Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2853-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2853-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of the HadISDH.marine humidity climate monitoring dataset
Kate M. Willett
CORRESPONDING AUTHOR
Met Office Hadley Centre, Exeter, UK
Robert J. H. Dunn
Met Office Hadley Centre, Exeter, UK
John J. Kennedy
Met Office Hadley Centre, Exeter, UK
David I. Berry
National Oceanography Centre, Southampton, UK
Related authors
Valerie N. Livina, Kate Willett, and Stephanie Bell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1461, https://doi.org/10.5194/egusphere-2025-1461, 2025
Short summary
Short summary
A novel approach that uses tipping point analysis for identifying instrumental changes in sensor data that may not have full description of legacy hardware. The technique helps interpret changes of pattern in the data (autocorrelations) and distinguish them from climatic and environmental effects. This is particularly important for historic datasets, where instrumental changes may be undocumented or lack metadata.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Valerie N. Livina, Kate Willett, and Stephanie Bell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1461, https://doi.org/10.5194/egusphere-2025-1461, 2025
Short summary
Short summary
A novel approach that uses tipping point analysis for identifying instrumental changes in sensor data that may not have full description of legacy hardware. The technique helps interpret changes of pattern in the data (autocorrelations) and distinguish them from climatic and environmental effects. This is particularly important for historic datasets, where instrumental changes may be undocumented or lack metadata.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Colin Peter Morice, David I. Berry, Richard C. Cornes, Kathryn Cowtan, Thomas Cropper, Ed Hawkins, John J. Kennedy, Timothy J. Osborn, Nick A. Rayner, Beatriz R. Rivas, Andrew P. Schurer, Michael Taylor, Praveen R. Teleti, Emily J. Wallis, Jonathan Winn, and Elizabeth C. Kent
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-500, https://doi.org/10.5194/essd-2024-500, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a new data set of global gridded surface air temperature change extending back to the 1780s. This is achieved using marine air temperature observations with newly available estimates of diurnal heating biases together with an updated land station database that includes bias adjustments for early thermometer enclosures. These developments allow the data set to extend further into the past than current data sets that use sea surface temperature rather than marine air temperature data.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Cited articles
Berry, D.: Surface forcing of the North Atlantic: accuracy and
variability, PhD thesis, University of Southampton, 176 pp., 2009.
Berry, D. I., Kent, E. C., and Taylor, P. K.: An analytical model of heating
errors in marine air temperatures from ships, J. Atmos. Ocean.
Tech., 21, 1198–1215, 2004.
Berry, D. I. and Kent, E. C.: A new air-sea interaction gridded dataset
from ICOADS with uncertainty estimates, B. Am. Meteorol. Soc., 90, 645–656, 2009.
Berry, D. I. and Kent, E. C.: Air–Sea fluxes from ICOADS: the construction
of a new gridded dataset with uncertainty estimates, Int. J. Climatol., 31,
987–1001, 2011.
BIPM: Evaluation of measurement data – Guide to the expression of
uncertainty in measurement, JCGM 100:2008, available at: https://www.bipm.org/en/publications/guides/gum.html (last access: June 2019), 2008.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in
Support of Climate Research, Applications, and Policy, B. Am. Meteorol.
Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro,
R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W.,
Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S.,
Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez,
M.: MERRA-2: Initial Evaluation of the Climate, Technical Report Series on
Global Modeling and Data Assimilation, Volume 43, NASA/TM–2015-104606/Vol.
43, 136 pp., available at: http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/ (last access: June 2019), 2015.
Byrne, M. P. and O'Gorman, P. A.: Link between land-ocean warming
contrast and surface relative humidities in simulations with coupled climate
models. Geophys. Res. Lett., 40, 5223–5227, https://doi.org/10.1002/grl.50971, 2013.
Byrne, M. P. and O'Gorman, P. A.: Understanding decreases in land
relative humidity with global warming: conceptual model and GCM simulations,
J. Climate, 29, 9045–9061, https://doi.org/10.1175/JCLI-D-16-0351.1, 2016.
Byrne, M. P. and O'Gorman, P. A.: Trends in continental temperature and
humidity directly linked to ocean warming, P. Natl. Acad. Sci. USA, 115, 4863–4868, https://doi.org/10.1073/pnas.1722312115,
2018.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of
ECMWF atmospheric reanalyses of the global climate, Copernicus Climate
Change Service Climate Data Store (CDS), February 2019, available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: June 2019), 2017.
