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Abstract. Winter-triticeae crops, such as winter wheat, winter barley, winter rye and triticale, are important in
human diets and are planted worldwide, and thus accurate spatial distribution information on winter-triticeae
crops is crucial for monitoring crop production and food security. However, there is still a lack of global high-
resolution maps of winter-triticeae crops because of the reliance of existing crop mapping methods on training
samples, which limits their application at the global scale. In this study, we propose a new method based on the
Winter-Triticeae Crops Index (WTCI) for global winter-triticeae crop mapping. This is a new sample-free method
for identifying winter-triticeae crops based on differences in their normalized difference vegetation index (NDVI)
characteristics from the heading to harvesting stages and those of other types of vegetation. We considered state
(or province) or country to be an identification unit and employed the WTCI to produce the first global 30 m
resolution distribution maps of winter-triticeae crops from 2017 to 2022 using Landsat and Sentinel images.
Validation using field survey samples and visual interpretation samples from Google Earth images indicated that
the method exhibited satisfying performance and stable spatiotemporal transferability, with producer’s accuracy,
user’s accuracy and overall accuracy values of 81.12 %, 87.85 % and 87.7 %, respectively. Moreover, compared
with the Cropland Data Layer (CDL) and EuroCrops datasets, the overall accuracy and F1 score in most regions
of the United States and Europe were more than 80 % and 75 %, respectively. The identified area of winter-
triticeae crops was consistent with the agricultural statistical area in almost all the investigated countries or
regions, and the correlation coefficient (R2) between the identified area and the statistical area was over 0.6, while
the relative mean absolute error (RMAE) was less than 30 % in all 6 years. Overall, this study provides a reliable
and automatic identification method for winter-triticeae crops without any training samples. The high-resolution
distribution maps of global winter-triticeae crops are expected to support multiple agricultural applications. The
distribution maps can be obtained at https://doi.org/10.57760/sciencedb.12361 (Fu et al., 2023a).
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1 Introduction

Crop mapping can provide detailed locations and can be used
to analyze the spatiotemporal dynamics of crops (Skakun
et al., 2017). As one of the most important types of grain
in the world, the planting area and production of winter-
triticeae crops (such as winter wheat, winter barley, win-
ter rye and triticale) in 2020 accounted for approximately
30 % and 41 % of global grain area and production, re-
spectively (https://www.fao.org/faostat/en/#data, last access:
16 June 2023), playing a crucial role in global food produc-
tion and trade. Closely monitoring the spatial distribution of
winter-triticeae crops is therefore beneficial for evaluating
yield, optimizing land use and assessing food security (Fu
et al., 2021; Nelson and Burchfield, 2021; Wardlow et al.,
2007).

Previous studies have mainly focused on mapping winter-
triticeae crop distributions in limited regions rather than at
the global scale (Gella et al., 2021; Zhang et al., 2019a). Few
studies have attempted to produce global triticeae crop maps
(You et al., 2014), but efforts have been limited to coarse
resolutions. For example, Monfreda et al. (2008) combined
census statistics with global cropland data (Ramankutty et
al., 2008) to generate a global distribution map of crops (in-
cluding barley, rye, triticale and wheat) for the year 2000,
with a spatial resolution of 10 km. A recent study produced
crop harvested area data for 26 crops (including barley and
wheat) worldwide at 5 min resolution based on a crop pro-
duction system (irrigated and rainfed) (Grogan et al., 2022).
The coarse spatial resolution of these datasets greatly limits
their applications (Luo et al., 2022). The WorldCereal project
funded by the European Space Agency (ESA) has released a
global crop map with a spatial resolution of 10 m for 2021,
addressing the limitations of spatial resolution in global-scale
crop mapping (Van Tricht et al., 2023). However, this prod-
uct is currently only available for 1 year, which will affect the
demand for continuous years. At present, the available long-
term and high-spatial-resolution distribution maps of winter-
triticeae crops are mainly at small or national scales (Dong
et al., 2020; Huang et al., 2022; He et al., 2019; Zhang et al.,
2019c), with the most well-known being the Cropland Data
Layer (CDL) product in the United States, which is updated
annually and has an accuracy of greater than 90 % for winter-
triticeae crops (Boryan et al., 2011). However, in most coun-
tries where winter-triticeae crops are planted widely, such
maps are still in short supply. Therefore, it is necessary to
produce distribution maps of winter-triticeae crops with high
spatial resolution and continuous years for these countries.

The greatest challenge in global crop mapping is the need
for substantial field samples for algorithm training. Several
methods have been proposed to address this problem when
there are only a few or even no ground samples in the tar-
get year. Some studies developed a cross-regional classifier
transfer method (Macdonald and Hall, 1980; Xu et al., 2020).
For example, Ge et al. (2021) combined Landsat images with

the CDL production of Arkansas to train a classifier and then
assessed the spatial transferability of the classifier in Cali-
fornia, USA, and Liaoning, China. Other studies proposed
a temporal transfer method to alleviate the limitation of in-
sufficient ground samples, i.e., training a classifier based on
historical crop samples and then applying it to a target year
(Cai et al., 2018; Konduri et al., 2020; Yaramasu et al., 2020).
For example, a previous study used the normalized difference
vegetation index (NDVI) features extracted from 2013 crop
samples to establish a classification rule and then transferred
this rule to identify the crop types for 2011–2013 (Liu et al.,
2016). Nevertheless, the accuracy of these methods is rela-
tively low due to the fact that the trained classifier focuses on
a specific region and year while neglecting the differences in
crop phenology in different regions and across years (Zhang
et al., 2019b).

This study aims to develop a new sample-free method,
i.e., the Winter-Triticeae Crops Index (WTCI), to identify
global winter-triticeae crops based on Landsat 7, Landsat 8,
Sentinel-1 and Sentinel-2 satellite data. The main goals are
(1) to assess the accuracy and spatiotemporal transferability
of the new method using field survey samples and visual in-
terpretation samples from high-resolution images in Google
Earth, the CDL dataset, the EuroCrops dataset and agricul-
tural statistical data and (2) to produce 30 m spatial resolu-
tion distribution maps of winter-triticeae crops in 66 coun-
tries worldwide from 2017 to 2022 to fill such product gaps,
providing a database for yield estimation and crop manage-
ment.

