Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-1191-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1191-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments
Yong Yang
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China
College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832003, China
Jingfeng Wang
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
Wenxin Zhang
CORRESPONDING AUTHOR
School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
Department of Physical Geography and Ecosystem Science, Lund University, Lund 22100, Sweden
Gang Zhao
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Weiguang Wang
College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
Lei Cheng
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430074, China
Lu Chen
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
School of Water Resources and Civil Engineering, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
Hui Qin
School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Zhanzhang Cai
Department of Physical Geography and Ecosystem Science, Lund University, Lund 22100, Sweden
Related authors
Mengge Lu, Huaiwei Sun, Yong Yang, Jie Xue, Hongbo Ling, Hong Zhang, and Wenxin Zhang
Hydrol. Earth Syst. Sci., 29, 613–625, https://doi.org/10.5194/hess-29-613-2025, https://doi.org/10.5194/hess-29-613-2025, 2025
Short summary
Short summary
Our study explores how ecosystems recover after flash droughts. Using vegetation and soil moisture data, we found that recovery takes about 37.5 d on average (longer in central and southern regions) in China. Factors like post-drought radiation and temperature affect recovery, with extreme temperatures prolonging it. Herbaceous plants recover faster than forests. Our findings aid water resource management and drought monitoring on a large scale, offering insights into ecosystem resilience.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Jianting Zhao, Lin Zhao, Ze Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3956, https://doi.org/10.5194/egusphere-2024-3956, 2025
Short summary
Short summary
The thermal regime is a key indicator of permafrost evolution. We quantitatively analyzed the spatiotemporal dynamics of the permafrost status in western Tibet since the 1980s, based on numerical simulations using the enhanced, model-forcing-driven Moving-Grid Permafrost Model. Our simulated results indicated that slow and lagged response of permafrost to climate warming, which closely linked to historical thermal conditions.
Mengge Lu, Huaiwei Sun, Yong Yang, Jie Xue, Hongbo Ling, Hong Zhang, and Wenxin Zhang
Hydrol. Earth Syst. Sci., 29, 613–625, https://doi.org/10.5194/hess-29-613-2025, https://doi.org/10.5194/hess-29-613-2025, 2025
Short summary
Short summary
Our study explores how ecosystems recover after flash droughts. Using vegetation and soil moisture data, we found that recovery takes about 37.5 d on average (longer in central and southern regions) in China. Factors like post-drought radiation and temperature affect recovery, with extreme temperatures prolonging it. Herbaceous plants recover faster than forests. Our findings aid water resource management and drought monitoring on a large scale, offering insights into ecosystem resilience.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Bin Yi, Lu Chen, Binlin Yang, Zhiyuan Leng, Siming Li, and Tao Xie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-274, https://doi.org/10.5194/hess-2024-274, 2024
Preprint withdrawn
Short summary
Short summary
A novel GIS-based dynamic time-varying unit process line is presented. The DTDUH is defined as a typical process line for direct runoff produced by a single centimetre of effective rainfall falling evenly over a saturated watershed over a given duration. The results show that the proposed method exhibits consistent or better performance than the linear reservoir routing method and is better than the TDUH method.
Bin Yi, Lu Chen, and Tao Xie
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-51, https://doi.org/10.5194/hess-2024-51, 2024
Manuscript not accepted for further review
Short summary
Short summary
A novel GIS-based dynamic time-varying unit hydrograph (DTDUH) was proposed. The DTDUH was computed based on the runoff generation areas of the watershed instead of the global watershed. Two watersheds were selected as case studies and results showed the DTDUH method indicated good performances for the flood events with low antecedent soil moisture.
