Articles | Volume 17, issue 10
https://doi.org/10.5194/essd-17-5543-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5543-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Annual global grided livestock mapping from 1961 to 2021
Zhenrong Du
School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
Ministry of Education Ecological Field Station for East Asian Migratory Birds, Department of Earth System Science, Tsinghua University, Beijing, China
Institute of Carbon Neutrality, Tsinghua University, Beijing, China
Yue Zhao
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
Xinyue Li
School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
Xiaoxuan Liu
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
Pengyu Hao
Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
Zhongxin Chen
Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
Zhe Guo
International Food Policy Research Institute, Washington, District of Columbia, USA
Liangzhi You
International Food Policy Research Institute, Washington, District of Columbia, USA
Xiaorui Ma
School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
Hongyu Wang
School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
Related authors
Jinhui Zheng, Le Yu, Zhenrong Du, and Liujun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-4010, https://doi.org/10.5194/egusphere-2024-4010, 2025
Short summary
Short summary
This study integrates the extreme weather index and deep learning algorithms with the World Food Studies Simulation Model (WOFOST), proposing the WOFOST-EW model. WOFOST-EW significantly improves the simulation of winter wheat growth under extreme weather conditions, providing more accurate predictions of phenology and yield. As extreme weather events become more frequent, WOFOST-EW provides a key tool for agricultural development.
Xiyu Li, Le Yu, Zhenrong Du, and Xiaoxuan Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-233, https://doi.org/10.5194/essd-2024-233, 2024
Manuscript not accepted for further review
Short summary
Short summary
We developed a new method to update detailed maps showing where different crops are grown over time, focusing on Africa, China, and the USA. Using various data sources and machine learning, we produced accurate maps at a 10 km resolution covering up to 42 crop types from 1961 to 2022. Our work bridges statistical data and satellite imagery, helping researchers and policymakers to address global agricultural challenges in food security and environmental impacts.
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024, https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary
Short summary
An increase of 28 % in cropland expansion since 10 000 BCE has led to a 1.2 % enhancement in the global cropping potential, with varying efficiencies across regions. The continuous expansion has altered the support for population growth and has had impacts on climate and biodiversity, highlighting the effects of climate change. It also points out the limitations of previous studies.
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Ke Liu, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data, 17, 3777–3796, https://doi.org/10.5194/essd-17-3777-2025, https://doi.org/10.5194/essd-17-3777-2025, 2025
Short summary
Short summary
This study creates the first detailed annual maps of Africa's cropland extent from 2000 to 2022 in 30 m resolution to support global efforts against hunger and sustainable farming. Our findings show Africa's cropland grew by 8.5 % over 2 decades, while 11.5 % of cropland was abandoned by 2018, revealing hidden challenges in agricultural sustainability. These yearly field-sized maps help governments track where farming grows or shrinks, plan food supplies, and protect vital cropland.
Jinhui Zheng, Le Yu, Zhenrong Du, and Liujun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-4010, https://doi.org/10.5194/egusphere-2024-4010, 2025
Short summary
Short summary
This study integrates the extreme weather index and deep learning algorithms with the World Food Studies Simulation Model (WOFOST), proposing the WOFOST-EW model. WOFOST-EW significantly improves the simulation of winter wheat growth under extreme weather conditions, providing more accurate predictions of phenology and yield. As extreme weather events become more frequent, WOFOST-EW provides a key tool for agricultural development.
Xiyu Li, Le Yu, Zhenrong Du, and Xiaoxuan Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-233, https://doi.org/10.5194/essd-2024-233, 2024
Manuscript not accepted for further review
Short summary
Short summary
We developed a new method to update detailed maps showing where different crops are grown over time, focusing on Africa, China, and the USA. Using various data sources and machine learning, we produced accurate maps at a 10 km resolution covering up to 42 crop types from 1961 to 2022. Our work bridges statistical data and satellite imagery, helping researchers and policymakers to address global agricultural challenges in food security and environmental impacts.
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024, https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary
Short summary
An increase of 28 % in cropland expansion since 10 000 BCE has led to a 1.2 % enhancement in the global cropping potential, with varying efficiencies across regions. The continuous expansion has altered the support for population growth and has had impacts on climate and biodiversity, highlighting the effects of climate change. It also points out the limitations of previous studies.
Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, and Bing Xu
Earth Syst. Sci. Data, 16, 2297–2316, https://doi.org/10.5194/essd-16-2297-2024, https://doi.org/10.5194/essd-16-2297-2024, 2024
Short summary
Short summary
We developed the first 30 m annual cropland dataset of China (CACD) for 1986–2021. The overall accuracy of CACD reached up to 0.93±0.01 and was superior to other products. Our fine-resolution cropland maps offer valuable information for diverse applications and decision-making processes in the future.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Francesco N. Tubiello, Giulia Conchedda, Leon Casse, Pengyu Hao, Giorgia De Santis, and Zhongxin Chen
Earth Syst. Sci. Data, 15, 4997–5015, https://doi.org/10.5194/essd-15-4997-2023, https://doi.org/10.5194/essd-15-4997-2023, 2023
Short summary
Short summary
We describe a new dataset of cropland area circa the year 2020, with global coverage and country detail. Data are generated from geospatial information on the agreement characteristics of six high-resolution cropland maps. By helping to highlight features of cropland characteristics and underlying causes for agreement across land cover products, the dataset can be used as a tool to help guide future mapping efforts towards improved agricultural monitoring.
Yating Ru, Brian Blankespoor, Ulrike Wood-Sichra, Timothy S. Thomas, Liangzhi You, and Erwin Kalvelagen
Earth Syst. Sci. Data, 15, 1357–1387, https://doi.org/10.5194/essd-15-1357-2023, https://doi.org/10.5194/essd-15-1357-2023, 2023
Short summary
Short summary
Economic statistics are frequently produced at an administrative level that lacks detail to examine development patterns and the exposure to natural hazards. This paper disaggregates national and subnational administrative statistics of agricultural GDP into a global dataset at the local level using satellite-derived indicators. As an illustration, the paper estimates that the exposure of areas with extreme drought to agricultural GDP is USD 432 billion, where nearly 1.2 billion people live.
Shijun Zheng, Dailiang Peng, Bing Zhang, Yuhao Pan, Le Yu, Yan Wang, Xuxiang Feng, and Changyong Dou
EGUsphere, https://doi.org/10.5194/egusphere-2022-1110, https://doi.org/10.5194/egusphere-2022-1110, 2022
Preprint archived
Short summary
Short summary
This study observed the marked interannual differences in the vegetation response to the trend towards a warmer and wetter climate in northwest China. And found that the influence of precipitation to vegetation has gradually become stronger from 1982 to 2019 in northwest China, whereas which of temperature has gradually become weaker.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021, https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary
Short summary
In this study, we implemented the specific morphology, phenology and harvest process of oil palm in the global land surface model ORCHIDEE-MICT. The improved model generally reproduces the same leaf area index, biomass density and life cycle fruit yield as observations. This explicit representation of oil palm in a global land surface model offers a useful tool for understanding the ecological processes of oil palm growth and assessing the environmental impacts of oil palm plantations.
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, https://doi.org/10.5194/essd-13-2437-2021, 2021
Short summary
Short summary
In this study, the first 30 m resolution terrace map of China was developed through supervised pixel-based classification using multisource, multi-temporal data based on the Google Earth Engine platform. The classification performed well with an overall accuracy of 94 %. The terrace mapping algorithm can be used to map large-scale terraces in other regions globally, and the terrace map will be valuable for studies on soil erosion, carbon cycle, and ecosystem service assessments.