Dai, A.: Recent climatology, variability, and trends in global surface
humidity, J. Climate, 19, 3589–3606, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L. J., Bidlot, L., Bormann,
N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,
Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Elliott, W. P., Ross, R. J., and Schwartz, B.: Effects on climate records of
changes in National Weather Service humidity processing procedures, J. Climate, 11, 2424–2436, 1998.
Fennig, K., Andersson, A., Bakan, S., Klepp, C.-P., and Schröder, M.: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS 3.2 – Monthly Means/6-Hourly Composites. Satellite Application Facility on Climate Monitoring, https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001, 2012.
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C.,
Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W.,
Ji, Zaihua, Lawrimor, J., Rayner, N. A., Rosenhagen, G., and Smith, S. R.:
ICOADS Release 3.0: a major update to the historical marine climate record,
Int. J. Climatol., 37, 2211–2232, https://doi.org/10.1002/joc.4775,
2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era
Retrospective Analysis for Research and Applications, Version 2
(MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gilhousen, D.: A Field evaluation of NDBC Moored Buoy Winds, J. Atmos. Ocean. Tech., 4, 94–104, 1987.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 159–254, doi:10.1017/CBO9781107415324.008, 2013.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle
to global warming, J. Climate, 19, 5686–5699, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S.,Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimating sampling errors
in large-scale temperature averages, J. Climate, 10, 2548–2568,
1997.
Josey, S. A., Kent, E. C., and Taylor, P. K.: New insights into the ocean
heat budget closure problem from analysis of the SOC air–sea flux
climatology, J. Climate, 12, 2685–2718, 1999.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., and Parker, D. E.:
Reassessing biases and other uncertainties in sea-surface temperature
observations since 1850 part 1: measurement and sampling errors, J. Geophys.
Res., 116, D14103, https://doi.org/10.1029/2010JD015218, 2011a.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., and Parker, D. E.:
Reassessing biases and other uncertainties in sea-surface temperature
observations since 1850 part 2: biases and homogenisation, J. Geophys. Res.,
116, D14104, https://doi.org/10.1029/2010JD015220, 2011b.
Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Killick, R. E.: An
ensemble data set of sea-surface temperature change from 1850: the Met
Office Hadley Centre HadSST.4.0.0.0 data set, J. Geophys. Res.-Atmos., 124, 7719–7763, https://doi.org/10.1029/2018JD029867, 2019.
Kent, E. C. and Challenor, P. G.: Towards estimating climatic trends in
SST. Part II: random errors, J. Atmos. Ocean. Tech., 23, 476–486. https://doi.org/10.1175/JTECH1844.1, 2006.
Kent, E. C. and Taylor, P. K.: Accuracy of humidity measurement on ships:
Consideration of solar radiation effects, J. Atmos. Ocean. Tech., 13,
1317–1321, 1996.
Kent, E. C., Tiddy, R. J., and Taylor, P. K.: Correction of marine air
temperature observations for solar radiation effects, J. Atmos. Ocean. Tech., 10, 900–906, 1993.
Kent, E. C., Woodruff, S. D., and Berry D. I.: Metadata from WMO Publication
No. 47 and an Assessment of Voluntary Observing Ship Observation Heights in
ICOADS, J. Atmos. Ocean. Tech., 24, 214–234, https://doi.org/10.1175/JTECH1949.1, 2007.
Kent, E. C., Rayner, N. A., Berry, D. I., Saunby, M., Moat, B. I., Kennedy,
J. J., and Parker, D. E.: Global analysis of night marine air temperature
and its uncertainty since 1880: The HadNMAT2 data set, J. Geophys. Res.-Atmos., 118, 1281–1298, https://doi.org/10.1002/jgrd.50152, 2013.
Kent, E. C., Berry, D. I., Prytherch, J., and Roberts, J. B.: A comparison of
global marine surface-specific humidity datasets from in situ observations and
atmospheric reanalysis, Int. J. Climatol.,
34, 355–376, https://doi.org/10.1002/joc.3691, 2014.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: general specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Menne, M. J. and Williams Jr., C. N.: Homogenization of Temperature Series
via Pairwise Comparisons, J. Climate, 22, 1700–1717, https://doi.org/10.1175/2008JCLI2263.1, 2009.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108,
4407, https://doi.org/10.1029/2002JD002670, 2003.