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Jie Zhang, Elisabeth Larsen Kolstad, Wenxin Zhang, Iris Vogeler, and Søren O. Petersen
Biogeosciences, 20, 3895–3917, https://doi.org/10.5194/bg-20-3895-2023, https://doi.org/10.5194/bg-20-3895-2023, 2023
Short summary
Short summary
Manure application to agricultural land often results in large and variable N2O emissions. We propose a model with a parsimonious structure to investigate N transformations around such N2O hotspots. The model allows for new detailed insights into the interactions between transport and microbial activities regarding N2O emissions in heterogeneous soil environments. It highlights the importance of solute diffusion to N2O emissions from such hotspots which are often ignored by process-based models.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Kang Xie, Pan Liu, Qian Xia, Xiao Li, Weibo Liu, Xiaojing Zhang, Lei Cheng, Guoqing Wang, and Jianyun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-217, https://doi.org/10.5194/essd-2022-217, 2022
Revised manuscript not accepted
Short summary
Short summary
There are currently no available common datasets of the Soil moisture storage capacity (SMSC) on a global scale, especially for hydrological models. Here, we produce a dataset of the SMSC parameter for global hydrological models. The global SMSC is constructed based on the deep residual network at 0.5° resolution. SMSC products are validated on global grids and typical catchments from different climatic regions.
Bin Yi, Lu Chen, Hansong Zhang, Ping Jiang, Yizhuo Liu, and Hongya Qiu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-470, https://doi.org/10.5194/hess-2021-470, 2021
Manuscript not accepted for further review
Short summary
Short summary
An improved Gis-derived distributed unit hydrograph routing method considering time-varying soil moisture content was proposed for flood routing. The proposed method considered the changes of time-varying soil moisture content and rainfall intensity. The response of underlying surface to the soil moisture content was considered as an important factor in this study. The DUH, TDUH and proposed routing methods were used for flood forecasts, and the simulated results were compared and discussed.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, Yanghe Liu, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-5, https://doi.org/10.5194/hess-2021-5, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use statistical methods and data assimilation method with physical model to verify that prolonged drought can induce non-stationarity in the control catchment rainfall-runoff relationship, which causes three inconsistent results at the Red Hill paired-catchment site. The findings are fundamental to correctly use long-term historical data and effectively assess ecohydrological impacts of vegetation change given that extreme climate events are projected to occur more frequently in the future.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Cited articles
Andreas, E. L. and Cash, B. A.: A new formulation for the Bowen ratio over saturated surfaces, J. Appl. Meteorol. Clim., 35, 1279–1289, https://doi.org/10.1175/1520-0450(1996)035{%}3C1279:ANFFTB{%}3E2.0.CO;2, 1996.
Andreas, E. L., Persson, P. O. G., and Hare, J. E.: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions, J. Phys. Oceanogr., 38, 1581–1596, https://doi.org/10.1175/2007JPO3813.1, 2008.
Andreas, E. L., Jordan, R. E., Mahrt, L., and Vickers, D.: Estimating the Bowen ratio over the open and ice-covered ocean, J. Geophys. Res.-Oceans, 118, 4334–4345, https://doi.org/10.1002/jgrc.20295, 2013.
Bai, P. and Guo, X.: Development of a 60 year high-resolution water body evaporation dataset in China, Agr. Forest Meteorol., 334, 109428, https://doi.org/10.1016/j.agrformet.2023.109428, 2023.
Bai, P. and Wang, Y.: The importance of heat storage for estimating lake evaporation on different time scales: Insights from a large shallow subtropical lake, Water Resour. Res., 59, e2023WR035123, https://doi.org/10.1029/2023WR035123, 2023.
Bentamy, A., Piolle, J. F., Grouazel, A., Danielson, R., Gulev, S., Paul, F., Azelmat, H., Mathieu, P. P., von Schuckmann, K., Sathyendranath, S., Evers-King, H., Esau, I., Johannessen, J. A., Clayson, C. A., Pinker, R. T., Grodsky, S. A., Bourassa, M., Smith, S. R., Haines, K., Valdivieso, M., Merchant, C. J., Chapron, B., Anderson, A., Hollmann, R., and Josey, S. A.: Review and assessment of latent and sensible heat flux accuracy over the global oceans, Remote Sens. Environ., 201, 196–218, https://doi.org/10.1016/j.rse.2017.08.016, 2017.
