Articles | Volume 13, issue 9
Earth Syst. Sci. Data, 13, 4331–4348, 2021
https://doi.org/10.5194/essd-13-4331-2021
Earth Syst. Sci. Data, 13, 4331–4348, 2021
https://doi.org/10.5194/essd-13-4331-2021
Data description paper
07 Sep 2021
Data description paper | 07 Sep 2021

Meteorological, snow and soil data (2013–2019) from a herb tundra permafrost site at Bylot Island, Canadian high Arctic, for driving and testing snow and land surface models

Florent Domine et al.

Related authors

Metamorphism of Arctic marine snow during the melt season. Impact on spectral albedo and radiative fluxes through snow
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-76,https://doi.org/10.5194/tc-2022-76, 2022
Preprint under review for TC
Short summary
Snow properties at the forest tundra ecotone: predominance of water vapor fluxes even in thick moderately cold snowpacks
Georg Lackner, Florent Domine, Daniel F. Nadeau, Matthieu Lafaysse, and Marie Dumont
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-19,https://doi.org/10.5194/tc-2022-19, 2022
Preprint under review for TC
Short summary
On the energy budget of a low-Arctic snowpack
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022,https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
On the influence of erect shrubs on the irradiance profile in snow
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021,https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021,https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary

Related subject area

Snow and Sea Ice
Large ensemble of downscaled historical daily snowfall from an earth system model to 5.5 km resolution over Dronning Maud Land, Antarctica
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022,https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021)
Matthieu Vernay, Matthieu Lafaysse, Diego Monteiro, Pascal Hagenmuller, Rafife Nheili, Raphaëlle Samacoïts, Deborah Verfaillie, and Samuel Morin
Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022,https://doi.org/10.5194/essd-14-1707-2022, 2022
Short summary
A new Greenland digital elevation model derived from ICESat-2 during 2018–2019
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022,https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Reconstruction of a daily gridded snow water equivalent product for the land region above 45° N based on a ridge regression machine learning approach
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022,https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
Xiaoyi Shen, Chang-Qing Ke, and Haili Li
Earth Syst. Sci. Data, 14, 619–636, https://doi.org/10.5194/essd-14-619-2022,https://doi.org/10.5194/essd-14-619-2022, 2022
Short summary

Cited articles

Barrere, M. and Domine, F.: Snow, soil and meteorological data at Bylot Island for simulating the permafrost thermal regime and evaluating output of the SURFEXv8 land surface scheme, v. 1.0 (1979–2015), Nordicana, D29, https://doi.org/10.5885/45460CE-9B80A99D55F94D95, 2017. 
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. 
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model, Cold Regions Sci. Tech., 35, 123–145, 2002. 
Bilodeau, F., Gauthier, G., and Berteaux, D.: The effect of snow cover on lemming population cycles in the Canadian High Arctic, Oecologia, 172, 1007–1016, https://doi.org/10.1007/s00442-012-2549-8, 2013. 
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences, 10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013, 2013. 
Short summary
Current sophisticated snow physics models were mostly designed for alpine conditions and cannot adequately simulate the physical properties of Arctic snowpacks. New snow models will require Arctic data sets for forcing and validation. We provide an extensive driving and testing data set from a high Arctic herb tundra site in Canada. Unique validating data include continuous time series of snow and soil thermal conductivity and temperature profiles. Field observations in spring are provided.