Articles | Volume 10, issue 4
Earth Syst. Sci. Data, 10, 1925–1941, 2018
https://doi.org/10.5194/essd-10-1925-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: The SPARC Reanalysis Intercomparison Project (S-RIP) (ACP/ESSD...
18 Oct 2018
18 Oct 2018
Zonal-mean data set of global atmospheric reanalyses on pressure levels
Patrick Martineau et al.
Related authors
Ayako Yamamoto, Masami Nonaka, Patrick Martineau, Akira Yamazaki, Young-Oh Kwon, Hisashi Nakamura, and Bunmei Taguchi
Weather Clim. Dynam., 2, 819–840, https://doi.org/10.5194/wcd-2-819-2021, https://doi.org/10.5194/wcd-2-819-2021, 2021
Short summary
Short summary
While the key role of moist processes in blocking has recently been highlighted, their moisture sources remain unknown. Here, we investigate moisture sources for wintertime Euro-Atlantic blocks using a Lagrangian method. We show that the Gulf Stream, Kuroshio, and their extensions, along with the northeast of Hawaii, act as the primary moisture sources and springboards for particle ascent. We find that the evolution of the particle properties is sensitive to the moisture sources.
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021, https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Patrick Martineau, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 2, 395–412, https://doi.org/10.5194/wcd-2-395-2021, https://doi.org/10.5194/wcd-2-395-2021, 2021
Short summary
Short summary
To better understand the factors that impact the weather in North America, this study explores the influence of the El Niño–Southern Oscillation on wintertime surface air temperature variability using reanalysis data. Results show that La Niña enhances subseasonal variability over western North America by amplifying the baroclinic conversion of energy from the winter-mean circulation to subseasonal eddies. Changes in the structural properties of eddies are crucial for this amplification.
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020, https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary
Short summary
The global response of surface air temperature (SST) to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 is investigated using 11 global atmospheric reanalysis data sets. Multiple linear regression is applied, with a set of climatic indices orthogonalized, and the residuals are investigated. It is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.
Edwin P. Gerber and Patrick Martineau
Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, https://doi.org/10.5194/acp-18-17099-2018, 2018
Short summary
Short summary
The annular modes characterize the variability of the extratropical circulation. We show that they are extremely consistent across all reanalyses during the satellite era (1979 onward). Consequently, uncertainty in the annual cycle of variability of the tropospheric jet streams and their coupling with the stratospheric polar vortices is dominated by sampling uncertainty. Pre-satellite reanalysis of the Northern Hemisphere appears to be of high quality and can help reduce this uncertainty.
Patrick Martineau, Seok-Woo Son, Masakazu Taguchi, and Amy H. Butler
Atmos. Chem. Phys., 18, 7169–7187, https://doi.org/10.5194/acp-18-7169-2018, https://doi.org/10.5194/acp-18-7169-2018, 2018
Short summary
Short summary
This study evaluates the agreement between eight reanalysis datasets by comparing zonal-mean zonal winds and the forcing terms of the zonal-mean momentum equation during sudden stratospheric warming events. Results show that the spread between datasets increases exponentially with height and is largest during the most intense sudden stratospheric warming events. The largest uncertainties arise from differences in the mean meridional circulation and horizontal fluxes of momentum by eddies.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-374, https://doi.org/10.5194/amt-2021-374, 2022
Preprint under review for AMT
Short summary
Short summary
GRUAN data products from Meisei iMS-100 and Vaisala RS92 were compared with 57 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K and data are mostly in agreement. For relative humidity , iMS-100 is around 1–2 %RH higher in the troposphere and 1 %RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Nandan Renju, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-410, https://doi.org/10.5194/amt-2021-410, 2021
Revised manuscript under review for AMT
Short summary
Short summary
We present the experimental results from a unique set of observational field campaigns named Balloon borne Aerosol Cloud Interaction Studies (BACIS). These campaigns are proposed and conducted using balloon borne in-situ measurements in addition to the ground-based and space borne remote sensing instruments. The results presented here demonstrate the observational approach to quantify aerosol-cloud interactions and paves the way for further investigations using the approach.
Ayako Yamamoto, Masami Nonaka, Patrick Martineau, Akira Yamazaki, Young-Oh Kwon, Hisashi Nakamura, and Bunmei Taguchi
Weather Clim. Dynam., 2, 819–840, https://doi.org/10.5194/wcd-2-819-2021, https://doi.org/10.5194/wcd-2-819-2021, 2021
Short summary
Short summary
While the key role of moist processes in blocking has recently been highlighted, their moisture sources remain unknown. Here, we investigate moisture sources for wintertime Euro-Atlantic blocks using a Lagrangian method. We show that the Gulf Stream, Kuroshio, and their extensions, along with the northeast of Hawaii, act as the primary moisture sources and springboards for particle ascent. We find that the evolution of the particle properties is sensitive to the moisture sources.
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021, https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Patrick Martineau, Hisashi Nakamura, and Yu Kosaka
Weather Clim. Dynam., 2, 395–412, https://doi.org/10.5194/wcd-2-395-2021, https://doi.org/10.5194/wcd-2-395-2021, 2021
Short summary
Short summary
To better understand the factors that impact the weather in North America, this study explores the influence of the El Niño–Southern Oscillation on wintertime surface air temperature variability using reanalysis data. Results show that La Niña enhances subseasonal variability over western North America by amplifying the baroclinic conversion of energy from the winter-mean circulation to subseasonal eddies. Changes in the structural properties of eddies are crucial for this amplification.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara
Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, https://doi.org/10.5194/acp-20-9115-2020, 2020
Short summary
Short summary
This paper reports on a project to compare the representation of the semiannual oscillation (SAO) among six major global atmospheric reanalyses and with recent satellite observations. The differences among the zonal mean zonal wind as represented by the various reanalyses display a prominent equatorial maximum that increases with height. It is shown that assimilation of satellite temperature measurements is crucial for the realistic representation of the tropical upper stratospheric circulation.
Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao
Atmos. Chem. Phys., 20, 8989–9030, https://doi.org/10.5194/acp-20-8989-2020, https://doi.org/10.5194/acp-20-8989-2020, 2020
Short summary
Short summary
High clouds are influential in tropical climate. Although reanalysis cloud fields are essentially model products, they are indirectly constrained by observations and offer global coverage with direct links to advanced water and energy cycle metrics, giving them many useful applications. We describe how high cloud fields are generated in reanalyses, assess their realism and reliability in the tropics, and evaluate how differences in these fields affect other aspects of the reanalysis state.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Susann Tegtmeier, James Anstey, Sean Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig Long, James S. Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, https://doi.org/10.5194/acp-20-753-2020, 2020
Short summary
Short summary
The tropical tropopause layer is an important atmospheric region right in between the troposphere and the stratosphere. We evaluate the representation of this layer in reanalyses data sets, which create a complete picture of the state of Earth's atmosphere using atmospheric modeling and available observations. The recent reanalyses show realistic temperatures in the tropical tropopause layer. However, where the temperature is lowest, the so-called cold point, the reanalyses are too cold.
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020, https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary
Short summary
The global response of surface air temperature (SST) to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 is investigated using 11 global atmospheric reanalysis data sets. Multiple linear regression is applied, with a set of climatic indices orthogonalized, and the residuals are investigated. It is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Lars Hoffmann, Gebhard Günther, Dan Li, Olaf Stein, Xue Wu, Sabine Griessbach, Yi Heng, Paul Konopka, Rolf Müller, Bärbel Vogel, and Jonathon S. Wright
Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, https://doi.org/10.5194/acp-19-3097-2019, 2019
Short summary
Short summary
ECMWF's new ERA5 reanalysis provides higher spatiotemporal resolution, yielding an improved representation of meso- and synoptic-scale features of the atmosphere. We assessed the impact of this challenging new data set on Lagrangian trajectory calculations for the free troposphere and stratosphere. Key findings are considerable transport deviations between the ERA5 and ERA-Interim simulations as well as significantly improved conservation of potential temperature in the stratosphere for ERA5.
Edwin P. Gerber and Patrick Martineau
Atmos. Chem. Phys., 18, 17099–17117, https://doi.org/10.5194/acp-18-17099-2018, https://doi.org/10.5194/acp-18-17099-2018, 2018
Short summary
Short summary
The annular modes characterize the variability of the extratropical circulation. We show that they are extremely consistent across all reanalyses during the satellite era (1979 onward). Consequently, uncertainty in the annual cycle of variability of the tropospheric jet streams and their coupling with the stratospheric polar vortices is dominated by sampling uncertainty. Pre-satellite reanalysis of the Northern Hemisphere appears to be of high quality and can help reduce this uncertainty.
Patrick Martineau, Seok-Woo Son, Masakazu Taguchi, and Amy H. Butler
Atmos. Chem. Phys., 18, 7169–7187, https://doi.org/10.5194/acp-18-7169-2018, https://doi.org/10.5194/acp-18-7169-2018, 2018
Short summary
Short summary
This study evaluates the agreement between eight reanalysis datasets by comparing zonal-mean zonal winds and the forcing terms of the zonal-mean momentum equation during sudden stratospheric warming events. Results show that the spread between datasets increases exponentially with height and is largest during the most intense sudden stratospheric warming events. The largest uncertainties arise from differences in the mean meridional circulation and horizontal fluxes of momentum by eddies.
Takatoshi Sakazaki, Masatomo Fujiwara, and Masato Shiotani
Atmos. Chem. Phys., 18, 1437–1456, https://doi.org/10.5194/acp-18-1437-2018, https://doi.org/10.5194/acp-18-1437-2018, 2018
Short summary
Short summary
Atmospheric solar tides in the stratosphere and lower mesosphere are examined using temperature data from five reanalyses and satellite measurements. The reanalyses agree reasonably well with each other and with the satellite observations, but the agreement among the reanalyses is weaker in the mesosphere. The assimilation of satellite data improves the representation of tides in the reanalyses, while long-term changes are mostly artificial and driven by changes in the input data employed.
Craig S. Long, Masatomo Fujiwara, Sean Davis, Daniel M. Mitchell, and Corwin J. Wright
Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, https://doi.org/10.5194/acp-17-14593-2017, 2017
Short summary
Short summary
As part of the SPARC Reanalysis Intercomparison Project, we evaluate the temperature and wind structure of all the recent and past reanalyses with 2.5-degree monthly zonal mean data sets from 1979–2014. There is a distinct change in the temperature structure in the stratosphere in 1998. Zonal winds are in greater agreement than temperatures. All reanalyses have issues analysing the tropical stratospheric winds. Caution is advised for using reanalysis temperatures for trend detection.
Fan Yang, Hui Lu, Kun Yang, Jie He, Wei Wang, Jonathon S. Wright, Chengwei Li, Menglei Han, and Yishan Li
Hydrol. Earth Syst. Sci., 21, 5805–5821, https://doi.org/10.5194/hess-21-5805-2017, https://doi.org/10.5194/hess-21-5805-2017, 2017
Short summary
Short summary
In this paper, we show that CLDAS has the highest spatial and temporal resolution, and it performs best in terms of precipitation, while it overestimates the shortwave radiation. CMFD also has high resolution and its shortwave radiation data match well with the station data; its annual-mean precipitation is reliable but its monthly precipitation needs improvements. Both GLDAS and CN05.1 over mainland China need to be improved. The results can benefit researchers for forcing data selection.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Masatomo Fujiwara, Takuji Sugidachi, Toru Arai, Kensaku Shimizu, Mayumi Hayashi, Yasuhisa Noma, Hideaki Kawagita, Kazuo Sagara, Taro Nakagawa, Satoshi Okumura, Yoichi Inai, Takashi Shibata, Suginori Iwasaki, and Atsushi Shimizu
Atmos. Meas. Tech., 9, 5911–5931, https://doi.org/10.5194/amt-9-5911-2016, https://doi.org/10.5194/amt-9-5911-2016, 2016
Short summary
Short summary
A meteorological balloon-borne cloud sensor called the cloud particle sensor (CPS) has been developed. The CPS can count the number of particles per second and can obtain the cloud phase information (i.e. liquid, ice, or mixed). Twenty-five test flights have been made between 2012 and 2015 at midlatitude and tropical sites. The results from the four flights are discussed.