Beven, K.: A sensitivity analysis of the Penman–Monteith actual evapotranspiration estimates, J. Hydrol., 44, 169–190, https://doi.org/10.1016/0022-1694(79)90130-6, 1979.
Bourras, D.: Comparison of five satellite-derived latent heat flux products to moored buoy data, J. Climate, 19, 6291–6313, https://doi.org/10.1175/JCLI3977.1, 2006.
Chen, X., Yao, Y., Li, Y., Zhang, Y., Jia, K., Zhang, X., Shang, K., Yang, J., Bei, X., and Guo, X.: ANN-based estimation of low-latitude monthly ocean latent heat flux by ensemble satellite and reanalysis products, Sensors, 20, 4773, https://doi.org/10.3390/s20174773, 2020.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960–2015, Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Cheng, L., Schuckmann, K., Abraham, J., Trenberth, K., Mann, M., Zanna, L., England, M., Zika, J., Fasullo, John., Yu, Y., Pan, Y., Zhu, J., Newsom, E., Bronselaer, B., and Lin, X.: Past and future ocean warming, Nature Reviews Earth and Environment, 3, 776–794, https://doi.org/10.1038/s43017-022-00345-1, 2022.
Cheng, L., Pan, Y., Tan, Z., Zheng, H., Zhu, Y., Wei, W., Du, J., Yuan, H., Li, G., Ye, H., Gouretski, V., Li, Y., Trenberth, K. E., Abraham, J., Jin, Y., Reseghetti, F., Lin, X., Zhang, B., Chen, G., Mann, M. E., and Zhu, J.: IAPv4 ocean temperature and ocean heat content gridded dataset, Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, 2024.
Duan, S., Zhou, S., Li, Z., Liu, X., Chang, S., Liu, M., Huang, C., Zhang, X., and Shang, G.: Improving monthly mean land surface temperature estimation by merging four products using the generalized three-cornered hat method and maximum likelihood estimation, Remote Sens. Environ., 302, 113989, https://doi.org/10.1016/j.rse.2023.113989, 2024.
El Sharif, H., Zhou, W., Ivanov, V., Sheshukov, A., Mazepa, V., and Wang, J.: Surface energy budgets of Arctic tundra during growing season, J. Geophys. Res.-Atmos., 124, 6999–7017, https://doi.org/10.1029/2019JD030650, 2019.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air–sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm, J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016{%}3C0571:BPOASF{%}3E2.0.CO;2, 2003.
Gelaro, R., McCarty, W., Suárez, M., Todling, R., Molod, A, Takacs, L., Randles, C., Darmenov, A., Bosilovich, M., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Da Silva, A., Gu, W., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
He, X., Xu, T., Xia, Y., Bateni, S. M., Guo, Z., Liu, S., Mao, K., Zhang, Y., Feng, H., and Zhao, J.: A Bayesian three-cornered hat (BTCH) method: improving the terrestrial evapotranspiration estimation, Remote Sens.-Basel, 12, 878, https://doi.org/10.3390/rs12050878, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hicks, B. B. and Hess, G. D.: On the Bowen ratio and surface temperature at sea, J. Phys. Oceanogr., 7, 141–145, https://doi.org/10.1175/1520-0485(1977)007{%}3C0141:OTBRAS{%}3E2.0.CO;2, 1977.
Huang, S. Y., Deng, Y., and Wang, J.: Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes, Clim. Dynam., 49, 1531–1545, https://doi.org/10.1007/s00382-016-3395-x, 2017.
Isabelle, P. E., Viens, L., Nadeau, D. F., Anctil, F., Wang, J., and Maheu, A.: Sensitivity analysis of the maximum entropy production method to model evaporation in boreal and temperate forests, Geophys. Res. Lett., 48, e2020GL091919, https://doi.org/10.1029/2020GL091919, 2021.
