Coupling
between mesosphere and ionosphere over Beijing through semidiurnal tides
during the 2009 sudden stratospheric warming, J. Geophys. Res.-Space,
118, 2511–2521, https://doi.org/10.1002/jgra.50280, 2013.
Xu, J., Smith, A. K., Yuan, W., Liu, H. L., Wu, Q., Mlynczak, M. G., and
Russell, I. M.: Global structure and long-term variations of zonal mean
temperature observed by TIMED/SABER, J. Geophys. Res.-Atmos., 112,
D24106, https://doi.org/10.1029/2007JD008546, 2007.
Xu, J., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G., Mlynczak, M.
G., Russell, J. M., and Franke, S. J.: Seasonal and quasi-biennial variations
in the migrating diurnal tide observed by Thermosphere, Ionosphere,
Mesosphere, Energetics and Dynamics (TIMED), J. Geophys. Res.-Atmos.,
114, 1–16, https://doi.org/10.1029/2008jd011298, 2009.
Xu, J., Smith, A. K., Liu, M., Liu, X., Gao, H., Jiang, G., and Yuan, W.:
Evidence for nonmigrating tides produced by the interaction between tides
and stationary planetary waves in the stratosphere and lower mesosphere, J.
Geophys. Res.-Atmos., 119, 471–489, https://doi.org/10.1002/2013JD020150, 2014.
Yu, Y., Wan, W., Ning, B., Liu, L., Wang, Z., Hu, L., and Ren, Z.: Tidal wind
mapping from observations of a meteor radar chain in December 2011, J.
Geophys. Res.-Space, 118, 2321–2332, https://doi.org/10.1029/2012JA017976,
2013.
Yu, Y., Wan, W., Ren, Z., Xiong, B., Zhang, Y., Hu, L., Ning, B., and Liu,
L.: Seasonal variations of MLT tides revealed by a meteor radar chain based
on Hough mode decomposition [data set], J. Geophys. Res.-Space, 120,
7030–7048, https://doi.org/10.1002/2015JA021276, 2015.
Yuan, T., She, C. Y., Krueger, D. A., Sassi, F., Garcia, R., Roble, R. G.,
Liu, H. L., and Schmidt, H.: Climatology of mesopause region temperature,
zonal wind, and meridional wind over Fort Collins, Colorado (41∘ N, 105∘ W), and comparison with model simulations, J. Geophys.
Res.-Atmos., 113, D03105, https://doi.org/10.1029/2007JD008697, 2008.
Zhang, S. P. and Shepherd, G. G.: Variations of the mean winds and diurnal
tides in the mesosphere and lower thermosphere observed by WINDII from 1992
to 1996, Geophys. Res. Lett., 32, L14111,
https://doi.org/10.1029/2005GL023293, 2005.
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean...
Altmetrics
Final-revised paper
Preprint