Sean M. Davis, Karen H. Rosenlof, Birgit Hassler, Dale F. Hurst, William G. Read, Holger Vömel, Henry Selkirk, Masatomo Fujiwara, and Robert Damadeo
Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, https://doi.org/10.5194/essd-8-461-2016, 2016
Short summary
Short summary
This paper describes the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, whose main feature is a combined data product created by homogenizing multiple satellite records. This motivation for SWOOSH is that in order to study multiyear to decadal variability in ozone and water vapor concentrations, it is necessary to have a continuous and smooth record without artificial jumps in the data.
Xiaolu Yan, Jonathon S. Wright, Xiangdong Zheng, Nathaniel J. Livesey, Holger Vömel, and Xiuji Zhou
Atmos. Meas. Tech., 9, 3547–3566, https://doi.org/10.5194/amt-9-3547-2016, https://doi.org/10.5194/amt-9-3547-2016, 2016
Short summary
Short summary
We evaluate Aura Microwave Limb Sounder retrievals of temperature, water vapour and ozone over the eastern Tibetan Plateau against measurements from balloon-borne instruments. The newest version of the retrievals (v4) represents a slight improvement over the previous version, particularly with respect to data yields and upper tropospheric ozone. We identify several biases that did not appear in evaluations conducted elsewhere, highlighting the unique challenges of remote sensing in this region.
Yoshio Kawatani, Kevin Hamilton, Kazuyuki Miyazaki, Masatomo Fujiwara, and James A. Anstey
Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, https://doi.org/10.5194/acp-16-6681-2016, 2016
Short summary
Short summary
This paper compares the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. Differences among reanalysis display a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. Our study confirms that the high accuracy in situ wind measurements have provided important constraints to reanalyses of circulation in the tropical stratosphere.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
Y. Inai, M. Shiotani, M. Fujiwara, F. Hasebe, and H. Vömel
Atmos. Meas. Tech., 8, 4043–4054, https://doi.org/10.5194/amt-8-4043-2015, https://doi.org/10.5194/amt-8-4043-2015, 2015
Short summary
Short summary
For conventional soundings, the pressure bias of radiosonde leads to an altitude misestimation, which can lead to offsets in any meteorological profile. Therefore, we must take this issue into account to improve historical data sets.
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
Y. Inai, F. Hasebe, M. Fujiwara, M. Shiotani, N. Nishi, S.-Y. Ogino, H. Vömel, S. Iwasaki, and T. Shibata
Atmos. Chem. Phys., 13, 8623–8642, https://doi.org/10.5194/acp-13-8623-2013, https://doi.org/10.5194/acp-13-8623-2013, 2013
F. Hasebe, Y. Inai, M. Shiotani, M. Fujiwara, H. Vömel, N. Nishi, S.-Y. Ogino, T. Shibata, S. Iwasaki, N. Komala, T. Peter, and S. J. Oltmans
Atmos. Chem. Phys., 13, 4393–4411, https://doi.org/10.5194/acp-13-4393-2013, https://doi.org/10.5194/acp-13-4393-2013, 2013
G. A. Morris, G. Labow, H. Akimoto, M. Takigawa, M. Fujiwara, F. Hasebe, J. Hirokawa, and T. Koide
Atmos. Chem. Phys., 13, 1243–1260, https://doi.org/10.5194/acp-13-1243-2013, https://doi.org/10.5194/acp-13-1243-2013, 2013
Related subject area
Meteorology
HCPD-CA: high-resolution climate projection dataset in central Asia
Development of East Asia Regional Reanalysis based on advanced hybrid gain data assimilation method and evaluation with E3DVAR, ERA-5, and ERA-Interim reanalysis
EUREC4A observations from the SAFIRE ATR42 aircraft
Observations of marine cold-air outbreaks: a comprehensive data set of airborne and dropsonde measurements from the Springtime Atmospheric Boundary Layer Experiment (STABLE)
Water vapor in cold and clean atmosphere: a 3-year data set in the boundary layer of Dome C, East Antarctic Plateau
Resilient dataset of rain clusters with life cycle evolution during April to June 2016–2020 over eastern Asia based on observations from the GPM DPR and Himawari-8 AHI
Dataset of daily near-surface air temperature in China from 1979 to 2018
C3ONTEXT: a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT
The Large eddy Observatory, Voitsumra Experiment 2019 (LOVE19) with high-resolution, spatially distributed observations of air temperature, wind speed, and wind direction from fiber-optic distributed sensing, towers, and ground-based remote sensing
Historical and Future Weather Data for Dynamic Building Simulations in Belgium using the MAR model: Typical & Extreme Meteorological Year and Heatwaves
Homogenized century-long surface incident solar radiation over Japan
Hourly historical and near-future weather and climate variables for energy system modelling
EUREC4A's Maria S. Merian ship-based cloud and micro rain radar observations of clouds and precipitation
Deployment of the C-band radar Poldirad on Barbados during EUREC4A
Remote and autonomous measurements of precipitation for the northwestern Ross Ice Shelf, Antarctica
High-frequency observation during sand and dust storms at the Qingtu Lake Observatory
10 years of temperature and wind observation on a 45 m tower at Dome C, East Antarctic plateau
GPRChinaTemp1km: a high-resolution monthly air temperature dataset for China (1951–2020) based on machine learning
Global balanced wind derived from SABER temperature and pressure observations and its validations
EUREC4A's HALO
EMO-5: A high-resolution multi-variable gridded meteorological data set for Europe
JOANNE: Joint dropsonde Observations of the Atmosphere in tropical North atlaNtic meso-scale Environments
Ground-based vertical profile observations of atmospheric composition on the Tibetan Plateau (2017–2019)
Presentation and discussion of the high-resolution atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015
EUREC4A
SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia
Turbulence dissipation rate estimated from lidar observations during the LAPSE-RATE field campaign
Long-term variations in actual evapotranspiration over the Tibetan Plateau
The NY-Ålesund TurbulencE Fiber Optic eXperiment (NYTEFOX): investigating the Arctic boundary layer, Svalbard
The EUREC4A turbulence dataset derived from the SAFIRE ATR 42 aircraft
EMDNA: an Ensemble Meteorological Dataset for North America
A mean-sea-level pressure time series for Trieste, Italy (1841–2018)
Observations from the NOAA P-3 aircraft during ATOMIC
The WGLC global gridded lightning climatology and time series
Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage
A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for Trentino-South Tyrol (north-eastern Italian Alps)
Hydrometeorological dataset of West Siberian boreal peatland: a 10-year record from the Mukhrino field station
University of Colorado and Black Swift Technologies RPAS-based measurements of the lower atmosphere during LAPSE-RATE
Intercomparisons, error assessments, and technical information on historical upper-air measurements
University of Nebraska unmanned aerial system (UAS) profiling during the LAPSE-RATE field campaign
Integrated water vapour observations in the Caribbean arc from a network of ground-based GNSS receivers during EUREC4A
Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries
Construction of homogenized daily surface air temperature for the city of Tianjin during 1887–2019
HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time
Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A
Hydrometeorological data from a Remotely Operated Multi-Parameter Station network in Central Asia
WegenerNet high-resolution weather and climate data from 2007 to 2020
G2DC-PL+: a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins
Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019
High-resolution in situ observations of atmospheric thermodynamics using dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign
Yuan Qiu, Jinming Feng, Zhongwei Yan, and Jun Wang
Earth Syst. Sci. Data, 14, 2195–2208, https://doi.org/10.5194/essd-14-2195-2022, https://doi.org/10.5194/essd-14-2195-2022, 2022
Short summary
Short summary
A high-resolution climate projection dataset in central Asia, named the HCPD-CA dataset, is derived from the dynamically downscaled results based on three bias-corrected global climate models and contains 4 geostatic variables and 10 meteorological elements that are widely used to drive ecological and hydrological models. This dataset can serve as a scientific basis for assessing the potential impacts of projected climate changes over central Asia on many sectors.
