Articles | Volume 8, issue 1
Earth Syst. Sci. Data, 8, 159–164, 2016
https://doi.org/10.5194/essd-8-159-2016
Earth Syst. Sci. Data, 8, 159–164, 2016
https://doi.org/10.5194/essd-8-159-2016
Review article
22 Apr 2016
Review article | 22 Apr 2016

Surface radiation during the total solar eclipse over Ny-Ålesund, Svalbard, on 20 March 2015

Marion Maturilli and Christoph Ritter

Related authors

Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-314,https://doi.org/10.5194/acp-2022-314, 2022
Revised manuscript accepted for ACP
Short summary
The foehn effect during easterly flow over Svalbard
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022,https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022,https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022,https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020
Kevin Ohneiser, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, and Marion Maturilli
Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021,https://doi.org/10.5194/acp-21-15783-2021, 2021
Short summary

Related subject area

Meteorology
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022,https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
The PANDA automatic weather station network between the coast and Dome A, East Antarctica
Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5019–5035, https://doi.org/10.5194/essd-14-5019-2022,https://doi.org/10.5194/essd-14-5019-2022, 2022
Short summary
Enhanced automated meteorological observations at the Canadian Arctic Weather Science (CAWS) supersites
Zen Mariani, Laura Huang, Robert Crawford, Jean-Pierre Blanchet, Shannon Hicks-Jalali, Eva Mekis, Ludovick Pelletier, Peter Rodriguez, and Kevin Strawbridge
Earth Syst. Sci. Data, 14, 4995–5017, https://doi.org/10.5194/essd-14-4995-2022,https://doi.org/10.5194/essd-14-4995-2022, 2022
Short summary
Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium
Eva Beele, Maarten Reyniers, Raf Aerts, and Ben Somers
Earth Syst. Sci. Data, 14, 4681–4717, https://doi.org/10.5194/essd-14-4681-2022,https://doi.org/10.5194/essd-14-4681-2022, 2022
Short summary

Cited articles

Anderson, R. C. and Keefer, D. R.: Observation of temperature and pressure changes during 30 June 1973 solar eclipse, J. Atmos. Sci., 32, 228–231, 1975.
Anderson, R. C., Keefer, D. R., and Myers, O. E.: Atmospheric-pressure and temperature changes during 7 March 1970 solar eclipse, J. Atmos. Sci., 29, 583–587, 1972.
Beine, H. J., Argentini, S., Maurizi, A., Mastrantonio, G., and Viola, A.: The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard, Meteorol. Atmos. Phys., 78, 107–113, https://doi.org/10.1007/s007030170009, 2001.
Eaton, F. D., Hines, J. R., Hatch, W. H., Cionco, R. M., Byers, J., Garvey, D., and Miller, D. R.: Solar eclipse effects observed in the planetary boundary layer over a desert, Bound.-Lay. Meteor., 83, 331–346, 1997.
Emde, C. and Mayer, B.: Simulation of solar radiation during a total eclipse: a challenge for radiative transfer, Atmos. Chem. Phys., 7, 2259–2270, https://doi.org/10.5194/acp-7-2259-2007, 2007.
Download
Short summary
The total solar eclipse over Ny-Ålesund (78.9° N, 11.9° E), Svalbard, on 20 March 2015 has been followed by various sensors. Here, we present the surface radiation measurements in the context of the meteorological observations, providing basic data for further studies on e.g. radiative transfer or micrometeorology.