2 Data and method

2.1 Study area

The study area covers 66 countries, including 36 Euro-
pean countries, 15 Asian countries, 8 African countries,
2 North American countries, 4 South American countries
and 1 country in Oceania (Fig. 1). The harvested area of
global triticeae crops (including spring and winter varieties)
was 278.87×106 ha in 2020 (https://www.fao.org/faostat/
en/#data, last access: 16 June 2023), with winter-triticeae
crops accounting for about 75 % (i.e., 209.15×106 ha) of
the global triticeae crops’ harvested area (Zhao et al., 2018).
According to the statistics of the winter-triticeae crop area
provided on the official websites of various countries (Ta-
ble S1 in the Supplement), the total harvested area of winter-
triticeae crops in our study area in 2020 was 207.45×106 ha,
occupying 99.19 % of the global winter-triticeae crops’ har-
vested area. The study area features an intricate interweaving
of plains and mountains, resulting in a complex and varied
agricultural landscape and different tillage systems. In addi-
tion, the study area has a diverse climate dominated by tem-
perate and subtropical conditions. Winter-triticeae crops are
usually sown in the fall of the previous year and harvested in
the summer of the following year.
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Figure 1. Distribution of the study area and the validation samples. The study area is the region covered in grey. The legend indicates the
winter-triticeae (WT) crop samples and the non-winter-triticeae (non-WT) crop samples from the Cropland Data Layer (CDL) dataset of the
United States, the EuroCrops dataset of Europe, the field survey in China and the visual interpretation base in Google Earth images.

2.2 Data

The data used in this study included (1) reflectance data from
Landsat 7, Landsat 8 and Sentinel-2, (2) synthetic aperture
radar (SAR) data from Sentinel-1, (3) field survey samples,
visual interpretation samples and the CDL and EuroCrops
datasets and (4) agricultural statistical data. Reflectance data
and SAR data were used to generate winter-triticeae crop
maps, field survey samples, visual interpretation samples and
the CDL and EuroCrops datasets, and agricultural statistical
data were used to assess the performance of the proposed
method.

2.2.1 Satellite data

In this study, we used all available Landsat 7 Collection 2
data (USGS Landsat 7 Level 2, Collection 2, Tier 1), Land-
sat 8 Collection 2 data (USGS Landsat 8 Level 2, Collec-
tion 2, Tier 1) and Sentinel-2 data (Harmonized Sentinel-
2 MSI: MultiSpectral Instrument, Level-2A) on the Google
Earth Engine (GEE) platform to obtain the NDVI from 2016
to 2022, all of which were surface reflectance (SR) products
that had undergone atmospheric correction. The SR products
of Landsat 7 and Landsat 8 have a spatial resolution of 30 m
and a temporal resolution of 16 d. The spatial and temporal
resolutions of Sentinel-2 are 10 m and 5 d, respectively. We
chose the Landsat 7 satellite to obtain more available data,
although there was a malfunction in its scan line corrector.
To ensure the data quantity and quality, we first removed
the pixels with clouds. The quality band BQA was used to
remove pixels with clouds from Landsat 7 and Landsat 8,
and the quality band QA60 was used to remove pixels from
Sentinel-2 that were contaminated by clouds. Then, based
on the nearest-neighbor method, we resampled the NDVI of
Sentinel-2 to 30 m to keep the same spatial resolution as the

Landsat data. Furthermore, we obtained the NDVI of all the
cloud-free pixels and chose the maximum values of monthly
composites with 30 m spatial resolution, which has proven
effective for mapping crops and displaying crop growing
stages (Huang et al., 2022). Finally, we used linear interpola-
tion and the Savitzky–Golay filter method (Chen et al., 2004)
to fill in the missing values and smoothen the NDVI series to
reduce the contamination from cloud, rain and snow (Zheng
et al., 2022). The above processes were run on the GEE plat-
form.

The VH (vertical transmit and horizontal receive) band
with 10 m spatial resolution from the SAR of Sentinel-1 was
employed to distinguish winter-triticeae crops from other
winter crops (e.g., winter rapeseed) (Dong et al., 2020). The
data provided on the GEE platform have undergone thermal
noise removal, radiometric calibration and terrain correction.
We applied a refined Lee filter (Abramov et al., 2017) to alle-
viate the impact of speckle noise caused by the interferences
between adjacent backscatter returns, and finally we obtained
the monthly maximum composite values of VH from 2016 to
2022 and resampled them to 30 m using the nearest-neighbor
method to retain the consistency with the NDVI. These oper-
ations were also run on the GEE platform.

2.2.2 Validation samples

The validation samples were obtained from (1) field surveys,
(2) Google Earth images, (3) the CDL dataset and (4) the
EuroCrops dataset. We conducted field surveys in Hebei,
Henan, Shandong, Anhui and Jiangsu provinces in China in
2019 and 2020. The survey routes were preplanned based on
prior knowledge of the spatial distribution of winter-triticeae
crops and transportation accessibility. In the fieldwork, we
only selected large winter-triticeae crop fields with an area
greater than 900 m2, and we used GPS (G120, UniStrong,
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Beijing, China) (Fu et al., 2023b) to mark the locations in-
side the fields. For non-winter-triticeae crop samples, we ran-
domly selected large areas of non-winter-triticeae crop fields,
forests and grasslands around the preplanned routes and also
used GPS to mark their locations. Finally, we processed these
samples using ArcMap10.2 to maintain the same spatial pro-
jection as the identification map in China, resulting in a total
of 3054 winter-triticeae crop samples and 4088 non-winter-
triticeae crop samples. For other provinces in China and other
countries (except for the USA), we relied on high-resolution
images from Google Earth from 2019 to 2020 for visual in-
terpretation, which is a compensatory and effective method
when ground truth samples cannot be obtained (Huang et al.,
2022; Zheng et al., 2022). We first chose regions with avail-
able images during the growing season of winter-triticeae
crops (Sect. 2.3.3) and selected samples from these regions
based on the texture features and colors. Winter-triticeae
crops have deeper colors or stronger textures than winter
rapeseed and grassland, and their roughness is lower than that
of forest, which can be used to distinguish winter-triticeae
crops from other land cover types (Fig. 3a). The images of
wetland and shrub show obvious differences from those of
winter-triticeae crops. Wetlands have dual characteristics of
water and vegetation and do not have regular texture features.
Shrubs have lower vegetation coverage and higher graini-
ness. These features make them easy to distinguish from
winter-triticeae crops (Fig. 3a). Crops with different growing
seasons (such as maize, rice or soybean) will not affect the vi-
sual interpretation. To ensure the accuracy of the samples, we
then validated the selected samples on the GEE platform by
checking whether the NDVI temporal features of these sam-
ples matched the characteristics of winter-triticeae crops, and
finally we obtained 7029 winter-triticeae crop samples and
8897 non-winter-triticeae crop samples (Fig. 1).