Qiangyi Yu, Liangzhi You, Ulrike Wood-Sichra, Yating Ru, Alison K. B. Joglekar, Steffen Fritz, Wei Xiong, Miao Lu, Wenbin Wu, and Peng Yang
Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, https://doi.org/10.5194/essd-12-3545-2020, 2020
Short summary
Short summary
SPAM makes plausible estimates of crop distribution within disaggregated units. It moves the data from coarser units such as countries and provinces to finer units such as grid cells and creates a global gridscape at the confluence between earth and agricultural-production systems. It improves spatial understanding of crop production systems and allows policymakers to better target agricultural- and rural-development policies for increasing food security with minimal environmental impacts.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Scientific data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. a
Baltenweck, I., Achandi, E. L., Bullock, R. M., Campbell, Z. A., Crane, T. A., Eldermire, E. R., Gichuki, L., de Haan, N., Katz, E., Njiru, N., Njuguna-Mungai, E., Poole, E. J., and Galiè, A.: Livestock as a Pathway to Women's Empowerment in Low and Middle-Income Countries: A Scoping Review, The Journal of Development Studies, 60, 813–830, https://doi.org/10.1080/00220388.2024.2319072, 2024. a
Baudron, F. and Liégeois, F.: Fixing our global agricultural system to prevent the next COVID-19, Outlook on Agriculture, 49, 111–118, https://doi.org/10.1177/0030727020931122, 2020. a
Bonilla-Cedrez, C., Steward, P., Rosenstock, T. S., Thornton, P., Arango, J., Kropff, M., and Ramirez-Villegas, J.: Priority areas for investment in more sustainable and climate-resilient livestock systems, Nat. Sustain., 6, 1279–1286, https://doi.org/10.1038/s41893-023-01161-1, Group, 2023. a, b, c
Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period, Proceedings of the National Academy of Sciences, 110, 20882–20887, https://doi.org/10.1073/pnas.1012878108, 2013. a
Brandt, P., Hamunyela, E., Herold, M., de Bruin, S., Verbesselt, J., and Rufino, M. C.: Sustainable intensification of dairy production can reduce forest disturbance in Kenyan montane forests, Agriculture, Ecosystems & Environment, 265, 307–319, https://doi.org/10.1016/j.agee.2018.06.011, 2018. a
Britannica: Livestock | Definition, Examples, & Facts | Britannica, https://www.britannica.com/animal/livestock (last access: 15 October 2025), 2024. a
Cheng, M., Liu, X., Sheng, H., and Yuan, Z.: MAPS: A new model using data fusion to enhance the accuracy of high-resolution mapping for livestock production systems, One Earth, 6, 1190–1201, https://doi.org/10.1016/j.oneear.2023.08.012, 2023a. a
Cheng, M., Quan, J., Yin, J., Liu, X., Yuan, Z., and Ma, L.: High-resolution maps of intensive and extensive livestock production in China, Resources, Environment and Sustainability, 12, 100104, https://doi.org/10.1016/j.resenv.2022.100104, 2023b. a
Clark, M. A., Springmann, M., Hill, J., and Tilman, D.: Multiple health and environmental impacts of foods, Proceedings of the National Academy of Sciences, 116, 23357–23362, https://doi.org/10.1073/pnas.1906908116, 2019. a
Du, Z., Yu, L., Zhao, Y., Li, X., Liu, X., Li, X., Hao, P., Chen, Z., Guo, Z., You, L., Ma, X., and Wang, H.: Annual global grided livestock mapping from 1961 to 2021, Zenodo [data set], https://doi.org/10.5281/zenodo.17128483, 2025. a, b
Gilbert, M., Xiao, X., and Robinson, T. P.: Intensifying poultry production systems and the emergence of avian influenza in China: a “One Health/Ecohealth” epitome, Arch. Public Health, 75, 48, https://doi.org/10.1186/s13690-017-0218-4, 2017. a
Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson, T. P.: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010, Sci. Data, 5, 180227, https://doi.org/10.1038/sdata.2018.227, 2018. a, b, c, d, e
Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., and Jebb, S. A.: Meat consumption, health, and the environment, Science, 361, eaam5324, https://doi.org/10.1126/science.aam5324, 2018. a, b