Eun-Gyeong Yang, Hyun Mee Kim, and Dae-Hui Kim
Earth Syst. Sci. Data, 14, 2109–2127, https://doi.org/10.5194/essd-14-2109-2022, https://doi.org/10.5194/essd-14-2109-2022, 2022
Short summary
Short summary
The East Asia Regional Reanalysis (EARR) system is developed based on the advanced hybrid gain data assimilation method (AdvHG) using the Weather Research and Forecasting (WRF) model and conventional observations. Based on EARR, high-resolution regional reanalysis and reforecast fields are produced with 12 km horizontal resolution over East Asia for the period 2010–2019. Compared to ERA5, EARR represents precipitation better for January and July 2017 over East Asia.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022, https://doi.org/10.5194/essd-14-1621-2022, 2022
Short summary
Short summary
A major goal of the Springtime Atmospheric Boundary Layer Experiment (STABLE) aircraft campaign was to observe atmospheric conditions during marine cold-air outbreaks (MCAOs) originating from the sea-ice-covered Arctic ocean. Quality-controlled measurements of several meteorological variables collected during 15 vertical aircraft profiles and by 22 dropsondes are presented. The comprehensive data set may be used for validating model results to improve the understanding of future trends in MCAOs.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the dataset has reliable accuracy and high spatial resolution.
Hauke Schulz
Earth Syst. Sci. Data, 14, 1233–1256, https://doi.org/10.5194/essd-14-1233-2022, https://doi.org/10.5194/essd-14-1233-2022, 2022
Short summary
Short summary
Trade wind clouds are often organized on the mesoscale (O(100 km)), forming different cloud patterns. We present C3ONTEXT (a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT), a dataset that contains information about the mesoscale cloud patterns identified during the EUREC4A (Elucidating the role of clouds–circulation coupling in climate) field campaign in January–February 2020 and thereby provide the mesoscale context for the campaign's measurements.
Karl Lapo, Anita Freundorfer, Antonia Fritz, Johann Schneider, Johannes Olesch, Wolfgang Babel, and Christoph K. Thomas
Earth Syst. Sci. Data, 14, 885–906, https://doi.org/10.5194/essd-14-885-2022, https://doi.org/10.5194/essd-14-885-2022, 2022
Short summary
Short summary
The layer of air near the surface is poorly understood during conditions with weak winds. Further, it is even difficult to observe. In this experiment we used distributed temperature sensing to observe air temperature and wind speed at thousands of points simultaneously every couple of seconds. This incredibly rich data set can be used to examine and understand what drives the mixing between the atmosphere and surface during these weak-wind periods.
Sebastien Doutreloup, Xavier Fettweis, Ramin Rahif, Essam A. Elnagar, Mohsen S. Pourkiaei, Deepak Amaripadath, and Shady Attia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-401, https://doi.org/10.5194/essd-2021-401, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
This dataset provides Historical (1980–2014) and Future (2015–2100) Weather Data for 12 cities in Belgium. This dataset is intended for architects or Building or energy designers. In particular, it makes available to all users hourly open-access weather data according to certain standards to recreate Typical & Extreme Meteorological Year. In addition, it provides hourly data on Heatwaves from 1980 to 2100. Weather data were produced from the outputs of the MAR model simulations.
Qian Ma, Kaicun Wang, Yanyi He, Liangyuan Su, Qizhong Wu, Han Liu, and Youren Zhang
Earth Syst. Sci. Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022, https://doi.org/10.5194/essd-14-463-2022, 2022
Short summary
Short summary
Surface incident solar radiation plays a key role in atmospheric circulation, the water cycle, and ecological equilibrium on Earth. A homogenized century-long surface incident solar radiation dataset was obtained over Japan.
Hannah C. Bloomfield, David J. Brayshaw, Matthew Deakin, and David Greenwood
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-436, https://doi.org/10.5194/essd-2021-436, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
There is a global increase in renewable generation to meet carbon targets and reduce the impacts of climate change. Renewable generation and electricity demand depend on the weather. This means there is a need for high quality weather data for energy system modelling. We present a new European level, 70 year dataset which has been specifically designed to support the energy sector. We provide hourly, sub-national climate outputs and including the impacts of near-term climate change.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Martin Hagen, Florian Ewald, Silke Groß, Lothar Oswald, David A. Farrell, Marvin Forde, Manuel Gutleben, Johann Heumos, Jens Reimann, Eleni Tetoni, Gregor Köcher, Eleni Marinou, Christoph Kiemle, Qiang Li, Rebecca Chewitt-Lucas, Alton Daley, Delando Grant, and Kashawn Hall
Earth Syst. Sci. Data, 13, 5899–5914, https://doi.org/10.5194/essd-13-5899-2021, https://doi.org/10.5194/essd-13-5899-2021, 2021
Short summary
Short summary
The German polarimetric weather radar Poldirad was deployed for the international campaign EUREC4A on Barbados. The focus was monitoring clouds and precipitation in the trade wind region east of Barbados. Observations were with a temporal sequence of 5 min and a maximum range of 375 km. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution show the potential for further studies on the life cycle of precipitating shallow cumulus clouds.