In addition, we used the CDL and EuroCrops datasets to
further evaluate the performance of the WTCI method. The
CDL product released annually has high accuracy when cap-
turing the crop distribution in the USA and has been used
widely as a base map for crop dynamic monitoring and
production estimation (Wang et al., 2019; Xu et al., 2023).
We thus treated CDL labels as the ground truth to validate
the accuracy of our identification map in the USA. Specif-
ically, we first used ArcMap10.2 to randomly select sam-
ples from pixels labeled with winter-triticeae crops, includ-
ing winter wheat, double-crop winter wheat/soybeans, win-
ter wheat/corn, winter wheat/sorghum and winter wheat/cot-
ton. Non-winter-triticeae crop samples were randomly gen-
erated in the remaining pixels, including other crop pix-
els in cultivated and non-cultivated land pixels. Then we
converted these samples into the same spatial projection
as the identification map in the USA. We finally obtained
7500 winter-triticeae crop samples and 12 500 non-winter-
triticeae crop samples in 2020 (Fig. 1). The EuroCrops
dataset, supported by the German Space Agency at the
DLR on behalf of the Federal Ministry for Economic Af-

fairs and Climate Action (BMWK), combines all publicly
available self-declared crop reporting datasets from coun-
tries of the European Union. Importantly, this dataset uti-
lizes a new version of Hierarchical Crop and Agriculture
Taxonomy (HCAT) to provide a unified hierarchical repre-
sentation scheme for all crops within the European Union
(Schneider et al., 2023a). We collected 10 countries (Austria,
Belgium, Germany, Denmark, Estonia, France, the Nether-
lands, Slovakia, Slovenia and Sweden) with winter-triticeae
crops clearly labeled in the EuroCrops dataset, including
winter spelt, winter barley, winter durum hard wheat, winter
common soft wheat, winter triticale, winter rye and winter
oats (https://doi.org/10.5281/zenodo.10118572, Schneider et
al., 2023b), and these data cover the period from 2018 to
2021. We converted the polygon file into a point file using
ArcMap10.2, randomly extracted winter-triticeae crop sam-
ples from the point file labeled with winter-triticeae crops
in each country and selected non-winter-triticeae crop sam-
ples from other land cover types, such as forest, grassland
or other crops. We then transformed the spatial projection of
these samples to be consistent with the European identifica-
tion map and ultimately obtained 2000 winter-triticeae crop
samples and 3000 non-winter-triticeae crop samples to assess
the result of the WTCI method in Europe (Fig. 1).

2.2.3 Agricultural statistical data

To evaluate the rationality of the spatial distribution of
winter-triticeae crop maps produced by the WTCI method,
we thus collected the agricultural statistical data of winter-
triticeae crops from 2017 to 2022 through the official web-
sites of all the countries (Table S1) to compare their consis-
tency with the identified area. Overall, we obtained the total
statistical area data of winter-triticeae crops in each country
and the statistical area data at the state, provincial, municipal
or county level in 34 countries.

2.3 Method

The workflow for identifying winter-triticeae crops (Fig. 2)
mainly includes four steps after preprocessing satellite data:
(1) selecting pixels with a maximum NDVI value greater than
0.4 during the winter-triticeae crop growing season as po-
tential pixels, (2) developing the WTCI based on the unique
characteristics of the NDVI time series of winter-triticeae
crops compared with other land cover types, (3) calculat-
ing the WTCI values of potential pixels to quantify their
similarity to winter-triticeae crops and using their thresholds
to obtain the distribution maps of winter-triticeae crops and
(4) evaluating the performance of the WTCI method based
on validation data.
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Figure 2. The flowchart for identifying winter-triticeae crops using the WTCI method.

2.3.1 Time series characteristics of the NDVI for
different land cover types

The design of the WTCI is based on the analysis of the NDVI
time series for different land cover types. Specifically, we
first selected the NDVI time series of each pixel during the
growing season (i.e., fall to the summer of the following
year) of winter-triticeae crops. Some regional- and global-
scale studies have reported that a NDVI greater than 0.4 usu-
ally indicates vegetation cover (Ma et al., 2022; Peng et al.,
2019; Xu et al., 2023; Yang et al., 2024a, b). Therefore, pix-
els with a maximum NDVI of greater than 0.4 during the se-
lected growing period were retained as potential pixels. After
applying these steps, the main remaining land cover types in
the potential pixels were forest, grassland, cultivated land,
wetland and shrub.

There are significant differences in the temporal variations
of the NDVI between winter-triticeae crops and natural veg-
etation types (i.e., deciduous forest, evergreen forest, shrub

and grassland) as well as wetland during the growing season
of winter-triticeae crops (Fig. 3b). Specifically, in the period
from the seedling to tillering stages, winter-triticeae crops are
in a state of slow growth, with their NDVI increasing gradu-
ally. In contrast, natural vegetation types are in the deciduous
stage and exhibit a continuous decrease in the NDVI during
this period, with wetland also exhibiting similar character-
istics (Fig. 3b). From the re-greening to heading stages, the
NDVI of winter-triticeae crops rapidly increases and reaches
its maximum value, while the increase in the NDVI of natu-
ral vegetation types and wetland tends to lag behind that of
winter-triticeae crops (Fig. 3b). Furthermore, the NDVI of
winter-triticeae crops shows a downward trend and reaches
its lowest value during the harvesting stage. However, the
NDVI values of natural vegetation and wetland rapidly in-
crease at this time (Fig. 3b). Additionally, except for winter
rapeseed, there are significant differences in the growing sea-
son of maize, rice and soybean compared to that of winter-
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triticeae crops. Therefore, these crops will not interfere with
the identification of winter-triticeae crops, even if they have
similarities to winter-triticeae crops in the NDVI time series
characteristics.

