Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-1191-2020
https://doi.org/10.5194/essd-12-1191-2020
Data description paper
 | 
28 May 2020
Data description paper |  | 28 May 2020

High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018

Jenny V. Turton, Thomas Mölg, and Emily Collier

Related authors

The distribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern Greenland) and interannual climatic controls
Jenny V. Turton, Philipp Hochreuther, Nathalie Reimann, and Manuel T. Blau
The Cryosphere, 15, 3877–3896, https://doi.org/10.5194/tc-15-3877-2021,https://doi.org/10.5194/tc-15-3877-2021, 2021
Short summary
The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica
Jenny V. Turton, Amélie Kirchgaessner, Andrew N. Ross, John C. King, and Peter Kuipers Munneke
The Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-2020,https://doi.org/10.5194/tc-14-4165-2020, 2020
Short summary

Related subject area

Meteorology
Dataset of stable isotopes of precipitation in the Eurasian continent
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024,https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024,https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024,https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024,https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024,https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary

Cited articles

Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W.: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8, 165–176, https://doi.org/10.5194/essd-8-165-2016, 2016. 
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, B. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013. 
Bowden, J. H., Nolte, C. G., and Otte, T. L: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology, Clim. Dynam., 40, 1903–1920, https://doi.org/10.1007/s00382-012-1440-y, 2012. 
Bromwich, D. H., Hines, K. M., and Bai, L.: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean, J. Geophys. Res., 114, D08122, https://doi.org/10.1029/2008JD010300, 2009. 
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part 1: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/15200493(2001)129<0569:CAALSH>2.0.CO;2, 2001. 
Download
Short summary
The Northeast Greenland Ice Stream drains approximately 12 % of the entire Greenland ice sheet and could contribute over 1 m of sea level rise if it were to completely disappear. However, this region is a relatively new research area. Here we provide an atmospheric modelling dataset from 2014 to 2018, which includes many meteorological and radiation variables. The model data have been compared to weather stations and show good agreement. This dataset has many future applications.
Altmetrics
Final-revised paper
Preprint