Articles | Volume 17, issue 1
https://doi.org/10.5194/essd-17-95-2025
https://doi.org/10.5194/essd-17-95-2025
Data description paper
 | 
16 Jan 2025
Data description paper |  | 16 Jan 2025

High-resolution mapping of global winter-triticeae crops using a sample-free identification method

Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan

Related authors

Remote sensing of young leaf photosynthetic capacity in tropical and subtropical evergreen broadleaved forests
Xueqin Yang, Qingling Sun, Liusheng Han, Wenping Yuan, Jie Tian, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-64,https://doi.org/10.5194/essd-2025-64, 2025
Preprint under review for ESSD
Short summary
CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-584,https://doi.org/10.5194/essd-2024-584, 2024
Revised manuscript accepted for ESSD
Short summary
TROLL 4.0: representing water and carbon fluxes, leaf phenology, and intraspecific trait variation in a mixed-species individual-based forest dynamics model – Part 2: Model evaluation for two Amazonian sites
Sylvain Schmitt, Fabian Fischer, James Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3106,https://doi.org/10.5194/egusphere-2024-3106, 2024
Short summary
CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-147,https://doi.org/10.5194/essd-2024-147, 2024
Manuscript not accepted for further review
Short summary
National forest carbon harvesting and allocation dataset for the period 2003 to 2018
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024,https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Revised and updated geospatial monitoring of 21st century forest carbon fluxes
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025,https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025,https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary
GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025,https://doi.org/10.5194/essd-17-855-2025, 2025
Short summary
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025,https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary

Cited articles

Abramov, S., Rubel, O., Lukin, V., Kozhemiakin, R., Kussul, N., Shelestov, A., and Lavreniuk, M.: Speckle reducing for Sentinel-1 SAR data, IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2353–2356, https://doi.org/10.1109/IGARSS.2017.8127463, 2017. 
Atzberger, C. and Rembold, F.: Mapping the spatial distribution of winter crops at sub–pixel level using AVHRR NDVI time series and neural nets, Remote Sens., 5, 1335–1354, https://doi.org/10.3390/rs5031335, 2013. 
Bazzi, H., Baghdadi, N., El Hajj, M., Zribi, M., Minh, D. H., Ndikumana, E., Courault, D., and Belhouchette, H.: Mapping paddy rice using Sentinel-1 SAR time series in Camargue, France, Remote Sens., 11, 887, https://doi.org/10.3390/rs11070887, 2019. 
Boryan, C., Yang, Z. W., Mueller, R., and Craig, M.: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program, Geocarto Int., 26, 341–358, https://doi.org/10.1080/10106049.2011.562309, 2011. 
Brown, J. F. and Pervez, M. S.: Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture, Agr. Syst., 127, 28–40, https://doi.org/10.1016/j.agsy.2014.01.004, 2014. 
Download
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Share
Altmetrics
Final-revised paper
Preprint