Based on the above analysis, there are two periods that
can be used to distinguish between winter-triticeae crops and
other land cover types, i.e., the seedling to tillering stages and
the heading to harvesting stages (Fig. 3b), during which the
NDVIs of winter-triticeae crops and other land cover types
showed opposite temporal variations. Compared with the pe-
riod from seedling to tillering, the NDVI characteristics of
winter-triticeae crops from the heading to harvesting stages
are more stable and more significantly different from those
of other land cover types. A previous study on the relatively
weak growth and not obvious increase in the NDVI of winter-
triticeae crops from the seedling to tillering stages (Wang et
al., 2015) further supports our finding. Therefore, this study
used the NDVI time series characteristics of winter-triticeae
crops from the heading to harvesting stages to design the
WTCI.

2.3.2 Development of the winter-triticeae crop index

Based on the comparison of the NDVI time series character-
istics of winter-triticeae crops with other land cover types,
the unique characteristics of winter-triticeae crops during
the growing season can be summarized as (1) the NDVI of
winter-triticeae crop peaks at the heading stage close to the
maximum value of natural vegetation during its growing sea-
son and (2) winter-triticeae crops with low NDVI values dur-
ing the harvesting stage, when the surface tends to be close
to bare land after crop removal. By contrast, the NDVI of
natural vegetation approaches its peak in a year. To quan-
tify the above characteristics, this study set an upper bound-
ary to denote vegetation (V line) and a lower boundary to
indicate bare land (B line) (Fig. 4). Then, three indicators,
i.e., f (D), f (V ) and f (B), were constructed to represent the
unique NDVI characteristics of winter-triticeae crops from
the heading to harvesting stages (Fig. 4), and their integra-
tion (i.e., the WTCI) were employed to determine whether
the potential pixel is a winter-triticeae crop:

WTCI= f (D)× f (V )× f (B) n1 < n2, (1)

where n1 and n2 represent the times when the maximum
and minimum NDVIs appear (Fig. 4). It should be noted that
Eq. (1) was only used to identify the winter-triticeae crops
when n1 < n2. That is, the maximum NDVI should appear
before the minimum NDVI.

Specifically, f (D), f (V ) and f (B) were designed as fol-
lows:

f (D)=
1

1+ e

(
v−b

2 −D
)D =m1−m2 , (2)

f (V )= 1−V 2, V =


1, m1≤ b
v−m1
v−b

, b < m1≤ v

0, m1 > v

, (3)

f (B)= 1−B2, B =


1, m2≥ v
m2−b
v−b

,b ≤m2 < v

0, m2 < b

, (4)

where v and b represent the NDVI corresponding to the V

and B lines, respectively. m1 and m2 represent the maximum
and minimum NDVIs of the potential pixels from the head-
ing to harvesting stages (Fig. 4), respectively. f (D) quanti-
fies the proximity of the range of NDVI variation between
the potential pixels and that of winter-triticeae crops. Given
a pixel with D (i.e., m1−m2) closer to the value of v− b,
the higher the value of f (D), the higher the likelihood that
it will represent a winter-triticeae crop. f (V ) quantifies the
proximity of the maximum NDVI (m1) of the potential pixels
to that of vegetation. The pixels closer to the V line in the n1
period (i.e., m1 approaches v) are more likely to be winter-
triticeae crops. Additionally, f (B) quantifies the proximity
of the minimum NDVI (m2) of the potential pixels to that of
bare land. Pixels closer to the B line in the n2 period (i.e.,
m2 approaches b) have a greater likelihood of being winter-
triticeae crops. The algorithms of f (D), f (V ) and f (B) re-
ported by Xu et al. (2023) were used in this study.

Winter-triticeae crops should simultaneously have all three
of the above characteristics, which means that the WTCI
should be designed to integrate these three indicators. The
values of f (D), f (V ) and f (B) range from 0 to 1. Therefore,
the WTCI varies between 0 and 1, and pixels with a higher
WTCI have a greater probability of being winter-triticeae
crops. In addition, this study uses the agricultural statistical
area of winter-triticeae crops to determine the threshold of
the WTCI. The potential pixels (N ) with high WTCI values
are considered winter-triticeae crops in a given identification
unit, and the total area of all the N potential pixels should be
equal to the agricultural statistical area of the identification
unit.

2.3.3 WTCI-based winter-triticeae crop identification

In this study, we considered each state (or province) to be
an identification unit in China, Brazil, India, Australia and
the USA, and the threshold of the WTCI was determined
based on the statistical area at the state (or provincial) scale.
For the remaining countries, we treated each one as an iden-
tification unit, and the threshold of the WTCI was calcu-
lated by relying on the statistical area at the national scale.
The annual statistical area was used to determine the thresh-
old of the WTCI for each identification unit in the cur-
rent year. Furthermore, given the diversity and complexity
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Figure 3. Examples of the (a) textures and colors in the high-resolution images from © Google Earth and the (b) NDVI time series char-
acteristics of the different land cover types. The red five-pointed stars represent the different phenological stages of the winter-triticeae
crops.