Iwasaki, S., Kubota, M., and Watabe, T.: Assessment of various global freshwater flux products for the global ice-free oceans, Remote Sens. Environ., 140, 549–561, https://doi.org/10.1016/j.rse.2013.09.026, 2014.
Jo, Y. H., Yan, X. H., Pan, J., He, M. X., and Liu, W. T.: Calculation of the Bowen ratio in the tropical Pacific using sea surface temperature data, J. Geophys. Res.-Oceans, 107, 17-1, https://doi.org/10.1029/2001JC001150, 2002.
Johnson, G. C. and Lyman, J. M.: Warming trends increasingly dominate global ocean, Nat. Clim. Change, 10, 757–761, https://doi.org/10.1038/s41558-020-0822-0, 2020.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation, Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w, 2020.
Lenhart, T., Eckhardt, K., Fohrer, N., and Frede, H. G.: Comparison of two different approaches of sensitivity analysis, Phys. Chem. Earth Pt. A/B/C, 27, 645–654, https://doi.org/10.1016/S1474-7065(02)00049-9, 2002.
Li, Z., England, M. H., and Groeskamp, S.: Recent acceleration in global ocean heat accumulation by mode and intermediate waters, Nat. Commun., 14, 6888, https://doi.org/10.1038/s41467-023-42468-z, 2023.
Liang, H., Jiang, B., Liang, S., Peng, J., Li, S., Han, J., Yin, X., Cheng, J., Jia, K., Liu, Q., Yao, Y., Zhao, X., and Zhang, X.: a global long-term ocean surface daily/0.05 net radiation product from 1983–2020, Scientific Data, 9, 337, https://doi.org/10.1038/s41597-022-01419-x, 2022.
Liu, C., Liang, X., Ponte, R. M., Vinogradova, N., and Wang, O.: Vertical redistribution of salt and layered changes in global ocean salinity, Nat. Commun., 10, 3445, https://doi.org/10.1038/s41467-019-11436-x, 2019.
Liu, J., Chai, L., Dong, J., Zheng, D., Wigneron, J.-P., Liu, S., Zhou, J., Xu, T., Yang, S., Song, Y., Qu, Y., and Lu, Z.: Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method, Remote Sens. Environ., 255, 112225, https://doi.org/10.1016/j.rse.2020.112225, 2021.
Liu, Z. and Yang, H.: Estimation of water surface energy partitioning with a conceptual atmospheric boundary layer model, Geophys. Res. Lett., 48, e2021GL092643, https://doi.org/10.1029/2021GL092643, 2021.
Long, D., Pan, Y., Zhou, J, Chen, Y., Hou, X., Hong, Y., Scanlon, B., and Longuevergne, L.: Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models, Remote Sens. Environ., 192, 198–216, https://doi.org/10.1016/j.rse.2017.02.011, 2017.
Marti, F., Blazquez, A., Meyssignac, B., Ablain, M., Barnoud, A., Fraudeau, R., Jugier, R., Chenal, J., Larnicol, G., Pfeffer, J., Restano, M., and Benveniste, J.: Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, 2022.
Masson-Delmotte, V., Zhai, P., Pirani, S., Connors, C., Péan, S., Berger, N., Caud, Y., and Chen, L.: IPCC, 2021: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, http://hdl.handle.net/10204/12710 (last access: March 2025), 2021.
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, 2013.
Medhaug, I., Stolpe, M. B., Fischer, E. M., and Knutti, R.: Reconciling controversies about the “global warming hiatus”, Nature, 545, 41–47, https://doi.org/10.1038/nature22315, 2017.
Meehl, G. A.: A calculation of ocean heat storage and effective ocean surface layer depths for the Northern Hemisphere, J. Phys. Oceanogr., 14, 1747–1761, https://doi.org/10.1175/1520-0485(1984)014<1747:ACOOHS>2.0.CO;2, 1984.
