Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-1307-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1307-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
WegenerNet high-resolution weather and climate data from 2007 to 2020
Jürgen Fuchsberger
CORRESPONDING AUTHOR
Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
Gottfried Kirchengast
Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, Austria
Thomas Kabas
Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
Related authors
Stephanie J. Haas, Andreas Kvas, and Jürgen Fuchsberger
Weather Clim. Dynam., 6, 949–963, https://doi.org/10.5194/wcd-6-949-2025, https://doi.org/10.5194/wcd-6-949-2025, 2025
Short summary
Short summary
In southeast Austria, summer thunderstorms often cause severe damage but are very hard to accurately forecast. With data from the WegenerNet 3D Open-Air Laboratory, we study these storms from beginning to end in multiple atmospheric parameters, like temperature, cloud properties, and wind speed. The characteristic features we find in these parameters expand our understanding of intense storms and can improve their prediction.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Stephanie J. Haas, Andreas Kvas, and Jürgen Fuchsberger
Weather Clim. Dynam., 6, 949–963, https://doi.org/10.5194/wcd-6-949-2025, https://doi.org/10.5194/wcd-6-949-2025, 2025
Short summary
Short summary
In southeast Austria, summer thunderstorms often cause severe damage but are very hard to accurately forecast. With data from the WegenerNet 3D Open-Air Laboratory, we study these storms from beginning to end in multiple atmospheric parameters, like temperature, cloud properties, and wind speed. The characteristic features we find in these parameters expand our understanding of intense storms and can improve their prediction.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Short summary
Due to the shortcomings of available observations, having accurate global 3D wind fields remains a challenge. A promising option is radio occultation (RO) satellite data, which enable the derivation of winds based on wind approximations. We test how well RO winds describe the ERA5 winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024, https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Short summary
We investigated the potential of radio occultation (RO) data for climate-oriented wind field monitoring, focusing on the equatorial band within ±5° latitude. In this region, the geostrophic balance breaks down, and the equatorial balance approximation takes over. The study encourages the use of RO wind fields for mesoscale climate monitoring for the equatorial region, showing a small improvement in the troposphere when including the meridional wind in the zonal-mean total wind speed.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ying Li, Gottfried Kirchengast, Marc Schwaerz, and Yunbin Yuan
Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, https://doi.org/10.5194/acp-23-1259-2023, 2023
Short summary
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021, https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Cited articles
Barenbrug, A. W. T.: Psychrometry and Psychrometric Charts, 3rd Edn., Cape and Transvaal Printers Ltd., 59 pp.,
1974. a
Bartels, H., Weigl, E., Reich, T., Lang, P., Wagner, A., Kohler, O., Gerlach,
N., and under contribution of the staff of the MeteoSolutions GmbH: Projekt RADOLAN–Routineverfahren zur
Online-Aneichung der Radarniederschlagsdaten mit Hilfe von
automatischen Bodenniederschlagsstationen (Ombrometer), Zusammenfassender Abschlussbericht, Deutscher Wetterdienst, Abt. Hydrometeorologie, Germany, available at:
https://www.dwd.de/DE/leistungen/radolan/radolan_info/abschlussbericht_pdf.pdf?__blob=publicationFile&v=2 (last access: 5 March 2021),
2004. a
Ciach, G. J. and Krajewski, W. F.: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma, Adv. Water Resour., 29, 1450–1463, https://doi.org/10.1016/j.advwatres.2005.11.003, 2006. a
Denk, V. and Berg, C.: Do short-lived ruderal and arable weed communities
reflect regional climate differences? A case study from SE Styria,
Tuexenia, 34, 305–328, https://doi.org/10.14471/2014.34.014, 2014. a
