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Abstract. Ocean evaporation, represented by latent heat flux (LE), plays a crucial role in global precipitation
patterns, water cycle dynamics, and energy exchange processes. However, existing bulk methods for quantify-
ing ocean evaporation are associated with considerable uncertainties. The maximum entropy production (MEP)
theory provides a novel framework for estimating surface heat fluxes, but its application over ocean surfaces
remains largely unvalidated. Given the substantial heat storage capacity of the deep ocean, which can create
temporal mismatches between variations in heat fluxes and radiation, it is crucial to account for heat storage
when estimating heat fluxes. This study derived global ocean heat fluxes using the MEP theory, incorporating
the effects of heat storage and adjustments to the Bowen ratio (the ratio of sensible heat to latent heat). We uti-
lized multi-source data from seven auxiliary turbulent flux datasets and 129 globally distributed buoy stations to
refine and validate the MEP model. The model was first evaluated using observed data from buoy stations, and
the Bowen ratio formula that most effectively enhanced the model performance was identified. By incorporat-
ing the heat storage effect and adjusting the Bowen ratio within the MEP model, the accuracy of the estimated
heat fluxes was significantly improved, achieving an R2 of 0.99 (regression slope: 0.97) and a root mean square
error (RMSE) of 4.7 Wm−2 compared to observations. The improved MEP method successfully addressed the
underestimation of LE and the overestimation of sensible heat by the original model, providing new global es-
timates of LE at 93 Wm−2 and sensible heat at 12 Wm−2 for the annual average from 1988–2017. Compared
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to the 129 buoy stations, the MEP-derived global LE dataset achieved the highest accuracy, with a mean er-
ror (ME) of 1.3 Wm−2, an RMSE of 15.9 Wm−2, and a Kling–Gupta efficiency (KGE) of 0.89, outperforming
four major long-term global heat flux datasets, including J-OFURO3, ERA5, MERRA-2, and OAFlux. Analy-
sis of long-term trends revealed a significant increase in global ocean evaporation from 1988–2010 at a rate of
3.58 mmyr−1, followed by a decline at −2.18 mmyr−1 from 2010–2017. This dataset provides a new bench-
mark for the ocean surface energy budget and is expected to be a valuable resource for studies on global ocean
warming, sea surface–atmosphere energy exchange, the water cycle, and climate change. The 0.25° monthly
global ocean heat flux dataset based on the maximum entropy production method (GOHF-MEP) for 1988–2017
is publicly accessible at https://doi.org/10.6084/m9.figshare.26861767.v2 (Yang et al., 2024).

1 Introduction

The ocean system plays a pivotal role in regulating the global
climate by receiving and redistributing heat and freshwater,
thereby influencing Earth’s energy balance and the dynamics
of the water cycle (Li et al., 2023; Von Schuckmann et al.,
2023; Marti et al., 2022; Johnson and Lyman, 2020). A key
component in this system is ocean evaporation, which ac-
counts for approximately 86 % of atmospheric water vapor,
being the primary driver of the global hydrological cycle
(Yu, 2011). As climate change warms the ocean, evaporation
rates are expected to rise, potentially intensifying the global
hydrological cycle (Masson-Delmotte et al., 2021). This in-
tensification could alter precipitation patterns, affecting re-
gional water availability and freshwater ecosystems (Kona-
pala et al., 2020; Roderick et al., 2014). Therefore, precise
estimation of ocean evaporation is critical to understand and
quantify the global energy and water budget (Iwasaki et al.,
2014).

Existing methods for calculating surface latent heat (LE)
and sensible heat flux (H ) rely on bulk transfer formula-
tions, which require extensive input variables and parame-
terizations, such as temperature gradients, humidity gradi-
ents, wind speeds, and transfer coefficients (Fairall et al.,
1996; Andreas et al., 2008). Although widely used, these
bulk methods encounter significant limitations primarily due
to challenges in accurately parameterizing and empirically
deriving transfer coefficients (Zeng et al., 1998; Robertson
et al., 2020). These methods heavily depend on assumptions
regarding atmospheric stability and boundary layer dynam-
ics, which may not consistently apply across diverse and
complex environmental conditions (Fairall et al., 2003; An-
dreas et al., 2013). Furthermore, uncertainties in estimating
turbulent transfer coefficients can lead to substantial errors in
the estimation of latent heat flux. The high demands for pa-
rameterization and challenges in data acquisition contribute
to considerable uncertainties when implementing bulk meth-
ods for calculations. While numerous energy balance-based
algorithms have been developed to estimate global terrestrial
evapotranspiration (Wang and Dickinson, 2012; Yang et al.,
2023), their application to ocean surface heat flux estimation
remains limited. Therefore, proposing an innovative method

for estimating ocean surface heat flux based on surface en-
ergy balance could yield significant theoretical and practi-
cal implications. Such an approach could serve as a valu-
able complement to existing bulk methods and their associ-
ated datasets, providing a fresh methodological perspective
for quantifying ocean heat flux. This advancement would not
only enhance our ability to estimate ocean energy fluxes with
greater accuracy but also deepen our understanding of their
role in the global energy and water cycles.