Goran, R. and Jelisavka, B.: Structural changes in livestock production: case study region Polimlje-Ibar, Bulletin of Agrarian Science, 46, 3–13, 2014. a
Halpern, B. S., Frazier, M., Verstaen, J., Rayner, P.-E., Clawson, G., Blanchard, J. L., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Jacobsen, N. S., Kuempel, C. D., McIntyre, P. B., Metian, M., Moran, D., Nash, K. L., Többen, J., and Williams, D. R.: The environmental footprint of global food production, Nat. Sustain., 5, 1027–1039, https://doi.org/10.1038/s41893-022-00965-x, 2022. a
Herrera, D., Ellis, A., Fisher, B., Golden, C. D., Johnson, K., Mulligan, M., Pfaff, A., Treuer, T., and Ricketts, T. H.: Upstream watershed condition predicts rural children's health across 35 developing countries, Nat Commun, 8, 811, https://doi.org/10.1038/s41467-017-00775-2, 2017. a
Li, C., Fu, B., Wang, S., Stringer, L. C., Zhou, W., Ren, Z., Hu, M., Zhang, Y., Rodriguez-Caballero, E., Weber, B., and Maestre, F. T.: Climate-driven ecological thresholds in China's drylands modulated by grazing, Nat Sustain, 6, 1363–1372, https://doi.org/10.1038/s41893-023-01187-5, 2023. a
Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., Zhao, Y., He, W., Wang, S., Zhang, X., Liu, X., and Vitousek, P.: Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980, Proceedings of the National Academy of Sciences, 119, e2121998119, https://doi.org/10.1073/pnas.2121998119, 2022. a
Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., Eldridge, D. J., Saiz, H., Berdugo, M., Gozalo, B., Ochoa, V., Guirado, E., García-Gómez, M., Valencia, E., Gaitán, J. J., Asensio, S., Mendoza, B. J., Plaza, C., Díaz-Martínez, P., Rey, A., Hu, H.-W., He, J.-Z., Wang, J.-T., Lehmann, A., Rillig, M. C., Cesarz, S., Eisenhauer, N., Martínez-Valderrama, J., Moreno-Jiménez, E., Sala, O., Abedi, M., Ahmadian, N., Alados, C. L., Aramayo, V., Amghar, F., Arredondo, T., Ahumada, R. J., Bahalkeh, K., Ben Salem, F., Blaum, N., Boldgiv, B., Bowker, M. A., Bran, D., Bu, C., Canessa, R., Castillo-Monroy, A. P., Castro, H., Castro, I., Castro-Quezada, P., Chibani, R., Conceição, A. A., Currier, C. M., Darrouzet-Nardi, A., Deák, B., Donoso, D. A., Dougill, A. J., Durán, J., Erdenetsetseg, B., Espinosa, C. I., Fajardo, A., Farzam, M., Ferrante, D., Frank, A. S. K., Fraser, L. H., Gherardi, L. A., Greenville, A. C., Guerra, C. A., Gusmán-Montalvan, E., Hernández-Hernández, R. M., Hölzel, N., Huber-Sannwald, E., Hughes, F. M., Jadán-Maza, O., Jeltsch, F., Jentsch, A., Kaseke, K. F., Köbel, M., Koopman, J. E., Leder, C. V., Linstädter, A., le Roux, P. C., Li, X., Liancourt, P., Liu, J., Louw, M. A., Maggs-Kölling, G., Makhalanyane, T. P., Issa, O. M., Manzaneda, A. J., Marais, E., Mora, J. P., Moreno, G., Munson, S. M., Nunes, A., Oliva, G., Oñatibia, G. R., Peter, G., Pivari, M. O. D., Pueyo, Y., Quiroga, R. E., Rahmanian, S., Reed, S. C., Rey, P. J., Richard, B., Rodríguez, A., Rolo, V., Rubalcaba, J. G., Ruppert, J. C., Salah, A., Schuchardt, M. A., Spann, S., Stavi, I., Stephens, C. R. A., Swemmer, A. M., Teixido, A. L., Thomas, A. D., Throop, H. L., Tielbörger, K., Travers, S., Val, J., Valkó, O., van den Brink, L., Ayuso, S. V., Velbert, F., Wamiti, W., Wang, D., Wang, L., Wardle, G. M., Yahdjian, L., Zaady, E., Zhang, Y., Zhou, X., Singh, B. K., and Gross, N.: Grazing and ecosystem service delivery in global drylands, Science, 378, 915–920, https://doi.org/10.1126/science.abq4062, 2022. a
McMichael, A. J., Powles, J. W., Butler, C. D., and Uauy, R.: Food, livestock production, energy, climate change, and health, The Lancet, 370, 1253–1263, https://doi.org/10.1016/S0140-6736(07)61256-2, 2007. a
Meisner, J., Kato, A., Lemerani, M., Miaka, E. M., Ismail, A. T., Wakefield, J., Rowhani-Rahbar, A., Pigott, D., Mayer, J., and Rabinowitz, P.: A time-series approach to mapping livestock density using household survey data, Sci. Rep., 12, 13310, https://doi.org/10.1038/s41598-022-16118-1, 2022. a