Mark W. Seefeldt, Taydra M. Low, Scott D. Landolt, and Thomas H. Nylen
Earth Syst. Sci. Data, 13, 5803–5817, https://doi.org/10.5194/essd-13-5803-2021, https://doi.org/10.5194/essd-13-5803-2021, 2021
Short summary
Short summary
The Antarctic Precipitation System project deployed and maintained four sites across Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica, an improvement in the understanding of precipitation in Antarctica, and the ability to validate precipitation data from atmospheric numerical models. The collected dataset represents some of the first year-round observations of precipitation in Antarctica.
Xuebo Li, Yongxiang Huang, Guohua Wang, and Xiaojing Zheng
Earth Syst. Sci. Data, 13, 5819–5830, https://doi.org/10.5194/essd-13-5819-2021, https://doi.org/10.5194/essd-13-5819-2021, 2021
Short summary
Short summary
High-frequency observatory data (50 Hz 3D wind velocity, 50 Hz temperature and 1 Hz PM10) for studying the features of the fluid and dust field during sand and dust storms were presented. It is anticipated that data collected in this work will be of utility not only specifically for the boundary layer community in building a model for sand and dust storms but also broadly for communities studying the exchange of the dust and fluid field and energy transfer for the particle-laden two-phase flow.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Qian He, Ming Wang, Kai Liu, Kaiwen Li, and Ziyu Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-442, https://doi.org/10.5194/essd-2021-442, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
We used three machine learning models and determined that Gaussian process regression (GPR) is best suited to interpolation of air temperature data for China. The GPR-derived results were compared with that of traditional interpolation techniques and existing datasets and it was found that the accuracy of the GPR-derived data was better. Finally, we generated a gridded monthly air temperature dataset with 1 km resolution and high accuracy for China (1951–2020) using the GPR model.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Vera Thiemig, Goncalo N. Gomes, Jon O. Skøien, Markus Ziese, Armin Rauthe-Schöch, Elke Rustemeier, Kira Rehfeldt, Jakub P. Walawender, Christine Kolbe, Damien Pichon, Christoph Schweim, and Peter Salamon
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-339, https://doi.org/10.5194/essd-2021-339, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
EMO-5 is a European high-resolution, sub-daily, multi-variable, multi-decadal meteorological data set based on quality-controlled observations coming from almost 30,000 stations across Europe, and is produced in near real-time. EMO-5 covers the time period from 1990 to 2019. In this paper we have provided insight into the source data, the applied methods and the quality assessment of EMO-5.
Geet George, Bjorn Stevens, Sandrine Bony, Robert Pincus, Chris Fairall, Hauke Schulz, Tobias Kölling, Quinn T. Kalen, Marcus Klingebiel, Heike Konow, Ashley Lundry, Marc Prange, and Jule Radtke
Earth Syst. Sci. Data, 13, 5253–5272, https://doi.org/10.5194/essd-13-5253-2021, https://doi.org/10.5194/essd-13-5253-2021, 2021
Short summary
Short summary
Dropsondes measure atmospheric parameters such as temperature, pressure, humidity and horizontal winds. The EUREC4A field campaign deployed 1215 dropsondes during January–February 2020 in the north Atlantic trade-wind region in order to characterize the thermodynamic and the dynamic structure of the atmosphere, primarily at horizontal scales of ~ 200 km. We present JOANNE, the dataset that provides these dropsonde measurements and thereby a rich characterization of the trade-wind atmosphere.
Chengzhi Xing, Cheng Liu, Hongyu Wu, Jinan Lin, Fan Wang, Shuntian Wang, and Meng Gao
Earth Syst. Sci. Data, 13, 4897–4912, https://doi.org/10.5194/essd-13-4897-2021, https://doi.org/10.5194/essd-13-4897-2021, 2021
Short summary
Short summary
Observations of atmospheric composition, especially vertical profile observations, remain sparse and rare on the Tibetan Plateau (TP), due to extremely high altitude, topographical heterogeneity and the grinding environment. This paper introduces a high-time-resolution (~ 15 min) vertical profile observational dataset of atmospheric composition (aerosols, NO2, HCHO and HONO) on the TP for more than 1 year (2017–2019) using a passive remote sensing technique.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Nina Škrk, Roberto Serrano-Notivoli, Katarina Čufar, Maks Merela, Zalika Črepinšek, Lučka Kajfež Bogataj, and Martín de Luis
Earth Syst. Sci. Data, 13, 3577–3592, https://doi.org/10.5194/essd-13-3577-2021, https://doi.org/10.5194/essd-13-3577-2021, 2021
Short summary
Short summary
SLOCLIM is the first climatic reconstruction for Slovenia with a spatial resolution of 1 × 1 km, providing daily data of maximum and minimum temperature and precipitation from 1950 to 2018. This new daily gridded dataset contributes significantly to the climate description of the country and is expected to facilitate research activities in numerous scientific disciplines dealing with climate trends, environment, human and animal populations, agriculture, and forestry.