Morton, F. I.: Evaporation research – a critical review and its lessons for the environmental sciences, Crit. Rev. Env. Sci. Tec., 24, 237–280, https://doi.org/10.1080/10643389409388467, 1994.
Pelletier, C., Lemarié, F., and Blayo, E.: Sensitivity analysis and metamodels for the bulk parametrization of turbulent air–sea fluxes, Q. J. Roy. Meteor. Soc., 144, 658–669, https://doi.org/10.1002/qj.3233, 2018.
Philip, J. R.: A physical bound on the Bowen ratio, J. Appl. Meteorol. Clim., 26, 1043–1045, https://doi.org/10.1175/1520-0450(1987)026{%}3C1043:APBOTB{%}3E2.0.CO;2, 1987.
Pinker, R. T. and Laszlo, I.: Modeling surface solar irradiance for satellite applications on a global scale, J. Appl. Meteorol. Clim., 31, 194–211, https://doi.org/10.1175/1520-0450(1992)031{%}3C0194:MSSIFS{%}3E2.0.CO;2, 1992.
Pokhrel, S., Dutta, U., Rahaman, H., Chaudhari, H., Hazra, A., Saha, S. K., and Veeranjaneyulu, C.: Evaluation of different heat flux products over the tropical Indian Ocean, Earth and Space Science, 7, e2019EA000988, https://doi.org/10.1029/2019EA000988, 2020.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100{%}3C0081:OTAOSH{%}3E2.3.CO;2, 1972.
Robertson, F. R., Roberts, J. B., Bosilovich, M. G., Bentamy, A., Clayson, C. A., Fennig, K., Schröder, M., Tomita, H., Compo, G., Gutenstein, M., Hersbach, H., Kobayashi, C., Ricciardulli, L., Sardeshmukh, P., and Slivinski, L. C.: Uncertainties in ocean latent heat flux variations over recent decades in satellite-based estimates and reduced observation reanalyses, J. Climate, 33, 8415–8437, https://doi.org/10.1175/JCLI-D-19-0954.1, 2020.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T., Caldwell, T. E., and Loeb, N. G.: CERES synoptic product: Methodology and validation of surface radiant flux, J. Atmos. Ocean. Tech., 32, 1121–1143, https://doi.org/10.1175/JTECH-D-14-00165.1, 2015.
Shaman, J. and Kohn, M.: Absolute humidity modulates influenza survival, transmission, and seasonality, P. Natl. Acad. Sci. USA, 106, 3243–3248, https://doi.org/10.1073/pnas.0806852106, 2009.
Shao, X., Zhang, Y., Liu, C., Chiew, F. H., Tian, J., Ma, N., and Zhang, X.: Can indirect evaluation methods and their fusion products reduce uncertainty in actual evapotranspiration estimates?, Water Resour. Res., 58, e2021WR031069, https://doi.org/10.1029/2021WR031069, 2022.
Smith, S. R., Hughes, P. J., and Bourassa, M. A.: A comparison of nine monthly air–sea flux products, Int. J. Climatol., 31, 1002–1027, https://doi.org/10.1002/joc.2225, 2011.
Sun, H., Chen, J., Yang, Y., Yan, D., Xue, J., Wang, J., and Zhang, W.: Assessment of long-term water stress for ecosystems across China using the maximum entropy production theory-based evapotranspiration product, J. Clean. Prod., 349, 131414, https://doi.org/10.1016/j.jclepro.2022.131414, 2022.
Sun, H., Sun, X., Chen, J., Deng, X., Yang, Y., Qin, H., Chen, F., and Zhang, W.: Different types of meteorological drought and their impact on agriculture in Central China, J. Hydrol., 627, 130423, https://doi.org/10.1016/j.jhydrol.2023.130423, 2023.