The maximum entropy production (MEP) model, an
energy-balance-based approach, has recently emerged as a
novel method for simulating surface heat fluxes. Developed
from Bayesian probability theory and information theory, the
MEP prioritizes the most probable partitioning of radiation
fluxes (Wang and Bras, 2011). The MEP model has been rig-
orously validated across diverse surface types and varying
degrees of surface wetness (Wang et al., 2014; Huang et al.,
2017; Yang et al., 2022; Sun et al., 2022, 2023). Notably,
the MEP model requires fewer input variables – net radia-
tion, surface temperature, and specific humidity – yet it pro-
vides accurate estimates of LE, H , and ground heat fluxes
simultaneously. Unlike bulk methods (Fairall et al., 2003),
which rely on wind speed, temperature gradient, and humid-
ity gradient, the MEP model satisfies the energy balance con-
straint without these dependencies. This characteristic en-
hances its applicability and robustness across diverse envi-
ronmental conditions. However, the previous application of
the MEP model over ocean surfaces has revealed significant
limitations, including notable underestimations of latent heat
and overestimations of H (Huang et al., 2017). The global
multi-year averaged LE estimated by the MEP model indi-
cated a value around 58 Wm−2, much lower than the range
of 92–109 Wm−2 reported by remote sensing or reanalysis-
based products. Conversely, MEP estimated an averaged H
of approximately 28 Wm−2, substantially higher than the 6–
18 Wm−2 range reported in other studies. These discrepan-
cies highlight substantial uncertainties in applying the MEP
model to oceanic energy partitioning, highlighting the urgent
need for further refinement and rigorous validation. These
substantial errors in MEP-estimated oceanic fluxes may be
attributed to the lack of consideration of heat storage effects.
The significant impact of heat storage in deep ocean water

Earth Syst. Sci. Data, 17, 1191–1216, 2025 https://doi.org/10.5194/essd-17-1191-2025

https://doi.org/10.6084/m9.figshare.26861767.v2


Y. Yang et al.: Global ocean surface heat fluxes derived from the maximum entropy production framework 1193

can introduce substantial bias in estimating seasonal evapora-
tion rates when using the Penman combination-based method
(McMahon et al., 2013; Bai and Wang, 2023). For instance,
deep-water bodies typically store heat during the spring and
release it in the fall, which can lead to overestimation of
evaporation in the summer and underestimation in the fall if
changes in heat storage are not accounted for (Zhao and Gao,
2019; Morton, 1994). Therefore, when estimating heat fluxes
using the Bowen ratio (Bo, defined as the ratio of H to LE)
energy-budget-based method (including the MEP method), it
is essential to incorporate heat storage effects to ensure accu-
rate partitioning of available energy.
Bo is crucial for understanding the global ocean energy

partitioning process (Hicks and Hess, 1977). In the con-
text of the energy-balance-based MEP model, the signifi-
cant overestimation of Bo suggests that focusing on this ra-
tio can enhance our understanding of energy partitioning dy-
namics (Andreas and Cash, 1996). Studies have highlighted
that the actual Bowen ratio over ocean surfaces (Boa) often
diverges from the equilibrium Bowen ratio (B∗o ) observed
under ideal conditions where the air is saturated with wa-
ter vapor. The Boa may deviate significantly from B∗o un-
der non-equilibrium conditions, which are typical in most
environments (Jo et al., 2002; Andreas et al., 2013), pos-
ing challenges in establishing a robust relationship between
Boa and B∗o (Liu and Yang, 2021). Therefore, developing an
accurate B∗o –Boa relationship is crucial for refining the en-
ergy partitioning process in the MEP model. The advance-
ment of buoy observation networks has provided compelling
evidence for validating ocean heat fluxes and has become
crucial in assessing their associated uncertainties (Bourras,
2006; Smith et al., 2011; