Articles | Volume 17, issue 10
https://doi.org/10.5194/essd-17-5543-2025
https://doi.org/10.5194/essd-17-5543-2025
Data description paper
 | 
21 Oct 2025
Data description paper |  | 21 Oct 2025

Annual global grided livestock mapping from 1961 to 2021

Zhenrong Du, Le Yu, Yue Zhao, Xinyue Li, Xiaoxuan Liu, Xiyu Li, Pengyu Hao, Zhongxin Chen, Zhe Guo, Liangzhi You, Xiaorui Ma, and Hongyu Wang

Related authors

Improving wheat phenology and yield forecasting with a deep learning-enhanced WOFOST model under extreme weather conditions
Jinhui Zheng, Le Yu, Zhenrong Du, and Liujun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-4010,https://doi.org/10.5194/egusphere-2024-4010, 2025
Short summary
Tracking spatiotemporal dynamics of crop-specific areas through machine learning and statistics disaggregating
Xiyu Li, Le Yu, Zhenrong Du, and Xiaoxuan Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-233,https://doi.org/10.5194/essd-2024-233, 2024
Manuscript not accepted for further review
Short summary
Global cropland expansion enhances cropping potential and reduces its inequality among countries
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024,https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Scientific data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. a
Baltenweck, I., Achandi, E. L., Bullock, R. M., Campbell, Z. A., Crane, T. A., Eldermire, E. R., Gichuki, L., de Haan, N., Katz, E., Njiru, N., Njuguna-Mungai, E., Poole, E. J., and Galiè, A.: Livestock as a Pathway to Women's Empowerment in Low and Middle-Income Countries: A Scoping Review, The Journal of Development Studies, 60, 813–830, https://doi.org/10.1080/00220388.2024.2319072, 2024. a
Baudron, F. and Liégeois, F.: Fixing our global agricultural system to prevent the next COVID-19, Outlook on Agriculture, 49, 111–118, https://doi.org/10.1177/0030727020931122, 2020. a
Bonilla-Cedrez, C., Steward, P., Rosenstock, T. S., Thornton, P., Arango, J., Kropff, M., and Ramirez-Villegas, J.: Priority areas for investment in more sustainable and climate-resilient livestock systems, Nat. Sustain., 6, 1279–1286, https://doi.org/10.1038/s41893-023-01161-1, Group, 2023. a, b, c
Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period, Proceedings of the National Academy of Sciences, 110, 20882–20887, https://doi.org/10.1073/pnas.1012878108, 2013. a
Download
Short summary
We created the first global maps showing where livestocks have been raised each year from 1961 to 2021. These maps help to see how livestock numbers and locations have changed over time. Using global statistics and satellite data, we built a model to estimate livestock density at a high resolution (5 km). This work supports better decisions in food security, disease control, and environmental protection around the world.
Share
Altmetrics
Final-revised paper
Preprint