Sung, M. K., An, S. I., Shin, J., Park, J. H., Yang, Y. M., Kim, H. J., and Chang, M.: Ocean fronts as decadal thermostats modulating continental warming hiatus, Nat. Commun., 14, 7777, https://doi.org/10.1038/s41467-023-43686-1, 2023.
Tang, R., Wang, Y., Jiang, Y., Liu, M., Peng, Z., Hu, Y., Huang, L., and Li, Z. L.: A review of global products of air–sea turbulent heat flux: accuracy, mean, variability, and trend, Earth-Sci. Rev., 249, 104662, https://doi.org/10.1016/j.earscirev.2023.104662, 2023.
Tian, W., Liu, X., Wang, K., Bai, P., Liu, C., and Liang, X.: Estimation of global reservoir evaporation losses, J. Hydrol., 607, 127524, https://doi.org/10.1016/j.jhydrol.2022.127524, 2022.
Tomita, H., Hihara, T., and Kubota, M.: Improved satellite estimation of near-surface humidity using vertical water vapor profile information, Geophys. Res. Lett., 45, 899–906, https://doi.org/10.1002/2017GL076384, 2018.
Tomita, H., Hihara, T., Kako, S. I., Kubota, M., and Kutsuwada, K.: An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations, J. Oceanogr., 75, 171–194, https://doi.org/10.1007/s10872-018-0493-x, 2019.
Tomita, H., Kutsuwada, K., Kubota, M., and Hihara, T.: Advances in the estimation of global surface net heat flux based on satellite observation: J-OFURO3 V1.1, Frontiers in Marine Science, 8, 612361, https://doi.org/10.3389/fmars.2021.612361, 2021.
von Schuckmann, K., Minière, A., Gues, F., Cuesta-Valero, F. J., Kirchengast, G., Adusumilli, S., Straneo, F., Ablain, M., Allan, R. P., Barker, P. M., Beltrami, H., Blazquez, A., Boyer, T., Cheng, L., Church, J., Desbruyeres, D., Dolman, H., Domingues, C. M., García-García, A., Giglio, D., Gilson, J. E., Gorfer, M., Haimberger, L., Hakuba, M. Z., Hendricks, S., Hosoda, S., Johnson, G. C., Killick, R., King, B., Kolodziejczyk, N., Korosov, A., Krinner, G., Kuusela, M., Landerer, F. W., Langer, M., Lavergne, T., Lawrence, I., Li, Y., Lyman, J., Marti, F., Marzeion, B., Mayer, M., MacDougall, A. H., McDougall, T., Monselesan, D. P., Nitzbon, J., Otosaka, I., Peng, J., Purkey, S., Roemmich, D., Sato, K., Sato, K., Savita, A., Schweiger, A., Shepherd, A., Seneviratne, S. I., Simons, L., Slater, D. A., Slater, T., Steiner, A. K., Suga, T., Szekely, T., Thiery, W., Timmermans, M.-L., Vanderkelen, I., Wjiffels, S. E., Wu, T., and Zemp, M.: Heat stored in the Earth system 1960–2020: where does the energy go?, Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, 2023.
Wang, J. and Bras, R. L.: An extremum solution of the Monin–Obukhov similarity equations, J. Atmos. Sci., 67, 485–499, https://doi.org/10.1175/2009JAS3117.1, 2010.
Wang, J. and Bras, R. L.: A model of evapotranspiration based on the theory of maximum entropy production, Water Resour. Res., 47, W03521, https://doi.org/10.1029/2010WR009392, 2011.
Wang, J., Bras, R. L., Nieves, V., and Deng, Y.: A model of energy budgets over water, snow, and ice surfaces, J. Geophys. Res.-Atmos., 119, 6034–6051, https://doi.org/10.1002/2013JD021150, 2014.
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373, 2012.