Meng, N., Wang, L., Qi, W., Dai, X., Li, Z., Yang, Y., Li, R., Ma, J., and Zheng, H.: A high-resolution gridded grazing dataset of grassland ecosystem on the Qinghai–Tibet Plateau in 1982–2015, Sci. Data, 10, 68, https://doi.org/10.1038/s41597-023-01970-1, 2023. a, b, c, d
Michelitsch, A., Wernike, K., Ulrich, L., Mettenleiter, T. C., and Beer, M.: SARS-CoV-2 in animals: From potential hosts to animal models, Advances in virus research, 110, 59–102, https://doi.org/10.1016/bs.aivir.2021.03.004, 2021. a
Neumann, K., Elbersen, B. S., Verburg, P. H., Staritsky, I., Pérez-Soba, M., de Vries, W., and Rienks, W. A.: Modelling the spatial distribution of livestock in Europe, Landscape Ecol., 24, 1207–1222, https://doi.org/10.1007/s10980-009-9357-5, 2009. a
USGS: Global 30 Arc-Second Elevation (GTOPO30), https://doi.org/10.5066/F7DF6PQS (last access: 15 October 2025), 2018. a, b, c
Parente, L., Ehrmann, S., Hengl, T., Fritz, S., Bonannella, C., Malek, Ž., Fischer, C., Perez, K., Stanimirova, R., Meyer, C., Wisser, D., Cinardi, G., and Sloat, L.: Global distribution of cattle, goats, sheep and horses at 1-km resolution for 2000–2022 based on sub-national census data and spatiotemporal Machine Learning, https://doi.org/10.21203/rs.3.rs-6201916/v1, 2025. a
Pendrill, F., Gardner, T. A., Meyfroidt, P., Persson, U. M., Adams, J., Azevedo, T., Bastos Lima, M. G., Baumann, M., Curtis, P. G., De Sy, V., Garrett, R., Godar, J., Goldman, E. D., Hansen, M. C., Heilmayr, R., Herold, M., Kuemmerle, T., Lathuillière, M. J., Ribeiro, V., Tyukavina, A., Weisse, M. J., and West, C.: Disentangling the numbers behind agriculture-driven tropical deforestation, Science, 377, eabm9267, https://doi.org/10.1126/science.abm9267, 2022. a
Perry, B. D., Grace, D., and Sones, K.: Current drivers and future directions of global livestock disease dynamics, Proceedings of the National Academy of Sciences, 110, 20871–20877, https://doi.org/10.1073/pnas.1012953108, 2013. a
Prosser, D. J., Wu, J., Ellis, E. C., Gale, F., Van Boeckel, T. P., Wint, W., Robinson, T., Xiao, X., and Gilbert, M.: Modelling the distribution of chickens, ducks, and geese in China, Agriculture, ecosystems & environment, 141, 381–389, https://doi.org/10.1016/j.agee.2011.04.002 2011. a
Rahimi, J., Mutua, J. Y., Notenbaert, A. M., Marshall, K., and Butterbach-Bahl, K.: Heat stress will detrimentally impact future livestock production in East Africa, Nature Food, 2, 88–96, https://doi.org/10.1038/s43016-021-00226-8, 2021. a
Rahimi, J., Fillol, E., Mutua, J. Y., Cinardi, G., Robinson, T. P., Notenbaert, A. M. O., Ericksen, P. J., Graham, M. W., and Butterbach-Bahl, K.: A shift from cattle to camel and goat farming can sustain milk production with lower inputs and emissions in north sub-Saharan Africa's drylands, Nat. Food, 3, 523–531, https://doi.org/10.1038/s43016-022-00543-6, 2022. a, b
Robinson, T. P., Wint, G. R. W., Conchedda, G., Boeckel, T. P. V., Ercoli, V., Palamara, E., Cinardi, G., D'Aietti, L., Hay, S. I., and Gilbert, M.: Mapping the Global Distribution of Livestock, PLOS ONE, 9, e96084, https://doi.org/10.1371/journal.pone.0096084, 2014. a, b, c
Rulli, M. C., D'Odorico, P., Galli, N., and Hayman, D. T. S.: Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats, Nat. Food, 2, 409–416, https://doi.org/10.1038/s43016-021-00285-x, 2021. a, b
Shahrabi-Farahani, S., Hafezalkotob, A., Mohammaditabar, D., and Khalili-Damghani, K.: Selection of sustainable industrial livestock site using the R-Number GIS-MCDM method: A case study of Iran, Environmental and Sustainability Indicators, 22, 100362, https://doi.org/10.1016/j.indic.2024.100362, 2024. a
Simões, J., Abecia, J., Cannas, A., Delgadillo, J., Lacasta, D., Voigt, K., and Chemineau, P.: Managing sheep and goats for sustainable high yield production, Animal, 15, 100293, https://doi.org/10.1016/j.animal.2021.100293, 2021. a