Rayner, N., Brohan, P., Parker, D., Folland, C., Kennedy, J., Vanicek, M.,
Ansell, T., and Tett, S.: Improved analyses of changes and uncertainties in
sea surface temperature measured in situ since the mid-nineteenth century:
The HadSST2 data set, J. Climate, 19, 446–469, https://doi.org/10.1175/JCLI3637.1,
2006.
Santer, B. D., Thorne, P. W., Haimberger, L., Taylor, K. E., Wigley, T. M.
L., Lanzante, J. R., Solomon, S., Free, M., Gleckler, P. J., Jones, P. D.,
Karl, T. R., Klein, S. A., Mears, C., Nychka, D., Schmidt, G. A., Sherwood,
S. C., and Wentz, F. J.: Consistency of modelled and observed temperature
trends in the tropical troposphere. Int. J. Climatol., 28, 1703–1722,
https://doi.org/10.1002/joc.1756, 2008.
Schneider, T., O'Gorman, P. A., and Levine, X. J.: Water vapor and the
dynamics of climate changes, Rev. Geophys., 48, RG3001,
https://doi.org/10.1029/2009RG000302, 2010.
Simmons, A., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D.:
Low-frequency variations in surface atmospheric humidity, temperature and
precipitation: inferences from reanalyses and monthly gridded observational
datasets, J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442, 2010.
Simmons, A. J., Poli, P., Dee, D. P., Berrisford, P., Hersbach, H.,
Kobayashi S., and Peubey, C.: Estimating low-frequency variability and
trends in atmospheric temperature using ERA-Interim, Q. J. Roy. Meteor. Soc.,
140, 329–353, https://doi.org/10.1002/qj.2317, 2014.
Smith, S. D.: Wind stress and heat flux over the ocean in gale force winds,
J. Phys. Oceanogr., 10, 709–726, 1980.
Smith, S. D.: Coefficients for sea surface wind stress, heat flux and wind
profiles as a function of wind speed and temperature, J. Geophys. Res., 93,
15467–15472, 1988.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Springer, the Netherlands, 666 pp., 978-90-277-2768-8, 1988.
Wade, C. G.: An evaluation of problems affecting the measurement of low
relative humidity on the United States radiosonde, J. Atmos. Ocean. Tech., 11, 687–700, 1994.
Willett, K. M., Jones, P. D., Gillett N. P., and Thorne, P. W.: Recent
changes in surface humidity: development of the HadCRUH dataset, J. Climate,
21, 5364–5383, 2008.
Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell,
S., de Podesta, M., Jones, P. D., and Parker, D. E.: HadISDH: An updated
land surface specific humidity product for climate monitoring, Clim. Past, 9, 657–677, https://doi.org/10.5194/cp-9-657-2013, 2013.
Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M.,
Jones, P. D., Parker, D. E., and Williams Jr., C. N.: HadISDH land surface
multi-variable humidity and temperature record for climate monitoring,
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, 2014.
Willett, K. M., Dunn, R. J. H., Kennedy, J. J., and Berry, D. I.: HadISDH
marine: gridded global monthly ocean surface humidity data version
1.0.0.2018f, Centre for Environmental Data Analysis, 5 August 2020,
https://doi.org/10.5285/463b2fcd6a264a39b1e3249dab16c177, 2020.
Willett, K. M., Berry, D. I., Bosilovich, M. G., and Simmons, A.: Surface Humidity, in: State of the Climate in 2018, B. Am. Meteorol. Soc., 100, S25–S26, 2019.
Wolter, K.: Trimming problems and remedies in COADS, J. Climate,
10, 1980–1997, https://doi.org/10.1175/1520-0442(1997)010<1980:TPARIC> 2.0.CO;2, 1997.
Short summary
We describe the development and validation of a new near-global gridded marine humidity monitoring product, HadISDH.marine, from air temperature and dew point temperature reported by ships. Erroneous data, biases, and inhomogeneities have been removed where possible through checks for outliers, supersaturated values, repeated values, and adjustments for known biases in non-aspirated instruments and ship heights. We have also estimated uncertainty in the data at the grid box and regional level.
We describe the development and validation of a new near-global gridded marine humidity...
Altmetrics
Final-revised paper
Preprint