Wang, W., Chakraborty, T. C., Xiao, W., and Lee, X.: Ocean surface energy balance allows a constraint on the sensitivity of precipitation to global warming, Nat. Commun., 12, 2115, https://doi.org/10.1038/s41467-021-22406-7, 2021.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee III, R. B., Smith, G. L., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment, B. Am. Meteorol. Soc., 77, 853–868, https://doi.org/10.1175/1520-0477(1996)077{%}3C0853:CATERE{%}3E2.0.CO;2, 1996.
Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Yao, Y., Zhang, X., and Zhao, C.: Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States, J. Hydrol., 578, 124105, https://doi.org/10.1016/j.jhydrol.2019.124105, 2019.
Yang, Y. and Roderick, M. L.: Radiation, surface temperature and evaporation over wet surfaces, Q. J. Roy. Meteor. Soc., 145, 1118–1129, https://doi.org/10.1002/qj.3481, 2019.
Yang, Y., Sun, H., Zhu, M., Wang, J., and Zhang, W.: An R package of maximum entropy production model to estimate 41 years of global evapotranspiration, J. Hydrol., 614, 128639, https://doi.org/10.1016/j.jhydrol.2022.128639, 2022.
Yang, Y., Roderick, M. L., Guo, H., Miralles, D. G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T., Tu, Z., Fisher, J., Gan, R., Zhang, X., Piao, S., Zhang, B., and Yang, D.: Evapotranspiration on a greening Earth, Nature Reviews Earth and Environment, 4, 626–641, https://doi.org/10.1038/s43017-023-00464-3, 2023.
Yang, Y., Sun, H., and Zhang, W.: Global ocean latent and sensible heat fluxes from the maximum entropy production framework from 1988–2017, figshare [data set], https://doi.org/10.6084/m9.figshare.26861767.v2, 2024.
Yin, Y., Wu, S., Chen, G., and Dai, E.: Attribution analyses of potential evapotranspiration changes in China since the 1960s, Theor. Appl. Climatol., 101, 19–28, https://doi.org/10.1007/s00704-009-0197-7, 2010.
Yu, L.: A global relationship between the ocean water cycle and near-surface salinity, J. Geophys. Res.-Oceans, 116, C10025, https://doi.org/10.1029/2010JC006937, 2011.
Yu, L., Jin, X., and Weller, R. A.: Multidecade Global Flux Datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables, Woods Hole Oceanograp, https://oaflux.whoi.edu/data-access/ (last access: November 2018), 2008.
Zeng, X., Zhao, M., and Dickinson, R. E.: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data, J. Climate, 11, 2628–2644, https://doi.org/10.1175/1520-0442(1998)011{%}3C2628:IOBAAF{%}3E2.0.CO;2, 1998.
Zhao, G. and Gao, H.: Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches, Remote Sens. Environ., 226, 109–124, https://doi.org/10.1016/j.rse.2019.03.015, 2019.
Zhao, G., Gao, H., Naz, B. S., Kao, S. C., and Voisin, N.: Integrating a reservoir regulation scheme into a spatially distributed hydrological model, Adv. Water Resour., 98, 16–31, https://doi.org/10.1016/j.advwatres.2016.10.014, 2016.
Zhao, G., Li, Y., Zhou, L., and Gao, H.: Evaporative water loss of 1.42 million global lakes, Nat. Commun., 13, 3686, https://doi.org/10.1038/s41467-022-31125-6, 2022.
Short summary
Traditional methods for estimating ocean heat flux often introduce large uncertainties due to complex parameterizations. To tackle this issue, we developed a novel framework based on maximum entropy production (MEP) theory. By incorporating heat storage effects and refining the Bowen ratio, we enhanced the MEP method's accuracy. This research derives a new long-term global ocean latent heat flux dataset that offers high accuracy, enhancing our understanding of ocean energy dynamics.
Traditional methods for estimating ocean heat flux often introduce large uncertainties due to...
Altmetrics
Final-revised paper
Preprint