Deutscher Wetterdienst and FU-Berlin/BWK: Bodendruck, Fr 03 März 2017 00
UTC, available at: http://www.met.fu-berlin.de/de/wetter/maps/Analyse_20170303.gif (last access: 10 February 2020), 2017a. a
Deutscher Wetterdienst and FU-Berlin/BWK: Bodendruck, Sa 04 März 2017 00
UTC, available at:
http://www.met.fu-berlin.de/de/wetter/maps/Analyse_20170304.gif,
(last access: 10 February 2020), 2017b. a
Deutscher Wetterdienst and FU-Berlin/BWK: Bodendruck, So 05 März 2017 00
UTC, available at:
http://www.met.fu-berlin.de/de/wetter/maps/Analyse_20170305.gif,
(last access: 10 February 2020), 2017c. a
Ebner, S.: Analysis and Homogenization of WegenerNet Temperature and
Humidity Data and Quality Evaluation for Climate Trend Studies,
Sci. Rep. No.70-2017, ISBN 978-3-9503918-9-3, Wegener Center Verlag, Graz,
Austria,
available at: https://static.uni-graz.at/fileadmin/urbi-zentren/Wegcenter/9.WegCenterVerlag/2017/WCV-SciRep-No70-SEbner-Aug2017.pdf,
2017. a, b
Fiener, P. and Auerswald, K.: Spatial variability of rainfall on a
sub-kilometre scale, Earth Surf. Proc. Land., 34, 848–859,
https://doi.org/10.1002/esp.1779, 2009. a
Frei, C. and Isotta, F. A.: Ensemble Spatial Precipitation Analysis
From Rain Gauge Data: Methodology and Application in the
European Alps, J. Geophys. Res.-Atmos., 124, 5757–5778, https://doi.org/10.1029/2018JD030004, 2019. a
Fuchsberger, J. and Kirchengast, G.: Deriving Soil Moisture from Matric
Potential in the WegenerNet Climate Station Network, WegenerNet
Tech. Note No.1/2013, Wegener Center for Climate and Global Change, Graz, Austria, https://doi.org/10.13140/RG.2.2.33461.68320, 2013. a, b
Fuchsberger, J., Kirchengast, G., Bichler, C., Leuprecht, A., and Kabas, T.:
WegenerNet climate station network Level 2 data version 7.1 2007–2020,
https://doi.org/10.25364/WEGC/WPS7.1:2021.1, 2021. a
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018. a
Goodrich, D. C., Keefer, T. O., Unkrich, C. L., Nichols, M. H., Osborn, H. B., Stone, J. J., and Smith, J. R.: Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, https://doi.org/10.1029/2006WR005782, 2008. a
Grünwald, T.: Das Klimastationsmessnetz im Johnsbachtal und eine erste
Auswertung der Daten, MSc thesis, Univ. Graz, Graz, Austria, available at:
http://www.wegenernet.org/misc/Gruenwald-MA-2014-Johnsbachtal_small.pdf,
2014 (in German). a
Hershfield, D. M.: A note on areal rainfall definition, J. Am. Water Resour.
Assoc., 5, 49–55, https://doi.org/10.1111/j.1752-1688.1969.tb04923.x, 1969. a
Hiebl, J. and Frei, C.: Daily precipitation grids for Austria since
1961–development and evaluation of a spatial dataset for hydroclimatic
monitoring and modelling, Theor. Appl. Climatol., 132, 327–345,
https://doi.org/10.1007/s00704-017-2093-x, 2018. a
Hocking, T.: Improving WegenerNet temperature data products by advancing
lapse rate and grid construction algorithms, MSc thesis, Univ. Graz,
Graz, Austria, available at:
https://wegenernet.org/downloads/Hocking-2020-WegNet_lapserates.pdf (last access: 20 January 2021),
2020. a
Hohmann, C., Kirchengast, G., and Birk, S.: Alpine foreland running drier?
Sensitivity of a drought vulnerable catchment to changes in climate, land
use, and water management, Climatic Change, 147, 179–193,
https://doi.org/10.1007/s10584-017-2121-y, 2018. a
Hohmann, C., Kirchengast, G., O, S., Rieger, W., and Foelsche, U.: Runoff sensitivity to spatial rainfall variability: A hydrological modeling study with dense rain gauge observations, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-453, 2020. a
Hu, L., Nikolopoulos, E. I., Marra, F., Morin, E., Marani, M., and Anagnostou, E. N.: Evaluation of MEVD-Based Precipitation Frequency Analyses from Quasi-Global Precipitation Datasets against Dense Rain Gauge Networks, J. Hydrol., 590, 125564,
https://doi.org/10.1016/j.jhydrol.2020.125564, 2020. a
Huff, F. A. and Shipp, W. L.: Spatial Correlations of Storm, Monthly and Seasonal Precipitation, J. Appl. Meteorol., 8, 542–550,
https://doi.org/10.1175/1520-0450(1969)008<0542:SCOSMA>2.0.CO;2, 1969. a
Jaffrain, J. and Berne, A.: Quantification of the Small-Scale Spatial
Structure of the Raindrop Size Distribution from a Network of
Disdrometers, J. Appl. Meteorol. Clim., 51, 941–953,
https://doi.org/10.1175/JAMC-D-11-0136.1, 2012. a
Janke, M.: Tiefdruckgebiet XAVER, available at:
http://www.met.fu-berlin.de/wetterpate/Lebensgeschichten/Tief_XAVER_02_03_17.htm
(last access: 10 February 2020), FU Berlin, 2017 (in German). a
Jensen, N. and Pedersen, L.: Spatial variability of rainfall: Variations
within a single radar pixel, Atmos. Res., 77, 269–277,
https://doi.org/10.1016/j.atmosres.2004.10.029, 2005. a
Kabas, T.: WegenerNet Klimastationsnetz Region Feldbach:
Experimenteller Aufbau und hochauflösende Daten für die Klima- und
Umweltforschung, Sci. Rep. No.47-2012, ISBN 978-3-9503112-4-2, Wegener
Center Verlag, Graz, Austria, available at:
http://wegcwww.uni-graz.at/publ/wegcreports/2012/WCV-WissBer-No47-TKabas-Jan2012.pdf (last access: 20 January 2021),
2012. a, b
Kabas, T., Foelsche, U., and Kirchengast, G.: Seasonal and Annual Trends of
Temperature and Precipitation within 1951/1971-2007 in South-Eastern
Styria, Austria, Meteorol. Z., 20, 277–289,
https://doi.org/10.1127/0941-2948/2011/0233, 2011a. a
Kabas, T., Leuprecht, A., Bichler, C., and Kirchengast, G.: WegenerNet
climate station network region Feldbach, Austria: network structure,
processing system, and example results, Adv. Sci. Res., 6, 49–54,
https://doi.org/10.5194/asr-6-49-2011, 2011b. a
Kann, A., Haiden, T., von der Emde, K., Gruber, C., Kabas, T., Leuprecht, A.,
and Kirchengast, G.: Verification of Operational Analyses Using an
Extremely High-Density Surface Station Network, Weather Forecast.,
26, 572–578, https://doi.org/10.1175/WAF-D-11-00031.1, 2011. a
Kann, A., Meirold-Mautner, I., Schmid, F., Kirchengast, G., Fuchsberger, J., Meyer, V., Tüchler, L., and Bica, B.: Evaluation of high-resolution precipitation analyses using a dense station network, Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, 2015. a
Keefer, T. O., Moran, M. S., and Paige, G. B.: Long-term meteorological and
soil hydrology database, Walnut Gulch Experimental Watershed,
Arizona, United States, Water Resour. Res., 44, W05S07,
https://doi.org/10.1029/2006WR005702, 2008. a
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
Convection-Permitting Regional Climate Models Improve
Projections of Future Precipitation Change?, B. Am.
Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017. a
Klebinder, K., Sotier, B., Lechner, V., and Strauss, P.: Hydrologische und
hydropedologische Kenndaten Raabgebiet und Region Südoststeiermark,
Tech. rep., Department of Natural Hazards, Austrian Research Center for
Forests (BFW), Innsbruck, Austria, available at:
https://wegenernet.org/downloads/Klebinder-etal_HydroBod-SOStmk-Projbericht_Jul2017.pdf (last access: 20 January 2021),
2017. a
Klocke, D., Brueck, M., Hohenegger, C., and Stevens, B.: Rediscovery of the
doldrums in storm-resolving simulations over the tropical Atlantic, Nat.
Geosci., 10, 891–896, https://doi.org/10.1038/s41561-017-0005-4, 2017. a
Krähenmann, S., Bissolli, P., Rapp, J., and Ahrens, B.: Spatial gridding of
daily maximum and minimum temperatures in Europe, Meteorol. Atmos. Phys.,
114, 151–161, https://doi.org/10.1007/s00703-011-0160-x, 2011. a
Lasser, M., O, S., and Foelsche, U.: Evaluation of GPM-DPR precipitation estimates with WegenerNet gauge data, Atmos. Meas. Tech., 12, 5055–5070, https://doi.org/10.5194/amt-12-5055-2019, 2019. a
Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.: Evaluation of
the convection-resolving climate modeling approach on continental scales, J. Geophys. Res.-Atmos., 122, 5237–5258, https://doi.org/10.1002/2016JD026013, 2017. a
METEOSERVIS: Correction Curve for MR3, MR3H, available at:
https://wegenernet.org/downloads/Meteoservis_Correction_curve_MR3_engl.pdf (last access: 20 January 2021),
2008. a
Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H., and Tomita, H.: Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922–4926, https://doi.org/10.1002/grl.50944, 2013. a
Moore, R. J., Jones, D. A., Cox, D. R., and Isham, V. S.: Design of the HYREX raingauge network, Hydrol. Earth Syst. Sci., 4, 521–530, https://doi.org/10.5194/hess-4-521-2000, 2000. a
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976. a
NOAA: Heat index, available at: https://www.weather.gov/safety/heat-index,
last access: 10 September 2020. a