Miguel Sanchez Gomez, Julie K. Lundquist, Petra M. Klein, and Tyler M. Bell
Earth Syst. Sci. Data, 13, 3539–3549, https://doi.org/10.5194/essd-13-3539-2021, https://doi.org/10.5194/essd-13-3539-2021, 2021
Short summary
Short summary
In July 2018, the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week to demonstrate unmanned aircraft systems' capabilities in sampling the atmospheric boundary layer. Three Doppler lidars were deployed during this week-long experiment. We use data from these lidars to estimate turbulence dissipation rate. We observe large temporal variability and significant differences in dissipation for lidars with different sampling techniques.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Marie-Louise Zeller, Jannis-Michael Huss, Lena Pfister, Karl E. Lapo, Daniela Littmann, Johann Schneider, Alexander Schulz, and Christoph K. Thomas
Earth Syst. Sci. Data, 13, 3439–3452, https://doi.org/10.5194/essd-13-3439-2021, https://doi.org/10.5194/essd-13-3439-2021, 2021
Short summary
Short summary
The boundary layer (BL) is well understood when convectively mixed, yet we lack this understanding when it becomes stable and no longer follows classic similarity theories. The NYTEFOX campaign collected a unique meteorological data set in the Arctic BL of Svalbard during polar night, where it tends to be highly stable. Using innovative fiber-optic distributed sensing, we are able to provide unique insight into atmospheric motions across large distances resolved continuously in space and time.
Pierre-Etienne Brilouet, Marie Lothon, Jean-Claude Etienne, Pascal Richard, Sandrine Bony, Julien Lernoult, Hubert Bellec, Gilles Vergez, Thierry Perrin, Julien Delanoë, Tetyana Jiang, Frédéric Pouvesle, Claude Lainard, Michel Cluzeau, Laurent Guiraud, Patrice Medina, and Theotime Charoy
Earth Syst. Sci. Data, 13, 3379–3398, https://doi.org/10.5194/essd-13-3379-2021, https://doi.org/10.5194/essd-13-3379-2021, 2021
Short summary
Short summary
During the EUREC4A field experiment that took place over the tropical Atlantic Ocean east of Barbados, the French ATR 42 environment research aircraft of SAFIRE aimed to characterize the shallow cloud properties near cloud base and the turbulent structure of the subcloud layer. The high-frequency measurements of wind, temperature and humidity as well as their translation in terms of turbulent fluctuations, turbulent moments and characteristic length scales of turbulence are presented.
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021, https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 13, 3363–3377, https://doi.org/10.5194/essd-13-3363-2021, https://doi.org/10.5194/essd-13-3363-2021, 2021
Short summary
Short summary
To understand climate change, it is essential to analyse long time series of atmospheric data. Here we studied the atmospheric pressure observed at Trieste (Italy) from 1841 to 2018. We examined the available information on the characteristics and elevations of the barometers and on the data sampling. A basic data quality control was also applied. As a result, we built a homogeneous time series of daily mean pressures at mean sea level, from which a trend of 0.5 hPa per century was estimated.
Robert Pincus, Chris W. Fairall, Adriana Bailey, Haonan Chen, Patrick Y. Chuang, Gijs de Boer, Graham Feingold, Dean Henze, Quinn T. Kalen, Jan Kazil, Mason Leandro, Ashley Lundry, Ken Moran, Dana A. Naeher, David Noone, Akshar J. Patel, Sergio Pezoa, Ivan PopStefanija, Elizabeth J. Thompson, James Warnecke, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 3281–3296, https://doi.org/10.5194/essd-13-3281-2021, https://doi.org/10.5194/essd-13-3281-2021, 2021
Short summary
Short summary
This paper describes observations taken from a research aircraft during a field experiment in the western Atlantic Ocean during January and February 2020. The plane made 11 flights, most 8-9 h long, and measured the properties of the atmosphere and ocean with a combination of direct measurements, sensors falling from the plane to profile the atmosphere and ocean, and remote sensing measurements of clouds and the ocean surface.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 13, 3219–3237, https://doi.org/10.5194/essd-13-3219-2021, https://doi.org/10.5194/essd-13-3219-2021, 2021
Short summary
Short summary
Lightning is an important atmospheric phenomenon and natural hazard, but few long-term data are freely available on lightning stroke location, timing, and power. Here, we present a new, open-access dataset of lightning strokes covering 2010–2020, based on a network of low-frequency radio detectors. The dataset is comprised of GIS maps and is intended for researchers, government, industry, and anyone for whom knowing when and where lightning is likely to strike is useful information.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Alice Crespi, Michael Matiu, Giacomo Bertoldi, Marcello Petitta, and Marc Zebisch
Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, https://doi.org/10.5194/essd-13-2801-2021, 2021
Short summary
Short summary
A 250 m gridded dataset of 1980–2018 daily mean temperature and precipitation records for Trentino–South Tyrol (north-eastern Italian Alps) was derived from a quality-controlled and homogenized archive of station observations. The errors associated with the final interpolated fields were assessed and thoroughly discussed. The product will be regularly updated and is meant to support regional climate studies and local monitoring and applications in integration with other fine-resolution data.
Egor Dyukarev, Nina Filippova, Dmitriy Karpov, Nikolay Shnyrev, Evgeny Zarov, Ilya Filippov, Nadezhda Voropay, Vitaly Avilov, Arseniy Artamonov, and Elena Lapshina
Earth Syst. Sci. Data, 13, 2595–2605, https://doi.org/10.5194/essd-13-2595-2021, https://doi.org/10.5194/essd-13-2595-2021, 2021
Short summary
Short summary
A hydrological and meteorological dataset collected at the Mukhrino peatland, Khanty–Mansi Autonomous Okrug – Yugra, Russia, over the period of 8 May 2010 to 31 December 2019 is presented. Northern peatlands represent one of the largest carbon pools in the biosphere. The carbon they store is increasingly vulnerable to perturbation. Meteorological observations directly at peatland areas in Siberia are rare, while peatlands are characterized by a specific local climate.
Gijs de Boer, Cory Dixon, Steven Borenstein, Dale A. Lawrence, Jack Elston, Daniel Hesselius, Maciej Stachura, Roger Laurence III, Sara Swenson, Christopher M. Choate, Abhiram Doddi, Aiden Sesnic, Katherine Glasheen, Zakariya Laouar, Flora Quinby, Eric Frew, and Brian M. Argrow
Earth Syst. Sci. Data, 13, 2515–2528, https://doi.org/10.5194/essd-13-2515-2021, https://doi.org/10.5194/essd-13-2515-2021, 2021
Short summary
Short summary
This paper describes data collected by uncrewed aircraft operated by the University of Colorado Boulder and Black Swift Technologies during the Lower Atmospheric Profiling Studies at Elevation – A Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. This effort was conducted in the San Luis Valley of Colorado in July 2018 and included intensive observing of the atmospheric boundary layer. This paper describes data collected by four aircraft operated by these entities.