of the land cover types and agricultural planting structures
in the study area, we used different percentile combinations
of the V and B lines. Specifically, this study referred to
crop calendar data provided by the United States Department
of Agriculture (USDA) (https://ipad.fas.usda.gov/ogamaps/
cropcalendar.aspx, last access: 10 January 2023) to deter-
mine the growing seasons of winter-triticeae crops in each
country. Then, we extracted the maximum and minimum
NDVIs of all potential pixels in each identification unit dur-
ing the growing season of winter-triticeae crops. We further
obtained different percentiles (5 %, 20 %, 40 %, 60 %, 80 %
and 95 %) of the maximum and minimum NDVIs for each
identification unit, corresponding to v and b in Eqs. (2), (3)
and (4). In addition, m1 and m2 were automatically searched
in the NDVI curve between the re-greening and harvesting
stages of winter-triticeae crops. In this study, the re-greening
stage was based on the start time of spring in the Northern
Hemisphere (March) and Southern Hemisphere (September)
(Ren et al., 2019), and the harvesting stage referred to the
crop calendar provided by the USDA. We first determined the
m1 and n1 of each potential pixel, and then we looked for m2

in the period after n1 and further calculated the WTCI. Pix-
els that do not meet this condition (i.e., n1 < n2) are identi-
fied as non-winter-triticeae crops. In addition, we determined
the optimal combination of V and B lines in each identi-
fication unit according to the identification accuracy at the
pixel scale (F1 score) and the relative mean absolute error
(RMAE) between the identified and agricultural statistical ar-
eas. For countries lacking agricultural statistical data, the op-
timal combination was decided solely based on the F1 score.
Based on the optimal combination of the V and B lines of
each identification unit in 2020, winter-triticeae crops from
2017 to 2019 and from 2021 to 2022 were identified to eval-
uate the temporal transferability of the WTCI.

The identification of winter-triticeae crops in the study
area may be affected by winter rapeseed and garlic, as these
crops have similar growing season and spectral characteris-
tics to winter-triticeae crops (Fu et al., 2023b; Tian et al.,
2021). Winter rapeseed is mainly distributed in China, In-
dia and parts of Europe. The planting area of winter rapeseed
in some states (or provinces) of China and India is equivalent
to or even higher than that of winter-triticeae crops, while the
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Figure 4. Characteristics of the NDVI time series for designing the
Winter-Triticeae Crops Index. The black solid line represents the
NDVI time series of winter-triticeae crops. The green and orange
solid lines represent the V line and the B line, respectively. The
red five-pointed stars indicate the heading and harvesting stages of
winter-triticeae crops. m1 and n1 represent the maximum value of
the NDVI and the time when the maximum value occurs during the
study period. m2 and n2 represent the minimum value of the NDVI
and the time when the minimum value occurs during the study pe-
riod.

planting area in countries such as France, Germany, Poland,
Britain, Hungary and Ukraine accounts for 17 %–32 % of
the planting area of winter-triticeae crops. Winter garlic is
mainly distributed in some provinces of China, Spain and
Ukraine. However, the planting area of winter garlic is very
small compared to that of winter-triticeae crops and winter
rapeseed. For example, the planting area of winter garlic in
China, the largest planting country, only accounted for about
2 % of the winter crops (https://data.stats.gov.cn, last access:
3 January 2023). Therefore, this study only distinguished be-
tween winter rapeseed and winter-triticeae crops (Fig. S1 in
the Supplement). The NDVI time series of winter rapeseed
shows a downward trend from the heading to harvest stages
of winter-triticeae crops, which resembles that of winter-
triticeae crops (Fig. 3b). Tao et al. (2023) also demonstrated
that winter rapeseed and winter-triticeae crops have simi-
lar NDVI characteristics, making it difficult to distinguish
them based on optical images only (Veloso et al., 2017). For-
tunately, previous studies have indicated that the VH band
can effectively eliminate the interference from winter rape-
seed in the identification of winter-triticeae crops in China
and Europe (Dong et al., 2020; Huang et al., 2022). There-
fore, we distinguished winter rapeseed and winter-triticeae
crops based on the methods of these studies. Specifically,
the VH threshold set by Dong et al. (2020), which was ob-
tained by comparing winter-triticeae crops and winter rape-
seed field samples, was employed in this study. In regions
of India where winter rapeseed is planted, we calculated the
VH values from Sentinel-1 images in March considering the
lower latitudes and earlier harvest periods of these regions.

In other Asian regions where winter rapeseed is grown, this
study obtained VH values for April. It identified those pix-
els with VH values greater than −15.5 in March or April
as non-winter-triticeae crops. Similarly, in some European
countries, we calculated VH values for May and considered
pixels with VH values greater than −15.5 to be non-winter-
triticeae crops (Huang et al., 2022).

2.4 Accuracy assessment

This study evaluated accuracy at both the pixel and regional
scales. The producer’s accuracy (PA), user’s accuracy (UA),
overall accuracy (OA) and F1 score (Congalton, 1991; Hripc-
sak and Rothschild, 2005; Lin et al., 2022) were employed
to validate the identification accuracy at the pixel scale. At
the regional scale, we obtained the identified areas of winter-
triticeae crops based on the total pixel area of winter-triticeae
crops on the identification maps. In China, Brazil, India, Aus-
tralia and the USA, we used the statistical area at low-level
administration, such as the municipal or county scale, to val-
idate the accuracy of an identified area at the state (or provin-
cial) scale. For other countries, the statistical areas of all the
states, provinces, municipalities or counties included in each
country were used to evaluate accuracy at the national scale.
The correlation coefficient (R2) and the RMAE were used to
examine the consistency between the identified area and the
statistical area (Shen et al., 2023; Zheng et al., 2022).

3 Results

3.1 The spatial transferability of the WTCI method

The spatial distribution map of winter-triticeae crops in 66
countries in 2020 was first produced based on the WTCI
method (Fig. 5), which effectively presented the distribution
of winter-triticeae crops in the study area. Specifically, the
winter-triticeae crops were mainly distributed in most Eu-
ropean countries and Asian plains (Fig. 5b and c). To dis-
play the detailed information of the map of winter-triticeae
crops, we selected 12 typical areas in different countries to
focus on and compared them with high-resolution images
from Google Earth (Fig. 6). In general, despite some noise,
the identification map clearly displays the fields planted with
winter-triticeae crops and effectively distinguishes roads and
rivers between the fields. In addition, we compared the spa-
tial distribution map of winter-triticeae crops in this study
with some existing products in Europe (Huang et al., 2022)
and China (Dong et al., 2020) that also have a spatial res-
olution of 30 m. The spatial distribution of winter-triticeae
crop fields on the maps produced in this study was similar
to that of other studies, and the maps generated using the
WTCI method had less noise and clearer boundaries of roads
and rivers (Fig. S3).

