Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3439-2021
https://doi.org/10.5194/essd-13-3439-2021
Data description paper
 | 
14 Jul 2021
Data description paper |  | 14 Jul 2021

The NY-Ålesund TurbulencE Fiber Optic eXperiment (NYTEFOX): investigating the Arctic boundary layer, Svalbard

Marie-Louise Zeller, Jannis-Michael Huss, Lena Pfister, Karl E. Lapo, Daniela Littmann, Johann Schneider, Alexander Schulz, and Christoph K. Thomas

Related authors

Vertical concentrations gradients and transport of airborne microplastics in wind tunnel experiments
Eike Maximilian Esders, Christoph Georgi, Wolfgang Babel, Andreas Held, and Christoph Karl Thomas
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-9,https://doi.org/10.5194/ar-2024-9, 2024
Preprint under review for AR
Short summary
Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024,https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Is transport of microplastics different from mineral particles? Idealized wind tunnel studies on polyethylene microspheres
Eike Maximilian Esders, Sebastian Sittl, Inka Krammel, Wolfgang Babel, Georg Papastavrou, and Christoph Karl Thomas
Atmos. Chem. Phys., 23, 15835–15851, https://doi.org/10.5194/acp-23-15835-2023,https://doi.org/10.5194/acp-23-15835-2023, 2023
Short summary
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023,https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
Grazing enhances carbon cycling but reduces methane emission during peak growing season in the Siberian Pleistocene Park tundra site
Wolfgang Fischer, Christoph K. Thomas, Nikita Zimov, and Mathias Göckede
Biogeosciences, 19, 1611–1633, https://doi.org/10.5194/bg-19-1611-2022,https://doi.org/10.5194/bg-19-1611-2022, 2022
Short summary

Related subject area

Meteorology
Dataset of stable isotopes of precipitation in the Eurasian continent
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024,https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024,https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024,https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024,https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024,https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary

Cited articles

Aagaard, K. and Greisman, P.: Toward new mass and heat budgets for the Arctic Ocean, J. Geophys. Res., 80, 3821–3827, 1975. a
Acevedo, O. C., Moraes, O. L., Fitzjarrald, D. R., Sakai, R. K., and Mahrt, L.: Turbulent carbon exchange in very stable conditions, Bound.-Lay. Meteorol., 125, 49–61, 2007. a
Acevedo, O. C., Costa, F. D., Oliveira, P. E., Puhales, F. S., Degrazia, G. A., and Roberti, D. R.: The influence of submeso processes on stable boundary layer similarity relationships, J. Atmos. Sci., 71, 207–225, 2014. a
Anfossi, D., Oettl, D., Degrazia, G., and Goulart, A.: An analysis of sonic anemometer observations in low wind speed conditions, Bound.-Lay. Meteorol., 114, 179–203, 2005. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer Science & Business Media, https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Download
Short summary
The boundary layer (BL) is well understood when convectively mixed, yet we lack this understanding when it becomes stable and no longer follows classic similarity theories. The NYTEFOX campaign collected a unique meteorological data set in the Arctic BL of Svalbard during polar night, where it tends to be highly stable. Using innovative fiber-optic distributed sensing, we are able to provide unique insight into atmospheric motions across large distances resolved continuously in space and time.
Altmetrics
Final-revised paper
Preprint