Noemi Imfeld, Leopold Haimberger, Alexander Sterin, Yuri Brugnara, and Stefan Brönnimann
Earth Syst. Sci. Data, 13, 2471–2485, https://doi.org/10.5194/essd-13-2471-2021, https://doi.org/10.5194/essd-13-2471-2021, 2021
Short summary
Short summary
Upper-air data form the backbone of reanalysis products, particularly in the pre-satellite era. However, historical upper-air data are error-prone because measurements at high altitude were especially challenging. Here, we present a collection of data from historical intercomparisons of radiosondes and error assessments reaching back to the 1930s that may allow us to better characterize such errors. The full database, including digitized data, images, and metadata, is made publicly available.
Ashraful Islam, Ajay Shankar, Adam Houston, and Carrick Detweiler
Earth Syst. Sci. Data, 13, 2457–2470, https://doi.org/10.5194/essd-13-2457-2021, https://doi.org/10.5194/essd-13-2457-2021, 2021
Short summary
Short summary
This paper describes the dataset containing thermodynamic measurements (pressure, temperature, humidity) from the University of Nebraska-Lincoln unmanned aerial system multirotors during the LAPSE-RATE campaign from 14–19 July 2018. The paper describes the placements, shielding, and aspiration of the sensors. The paper also describes the research objective for data collected each day. The dataset contains 171 files from two multirotors recording the vertical atmospheric boundary layer profile.
Olivier Bock, Pierre Bosser, Cyrille Flamant, Erik Doerflinger, Friedhelm Jansen, Romain Fages, Sandrine Bony, and Sabrina Schnitt
Earth Syst. Sci. Data, 13, 2407–2436, https://doi.org/10.5194/essd-13-2407-2021, https://doi.org/10.5194/essd-13-2407-2021, 2021
Short summary
Short summary
Measurements from a network of Global Navigation Satellite System (GNSS) receivers operated from the eastern Caribbean islands are used to monitor the total water vapour content in the atmosphere during the EUREC4A field campaign. These data help describe the moisture environment of mesoscale cloud patterns in the trade winds with high temporal sampling. They are also useful to assess the accuracy of collocated radiosonde measurements and numerical weather model reanalyses.
Hannah C. Bloomfield, David J. Brayshaw, Paula L. M. Gonzalez, and Andrew Charlton-Perez
Earth Syst. Sci. Data, 13, 2259–2274, https://doi.org/10.5194/essd-13-2259-2021, https://doi.org/10.5194/essd-13-2259-2021, 2021
Short summary
Short summary
Energy systems are becoming more exposed to weather as more renewable generation is built. This means access to high-quality weather forecasts is becoming more important. This paper showcases past forecasts of electricity demand and wind power and solar power generation across 28 European countries. The timescale of interest is from 5 d out to 1 month ahead. This paper highlights the recent improvements in forecast skill and hopes to promote collaboration in the energy–meteorology community.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021, https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Peter Berg, Fredrik Almén, and Denica Bozhinova
Earth Syst. Sci. Data, 13, 1531–1545, https://doi.org/10.5194/essd-13-1531-2021, https://doi.org/10.5194/essd-13-1531-2021, 2021
Short summary
Short summary
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set of daily precipitation and temperature intended for use in hydrological modelling. The method uses different observational data sources to correct the variables from a model estimation of precipitation and temperature. An openly available data set covers the years 1979–2019, and times after this are available by request.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021, https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Short summary
The regional research network Water in Central Asia (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPSs) in Central Asia, and they are operated by German and Central Asian institutes and national hydrometeorological services. They provide up to 10 years of raw meteorological and hydrological data, especially in remote areas with extreme climate conditions, for applications in climate and water monitoring in Central Asia.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Mikołaj Piniewski, Mateusz Szcześniak, Ignacy Kardel, Somsubhra Chattopadhyay, and Tomasz Berezowski
Earth Syst. Sci. Data, 13, 1273–1288, https://doi.org/10.5194/essd-13-1273-2021, https://doi.org/10.5194/essd-13-1273-2021, 2021
Short summary
Short summary
High-resolution gridded climate data are a key component of earth-system and hydrology models. Here we have described how we updated and extended the previous version of the climate dataset covering Poland and parts of neighbouring countries. The new dataset includes new variables (wind speed and relative humidity), has a higher spatial resolution (2 km) and has been updated to cover the most recent years 2014–2019. Interpolation errors exhibited large spatial and temporal variability.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Holger Vömel, Mack Goodstein, Laura Tudor, Jacquelyn Witte, Željka Fuchs-Stone, Stipo Sentić, David Raymond, Jose Martinez-Claros, Ana Juračić, Vijit Maithel, and Justin W. Whitaker
Earth Syst. Sci. Data, 13, 1107–1117, https://doi.org/10.5194/essd-13-1107-2021, https://doi.org/10.5194/essd-13-1107-2021, 2021
Short summary
Short summary
We provide an extensive data set of in situ vertical profile observations for pressure, temperature, humidity, and winds from 648 NCAR NRD41 dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. The measurements were taken during 22 flights of the NSF/NCAR G-V research aircraft in August and September 2019 over the eastern Pacific Ocean and the Caribbean Sea. The data allow a detailed study of atmospheric dynamics and convection over the tropical ocean.
Cited articles
Albers, J. R. and Birner, T.: Relative Roles of Planetary and Gravity Waves
in Vortex Preconditioning Prior to Sudden Stratospheric Warmings,
J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1,
2014. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis
Project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., and Bauer, P.: The
ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Edmon, H. J., Hoskins, B. J., and McIntyre, M. E.: Eliassen-Palm Cross
Sections for the Troposphere, J. Atmos. Sci., 37, 2600–2616, 1980. a
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner,
T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R.,
Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod,
A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D.