Based on the field survey samples and visual interpreta-
tion samples, the OA, PA and UA of the winter-triticeae crop
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Figure 5. Spatial distribution of winter-triticeae crops in the study area in 2020. Panel (a) shows the distribution of winter-triticeae crops in
66 countries. Panels (b)–(g) show zoomed-in maps of Europe, Asia, Africa, Australia, North America and South America, respectively.

identification maps in 65 countries (except for the USA) were
87.7 %, 81.12 % and 87.85 %, respectively, and the F1 score
was 84.04 % (Fig. 7). The PA and UA varied between 52 %
and 97.73 % and between 63.64 % and 97.83 % over the var-
ious countries, and the OA and F1 ranged from 70.86 % to
96.05 % and from 65.63 % to 96.09 %, respectively. At the
state (provincial) scale, the variation ranges of the OA and F1
score in China were 77.68 %–95.9 % and 71.79 %–94.47 %,
respectively (Fig. 8a). In Brazil, the OA and F1 score were in
the ranges 76.99 %–94.74 % and 78.26 %–96.24 % (Fig. 8b).
The OA in India was between 67.53 % and 92.07 %, and the

F1 score was between 65.24 % and 92.05 % (Fig. 8c). The
OA and F1 score in Australia lay in the ranges 79.21 %–
91.67 % and 69.23 %–91 % (Fig. 8d). In general, the F1 score
in most of the identification units was greater than 75 %, indi-
cating that the WTCI method shows satisfactory accuracy in
identifying winter-triticeae crops. The regions with F1 scores
of less than 75 % were mainly small winter-triticeae crop-
planting areas with complex winter crop types, such as Croa-
tia (HRV), Albania (ALB), Sichuan (SC) in China and Bihar
(BR) in India. By contrast, the identification accuracy of re-
gions with larger planting areas of winter-triticeae crops was
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Figure 6. Comparison between the identification maps of winter-triticeae crops and high-resolution images from © Google Earth in the
study area. (A1)–(L1) represent the high-resolution images from © Google Earth of the different regions. (A2)–(L2) represent the zoomed-in
maps of areas A–L in Fig. 5.

significantly higher than that of regions with smaller planting
areas.

In addition, compared to the agricultural statistical area in
different administrative units in 2020, the WTCI method can
effectively estimate the areas of winter-triticeae crops. At the
national scale, the R2 between the identified and statistical
areas of winter-triticeae crops ranged from 0.62 to 1, with
an RMAE of 8.47 % to 38.51 % (Fig. 9a and b). At the state
(provincial) scale, the R2 and RMAE between the identified
and statistical areas in China were between 0.75 and 0.99
and between 12.64 % and 45.1 %, respectively (Fig. 10a1 and
10a2). In Brazil, the R2 was in the range of 0.84–0.91, with
RMAEs of 36.04 % to 48.02 % (Fig. 10b1 and 10b2). The
R2 and RMAE of 15 states in India ranged from 0.58 to

0.98 and from 6.12 % to 47.61 %, respectively (Fig. 10c1 and
10c2). The R2 and RMAE in Australia varied from 0.79 to
0.98 and from 23.61 % to 38.43 %, respectively (Fig. 10d1
and 10d2). Overall, all of these results demonstrate that the
WTCI method exhibits reliable spatial applicability when
identifying winter-triticeae crops.

3.2 The temporal transferability of the WTCI method

The comparison between the identified and statistical areas
of the winter-triticeae crops indicates that the WTCI method
can be applied effectively to other years. At the national
scale, the R2 between the identified and statistical areas of
winter-triticeae crops in all the years was between 0.51 and
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Figure 7. The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and F1 score of the identification maps of winter-
triticeae crops at the national scale in 2020. The abbreviations of the countries are shown in Table S2.

1, and the RMAE was between 3.49 % and 51.04 % (Fig. 9a
and b). At the state (provincial) scale, the R2 and RMAE
ranged from 0.56 to 0.99 and from 6.52 % to 45.72 % in
China (Fig. 10a1 and 10a2). In Brazil, the ranges of these
two metrics were 0.71–0.91 and 33.29 %–51.29 %, respec-
tively (Fig. 10b1 and 10b2). In India, they varied from 0.54 to
0.97 and from 5.82 % to 55.2 %, respectively (Fig. 10c1 and
10c2). The R2 in most of the identification units was more
than 0.6, and the RMAE was less than 30 %. These results il-
lustrate that there is good consistency between the identified
and statistical areas of winter-triticeae crops, confirming the
stable temporal transferability of the proposed method.

3.3 The performance of the WTCI method validated
using the CDL and EuroCrops datasets

The distribution map of winter-triticeae crops exhibited high
consistency with the CDL and EuroCrops datasets. In 2020,
the OA and F1 score in the USA were 86.84 % and 82.09 %,
respectively, and the PA and UA were 76.96 % and 88.13 %,
respectively (Fig. 11 and Table S4). The performance of the
WTCI method varied by state. For all states planting winter-
triticeae crops, the OA varied from 70.42 % to 94.24 % and
the F1 score ranged from 66.67 % to 91.01 % (Fig. 11a–
c and Table S4). In major planting states such as Kansas,
Oklahoma and Texas, the planting area of winter-triticeae
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Figure 8. The PA, UA, OA and F1 score of the identification maps of winter-triticeae crops at the state (provincial) scale in 2020. Panels (a)–
(d) represent the identification accuracy at the state (provincial) scale in China, Brazil, India and Australia, respectively. The abbreviations
of the states (provinces) are shown in Table S3.