Slingenbergh, J.: World Livestock 2013: changing disease landscapes, https://www.cabidigitallibrary.org/doi/full/10.5555/20143033843 (last access: 15 October 2025), 2013. a
Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., and De Haan, C.: Castel, V., and Haan, C. d.: Livestock's Long Shadow: Environmental Issues and Options, Food & Agriculture Org., ISBN 978-92-5-105571-7, google-Books-ID: 1B9LQQkm_qMC, 2006. a
Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., Braga Junqueira, A., Lacerda, E., Latawiec, A. E., Balmford, A., Brooks, T. M., Butchart, S. H. M., Chazdon, R. L., Erb, K.-H., Brancalion, P., Buchanan, G., Cooper, D., Díaz, S., Donald, P. F., Kapos, V., Leclère, D., Miles, L., Obersteiner, M., Plutzar, C., de M. Scaramuzza, C. A., Scarano, F. R., and Visconti, P.: Global priority areas for ecosystem restoration, Nature, 586, 724–729, https://doi.org/10.1038/s41586-020-2784-9, 2020. a
Theobald, D. M., Kennedy, C., Chen, B., Oakleaf, J., Baruch-Mordo, S., and Kiesecker, J.: Earth transformed: detailed mapping of global human modification from 1990 to 2017, Earth Syst. Sci. Data, 12, 1953–1972, https://doi.org/10.5194/essd-12-1953-2020, 2020. a, b
Thornton, P., Nelson, G., Mayberry, D., and Herrero, M.: Increases in extreme heat stress in domesticated livestock species during the twenty-first century, Global Change Biology, 27, 5762–5772, https://doi.org/10.1111/gcb.15825, 2021. a
Tilman, D. and Clark, M.: Global diets link environmental sustainability and human health, Nature, 515, 518–522, https://doi.org/10.1038/nature13959, 2014. a
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., and Laxminarayan, R.: Global trends in antimicrobial resistance in animals in low- and middle-income countries, Science, 365, eaaw1944, https://doi.org/10.1126/science.aaw1944, 2019. a, b
Weiss, D. J., Nelson, A., Gibson, H. S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T. C. D., Howes, R. E., Tusting, L. S., Kang, S. Y., Cameron, E., Bisanzio, D., Battle, K. E., Bhatt, S., and Gething, P. W.: A global map of travel time to cities to assess inequalities in accessibility in 2015, Nature, 553, 333–336, https://doi.org/10.1038/nature25181, 2018. a
Williams, D. R., Clark, M., Buchanan, G. M., Ficetola, G. F., Rondinini, C., and Tilman, D.: Proactive conservation to prevent habitat losses to agricultural expansion, Nat. Sustain, 4, 314–322, https://doi.org/10.1038/s41893-020-00656-5, 2021. a
Xu, P., Liao, Y., Zheng, Y., Zhao, C., Zhang, X., Zheng, Z., and Luan, S.: Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options, Agricultural and Forest Meteorology, 272, 1–11, https://doi.org/10.1016/j.agrformet.2019.03.022, 2019. a
Yu, L., Du, Z., Dong, R., Zheng, J., Tu, Y., Chen, X., Hao, P., Zhong, B., Peng, D., Zhao, J., Li, X., Yang, J., Fu, H., Yang, G., and Gong, P.: FROM-GLC Plus: Toward near real-time and multi-resolution land cover mapping, GIScience & Remote Sensing, 59, 1026–1047, https://doi.org/10.1080/15481603.2022.2096184, 2022. a, b
Zhao, Q., Dupas, M. C., Axelsson, C., Artois, J., Robinson, T. P., and Gilbert, M.: Distribution and intensification of pig production in China 2007–2017, Environ. Res. Lett., 17, 124001, https://doi.org/10.1088/1748-9326/aca16b, 2022. a
Short summary
We created the first global maps showing where livestocks have been raised each year from 1961 to 2021. These maps help to see how livestock numbers and locations have changed over time. Using global statistics and satellite data, we built a model to estimate livestock density at a high resolution (5 km). This work supports better decisions in food security, disease control, and environmental protection around the world.
We created the first global maps showing where livestocks have been raised each year from 1961...
Altmetrics
Final-revised paper
Preprint