O, S. and Foelsche, U.: Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network, Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, 2019. a
O, S., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., and Petersen, W. A.: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria, Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, 2017. a
O, S., Foelsche, U., Kirchengast, G., and Fuchsberger, J.: Validation and
correction of rainfall data from the WegenerNet high density network in
southeast Austria, J. Hydrol., 556, 1110–1122, https://doi.org/10.1016/j.jhydrol.2016.11.049, 2018. a, b, c
Pedersen, L., Jensen, N. E., Christensen, L. E., and Madsen, H.: Quantification of the spatial variability of rainfall based on a dense network of rain gauges, Atmos. Res., 95, 441–454, https://doi.org/10.1016/j.atmosres.2009.11.007, 2010. a
Peleg, N., Ben-Asher, M., and Morin, E.: Radar subpixel-scale rainfall variability and uncertainty: lessons learned from observations of a dense rain-gauge network, Hydrol. Earth Syst. Sci., 17, 2195–2208, https://doi.org/10.5194/hess-17-2195-2013, 2013. a
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015. a
Scheidl, D.: Improved Quality Control for the WegenerNet and
Demonstration for Selected Weather Events and Climate, Sci. Rep. No.61-2014, ISBN 978-3-9503608-8-2, Wegener Center Verlag, Graz, Austria, available at:
http://wegcwww.uni-graz.at/publ/wegcreports/2014/WCV-SciRep-No61-DScheidl-Oct2014.pdf (last access: 20 January 2021),
2014. a, b
Scheidl, D., Fuchsberger, J., and Kirchengast, G.: Analysis of the Quality of
WegenerNet Humidity Data and Improvements, Sci. Rep. No.74-2017,
ISBN 978-3-9504501-2-5, Wegener Center Verlag, Graz, Austria, available at:
https://wegcwww.uni-graz.at/publ/wegcreports/2017/WCV-SciRep-No74-DScheidletal-Dec2017.pdf (last access: 20 January 2021),
2017. a, b, c
Schlager, C., Kirchengast, G., Fuchsberger, J., Kann, A., and Truhetz, H.: A spatial evaluation of high-resolution wind fields from empirical and dynamical modeling in hilly and mountainous terrain, Geosci. Model Dev., 12, 2855–2873, https://doi.org/10.5194/gmd-12-2855-2019, 2019. a, b, c, d
Schoen, C.: A New Empirical Model of the Temperature–Humidity
Index, J. Appl. Meteorol., 44, 1413–1420, https://doi.org/10.1175/JAM2285.1, 2005. a, b
Schroeer, K. and Kirchengast, G.: Sensitivity of extreme precipitation to
temperature: the variability of scaling factors from a regional to local
perspective, Clim. Dyn., 50, 3981–3994, https://doi.org/10.1007/s00382-017-3857-9,
2018. a
Schroeer, K., Kirchengast, G., and O, S.: Strong dependence of extreme
convective precipitation intensities on gauge network density, Geophys. Res. Lett., 45, 8253–8263, https://doi.org/10.1029/2018GL077994, 2018. a
Strasser, U., Marke, T., Sass, O., Birk, S., and Winkler, G.: John’s creek
valley: a mountainous catchment for long-term interdisciplinary
human-environment system research in Upper Styria (Austria), Environ.
Earth Sci., 69, 695–705, https://doi.org/10.1007/s12665-013-2318-y, 2013. a, b
Szeberényi, K.: Analysis of WegenerNet Precipitation Data and Quality
Evaluation for Case Studies and Climatologies, Sci. Rep.
No.58-2014, ISBN 978-3-9503608-5-1, Wegener Center Verlag, Graz, Austria, available at:
http://wegcwww.uni-graz.at/publ/wegcreports/2014/WCV-SciRep-No58-KSzeberenyi-Mar2014.pdf (last access: 20 January 2021),
2014. a
Tan, J., Petersen, W. A., Kirchengast, G., Goodrich, D. C., and Wolff, D. B.:
Evaluation of Global Precipitation Measurement Rainfall Estimates
against Three Dense Gauge Networks, J. Hydrometeorol., 19, 517–532, https://doi.org/10.1175/JHM-D-17-0174.1, 2018. a, b
van Genuchten, M. T.: A Closed-form Equation for Predicting the
Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J.,
44, 892, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a
Wüest, M., Frei, C., Altenhoff, A., Hagen, M., Litschi, M., and Schär, C.: A
gridded hourly precipitation dataset for Switzerland using rain-gauge
analysis and radar-based disaggregation, Int. J. Climatol., 30, 1764–1775,
https://doi.org/10.1002/joc.2025, 2010. a
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
The paper describes the most recent weather and climate data from the WegenerNet station...
Altmetrics
Final-revised paper
Preprint