Figure 9. Comparison between the identified and statistical areas of winter-triticeae crops at the national scale from 2017 to 2022. Panels (a)
and (b) show the correlation coefficient and RMAE between the identified and statistical areas, respectively.

crops accounted for approximately 50 % of the total area
of winter-triticeae crops in the USA, with an OA and F1
score of more than 92 % and 85 %, respectively (Fig. 11
and Table S4). The area identified by the WTCI method
also exhibited good consistency with the US official statis-
tical data. At the national scale, the R2 and RMAE were
0.89 and 28.9 %, respectively (Fig. 12a). At the state scale,
the R2 varied between 0.52 and 0.96 and the RMAE was

in the range 9.01 %–57.84 % (Fig. 12b–w). Among the 10
European countries from the EuroCrops dataset, the OA, F1
score, PA and UA ranged from 71.22 % to 94.79 %, 67.67 %
to 90.14 %, 63.68 % to 84.77 % and 71.43 % to 96.24 %,
with mean values of 83.88 %, 78.87 %, 73.18 % and 86 %
(Fig. 11d and Table S5), respectively. In general, the OA and
F1 score in most of the regions of the USA and Europe were
higher than 80 % and 75 %, implying that the WTCI method
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Figure 10. Comparison between the identified and statistical areas of winter-triticeae crops at the state (provincial) scale from 2017 to
2022. Panels (a1)–(d1) represent the correlation coefficient at the state (provincial) scale in China, Brazil, India and Australia, respectively.
Panels (a2)–(d2) represent the RMAEs at the state (provincial) scale in China, Brazil, India and Australia, respectively.

exhibited satisfactory performance compared to the CDL and
EuroCrops datasets. Additionally, we presented spatial de-
tails of the identification map produced by the WTCI method
in the USA and Europe. The results indicate that the iden-
tification map can effectively capture the field distribution
of winter-triticeae crops in the CDL and EuroCrops datasets
(Fig. 13).

3.4 Harvest times of the global winter-triticeae crops

We finally calculated the harvest times of winter-triticeae
crops in the study area in 2020 based on the time when the
minimum NDVI occurred during the harvesting stage. Over-
all, the harvest times of winter-triticeae crops are delayed
with increasing latitude (Fig. 14). In the Northern Hemi-
sphere, winter-triticeae crops in eastern and southern Asia

were harvested in May and June (Fig. 14c), and the harvested
area accounted for about 35.64 % of the total harvested area
in the study area (Fig. 15). The harvest times in central Asia,
Europe, northern Africa and North America were concen-
trated between July and August (Fig. 14b, c, d and f), and the
proportion of the harvested area to the total area was around
47.05 % (Fig. 15). The regions with harvest times in Septem-
ber were mainly distributed in high-latitude areas of Russia
(Fig. 14b). In the Southern Hemisphere, the harvest time of
winter-triticeae crops was mainly from November to January
of the following year (Fig. 14e and g), with the harvested area
accounting for 13.7 % of the total harvested area (Fig. 15).
These areas with harvest times occurring from November to
January were mainly located in high-latitude regions of Aus-
tralia and South America (Fig. 14e and g), and the harvest
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Figure 11. The PA, UA, OA and F1 score of the identification maps of winter-triticeae crops in the USA and Europe. The abbreviations of
the counties and states are shown in Tables S2 and S3. 2018FRA indicates the identification accuracy of the country (France) in 2018.

times in October only occurred in some areas of low-latitude
regions of South America (Fig. 14g).

4 Discussion

Winter-triticeae crops are among the most important grain
crops in the world. Therefore, the ability to efficiently cap-
ture distribution information about these crops is critical for
monitoring crop growth and drafting grain subsidy policies
(Liu et al., 2018). To the best of our knowledge, there is cur-
rently a lack of a global distribution map for winter-triticeae
crops at high resolution. Although there have been previous
studies focusing on global triticeae crop mapping (Monfreda
et al., 2008; Portmann et al., 2010; You et al., 2014), they

resulted in maps for single or discontinuous years and with
coarse spatial resolution, which may include large amounts
of mixed pixels and have limited applications. For example,
Luo et al. (2022) used inflection- and threshold-based meth-
ods to produce the global wheat map at a spatial resolution of
4 km, but the accuracy was low due to mixed pixel problems
in medium and small fields of South America. The available
high-resolution maps of winter-triticeae crops with wide cov-
erage can display more accurate information on planting lo-
cations, such as the CDL in the USA, winter wheat maps
in China (Dong et al., 2020) and winter cereal maps in Eu-
rope (Huang et al., 2022), but they are not currently available
globally. In this study, we produced the first distribution maps
of winter-triticeae crops with 30 m spatial resolution for 66
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Figure 12. Comparison between the identified and statistical areas of winter-triticeae crops in 2020 in the USA. Panel (a) shows the results
between the identified and statistical areas at the national scale. Panels (b)–(w) show the results between the identified and statistical areas for
each state. The green symbols represent the counties of each state. The yellow solid lines are the regression lines, and the grey short-dashed
lines are the 1 : 1 lines. The red, blue and purple numbers represent the R2, slope and RMAE values between the identified and statistical
areas, respectively.

countries from 2017 to 2022 (2020 for the USA) based on the
new WTCI method, filling the gap in the lack of global con-
tinuous years and high-resolution winter-triticeae crop maps.

In addition, the method proposed in this study has the fol-
lowing advantages. First, f (V ) and f (B) were incorporated
into the WTCI to alleviate errors and uncertainties in deter-
mining crop types based on partial features only. Most previ-
ous studies only considered the differences between the max-
imum and minimum values of vegetation indices at key crop
phenological stages (Atzberger and Rembold, 2013; Chu et
al., 2016; Manfron et al., 2017; Qiu et al., 2017). For exam-
ple, Qu et al. (2021) set rules to determine the maximum and
minimum NDVIs before and after the overwintering stage
and designed the winter wheat index (WWI) using the prod-
uct of the differences between the maximum and minimum
NDVIs. However, in some regions, the maximum NDVI val-
ues are not easy to determine before overwintering, due to
either the crop varieties or the climate, resulting in very small
differences between the maximum and minimum NDVIs be-
fore overwintering, which increases omission errors. Similar
to this study, Xu et al. (2023) developed a spectral index for
rice identification based on SAR data and tested the differ-

ences using partial features and three features. The results
showed that considering three features simultaneously could
better distinguish between rice, other crops and other land
cover types, thus achieving the highest accuracy.