G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki,
W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons,
A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC
Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis
systems, Atmos. Chem. Phys., 17, 1417–1452,
https://doi.org/10.5194/acp-17-1417-2017, 2017. a, b, c, d, e, f
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Global Modeling and Assimilation Office: inst3_3d_asm_Cp: MERRA 3D IAU State,
Meteorology Instantaneous 3-hourly V5.2.0, https://doi.org/10.5067/8D4LU4390C4S,
available at: http://disc.sci.gsfc.nasa.gov/mdisc/ (last access: 4 October 2017),
Goddard Earth Sciences Data and Information Services Center (GES DISC), 2008a.
Global Modeling and Assimilation Office: tavg3_3d_rad_Cp: MERRA 3D IAU
Diagnostic, Radiation, Time average 3-hourly V5.2.0,
https://doi.org/10.5067/DNZTCFMAG3FW, Goddard Earth Sciences Data and Information
Services Center (GES DISC), last access: 1 August 2017, 2008b.
Global Modeling and Assimilation Office: tavg3_3d_tdt_Cp: MERRA 3D IAU
Tendency, Temperature, Time average 3-hourly V5.2.0,
https://doi.org/10.5067/RP02UMM6LH1B, Goddard Earth Sciences Data and Information
Services Center (GES DISC), last access: 1 August 2017, 2008c.
Global Modeling and Assimilation Office: MERRA-2 inst3_3d_asm_Np: 3d,
3-Hourly, Instantaneous, Pressure-Level, Assimilation, Assimilated
Meteorological Fields V5.12.4, https://doi.org/10.5067/QBZ6MG944HW0,
available at: http://disc.sci.gsfc.nasa.gov/mdisc/ (last
access: 5 July 2017), Goddard Earth Sciences Data and
Information Services Center (GES DISC), 2015a.
Global Modeling and Assimilation Office: MERRA-2 tavg3_3d_rad_Np: 3d,
3-Hourly, Time-Averaged, Pressure-Level, Assimilation, Radiation Diagnostics
V5.12.4, https://doi.org/10.5067/3UGE8WQXZAOK, Goddard Earth Sciences Data and
Information Services Center (GES DISC), last access: 27 August 2017, 2015b.
Global Modeling and Assimilation Office: MERRA-2 tavg3_3d_tdt_Np: 3d,
3-Hourly, Time-Averaged, Pressure-Level, Assimilation, Temperature Tendencies
V5.12.4, https://doi.org/10.5067/9NCR9DDDOPFI, Goddard Earth Sciences Data and
Information Services Center (GES DISC), last access: 27 August 2017, 2015c.
Harada, Y., Goto, A., Hasegawa, H., Fujikawa, N., Naoe, H., and Hirooka, T.:
A Major Stratospheric Sudden Warming Event in January 2009, J. Atmos. Sci.,
67, 2052–2069, https://doi.org/10.1175/2009JAS3320.1, 2010. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, 1996. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B. Am.
Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Kobayashi, C., Endo, H., Ota, Y., Kobayashi, S., Onoda, H., Harada, Y.,
Onogi, K., and Kamahori, H.: Preliminary Results of the JRA-55C, an
Atmospheric Reanalysis Assimilating Conventional Observations Only, Sola,
10, 78–82, https://doi.org/10.2151/sola.2014-016, 2014. a, b
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. a
Long, C. S., Fujiwara, M., Davis, S., Mitchell, D. M., and Wright, C. J.:
Climatology and interannual variability of dynamic variables in multiple
reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP),
Atmos. Chem. Phys., 17, 14593–14629,
https://doi.org/10.5194/acp-17-14593-2017, 2017. a
Manney, G. L., Schwartz, M. J., Kruger, K., Santee, M. L., Pawson, S., Lee,
J. N., Daffer, W. H., and Fuller, R. A.: Aura Microwave Limb Sounder
observations of dynamics and transport during the record-breaking 2009 Arctic
stratospheric major warming, Geophys. Res. Lett., 36, L12815,
https://doi.org/10.1029/2009GL038586, 2009. a
Martineau, P.: S-RIP: Zonal-mean dynamical variables of global atmospheric
reanalyses on pressure levels, Centre Environ. Data Anal.,
https://doi.org/10.5285/b241a7f536a244749662360bd7839312, 2017. a, b
Martineau, P., Son, S.-W., and Taguchi, M.: Dynamical Consistency of
Reanalysis Datasets in the Extratropical Stratosphere, J. Climate, 29,
3057–3074, https://doi.org/10.1175/JCLI-D-15-0469.1, 2016. a
Medvedev, A. S. and Klaassen, G. P.: Thermal effects of saturating gravity
waves in the atmosphere, J. Geophys. Res., 108, 4040,
https://doi.org/10.1029/2002JD002504, 2003. a
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika,
H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S.,
Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The
JRA-25 Reanalysis, J. Meteor. Soc. Jpn., 85, 369–432, 2007. a
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J. N.,
Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher,
M.: ERA-20C: An atmospheric reanalysis of the twentieth century, J.
Climate, 29, 4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom,
S., Chen, J., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's modern-era retrospective analysis for
research and applications, J. Climate, 24, 3624–3648, 2011. a, b
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber,
J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar,
A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z.,
Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and
Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol.
Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R.,
Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker,
E.: The NCEP climate forecast system version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014. a
Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J., Isaken, L., Janssen,
P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette, J. J.,
Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E.,
Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, 2005. a
Wright, J.: S-RIP: Zonal-mean heating rates of global
atmospheric reanalyses on pressure levels, Centre for Environmental Data
Analysis, https://doi.org/10.5285/70146c789eda4296a3c3ab6706931d56, 2017. a, b
Wright, J. S. and Fueglistaler, S.: Large differences in reanalyses of diabatic
heating in the tropical upper troposphere and lower stratosphere,
Atmos. Chem. Phys., 13, 9565–9576, https://doi.org/10.5194/acp-13-9565-2013, 2013. a
Short summary
This data set provides 6-hourly zonal-mean diagnostics derived from global atmospheric reanalyses on pressure levels. Data include basic variables, such as temperature and three-dimensional winds, advanced diagnostics based on the momentum and thermodynamic equations, and model-generated diabatic heating rates. Diagnostics are provided both on latitude–vertical grids corresponding to data as originally obtained from the reanalysis centers and on a standardized grid to facilitate intercomparison.
This data set provides 6-hourly zonal-mean diagnostics derived from global atmospheric...