Second, all parameters of the WTCI are determined au-
tomatically. For example, based on the NDVI of each iden-
tification unit, the V and B lines are generated automati-
cally to adapt to the differences in climate and land cover
types between different regions, making the WTCI method
more stable. This study selected two representative regions
to test the sensitivity of the identification accuracy to dif-
ferent percentile combinations of the V line (v) and the B

line (b) (Fig. 16). The results demonstrate that the identifi-
cation accuracy is insensitive to the percentiles of the V (v)
and B (b) lines, where winter-triticeae crops are the domi-
nant crops (Fig. 16a). However, where winter-triticeae crops
are not dominant, the identification accuracy is sensitive to
the percentiles of the V (v) and B (b) lines (Fig. 16b). Over-
all, we achieved promising results in each identification unit,
indicating that the WTCI method can be applied flexibly to
different regions. Users can choose the appropriate percentile
based on the local situation. Besides, the maximum and min-
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Figure 13. Comparison of the identification maps of winter-triticeae crops with the CDL and EuroCrops datasets. Panel (a) shows the
comparison results between the identification maps and the CDL dataset in the USA. Panel (b) shows the comparison results between the
identification maps and the EuroCrops samples in Europe.

imum NDVI values are automatically searched between the
re-greening and harvesting stages of winter-triticeae crops,
avoiding the limitations caused by the use of a large number
of constraints (Bazzi et al., 2019; Cai et al., 2019). Manfron
et al. (2017) set multiple conditions based on expert knowl-
edge to search for NDVI characteristics of key phenological
stages when identifying winter wheat. Although high identi-
fication accuracy was achieved in the study area, the applica-
tion of the method was limited due to the proposed conditions
in specific areas.

Finally, the WTCI method is not limited by samples and
has high transferability in time and space, making it suitable
for mapping winter-triticeae crops in large regions. Super-

vised classification algorithms can extract information fea-
tures from training samples and achieve high identification
accuracy in specific years or regions (Brown and Pervez,
2014; Yin et al., 2020). However, the accuracy is often af-
fected by insufficient training samples (Petitjean et al., 2012)
or classification rules and regional limitations of parameters
(Zhong et al., 2014) when the trained model is transferred
to other years or regions, which makes it difficult to apply
them on a large scale. The WTCI method does not require
training samples and has achieved accurate results in most
of the countries, with OA values of 88.35 % and 88.97 % in
China and Europe, respectively, which are comparable to the
results of previous studies (Dong et al., 2020; Huang et al.,
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Figure 14. Harvest times of the winter-triticeae crops in the study area in 2020.

Figure 15. Harvested area and proportion of winter-triticeae crops
in the study area in 2020.

2022). Moreover, the satisfactory performance in capturing
the field distribution of winter-triticeae crops in the CDL and
EuroCrops datasets supports the reliability and applicability
of the WTCI method.

Despite the advantages, our study also suffers from some
uncertainties. First, the commission error is higher in regions
where winter-triticeae crops are not the dominant crops, such
as SC in China, West Bengal (WB), BR, Karnataka (KA)
and a few countries in the Mediterranean Sea region, indi-
cating that there non-winter-triticeae crops are misclassified
as winter-triticeae crops. One potential reason is the quantity
and quality of the satellite data. Although we used synthe-
sized images from the Landsat and Sentinel products to in-
crease the amount of effective data and used linear interpola-
tion and the Savitzky–Golay filter to further improve the data
quality, there are still differences in the quantity and qual-
ity of the satellite data in the study areas. A previous study
highlighted that the availability of effective data greatly af-
fected the crop identification accuracy (Dong et al., 2015).
Second, due to the scan line corrector failure of the Land-
sat 7 sensor, the striping issues and reduced data availability
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Figure 16. Identification accuracy under different percentile combinations of the V line (v) and B line (b). V05 and B05 represent the 5th
percentiles of the V and B lines, respectively.

may also impact the accuracy of the NDVI time series (Ju and
Roy, 2008), resulting in errors in the identification results. In
our study, there were some striping issues in the distribution
maps of winter-triticeae crops in a few regions (Fig. S4a),
which may lead to errors in winter-triticeae crop identifica-
tion and differences in identification results between differ-
ent years (Fig. S4). Additionally, the wavelength difference
between the Sentinel-2 and Landsat sensors may affect the
quality of the synthesized NDVI. It is still a challenge to
completely eliminate the impact of this difference (He et al.,
2018). Besides, this study ignored the internal differences be-
tween winter wheat, winter barley, winter rye and triticale
due to their similar NDVI time series and phenological char-
acteristics (Huang et al., 2022; Xu et al., 2017), which may
affect their identification accuracy. We referred to previous
studies (Dong et al., 2020; Huang et al., 2022) on winter crop
mapping and only distinguished winter rapeseed to reduce its
impact on the identification of winter-triticeae crops. Other
winter crops with smaller planting areas that have not been
discovered or overlooked may also interfere with the identi-
fication and lead to errors in the identification map. In the
future, identifying useful bands or vegetation indexes that
eliminate interferences from other land covers, further sub-
dividing each winter-triticeae crop and increasing the avail-
ability and quality of satellite data will further promote the
performance of the WTCI method.

5 Data availability

The 30 m resolution distribution maps of winter-
triticeae crops in 66 countries worldwide from
2017 to 2022 (2020 for the USA) are available at
https://doi.org/10.57760/sciencedb.12361 (Fu et al., 2023a).
The product is provided in GeoTIFF format with pixel

values of 1 for winter-triticeae crops and 0 for other land
covers.

6 Conclusions

This study proposed a new sample-free method (WTCI)
for mapping winter-triticeae crops and examined its perfor-
mance in 66 countries worldwide. The new method exhibits
high accuracy and strong spatiotemporal transferability by
verifying with field survey samples and visual interpretation
samples from Google Earth images, the CDL and EuroCrops
datasets and agricultural statistical data. Overall, the OA and
F1 score were more than 80 % and 75 % in most of the iden-
tification units. The R2 between the identified and statistical
areas in most of the regions was greater than 0.6 in all of the
years, and the RMAE was less than 30 %. These satisfactory
results indicate that the WTCI method can be used for long-
term and large-scale crop mapping. At the same time, the first
30 m spatial resolution distribution maps of winter-triticeae
crops from 2017 to 2022 produced by the WTCI method fill
in the current product gaps, which can also serve harvest area
monitoring, yield estimation and agricultural management.
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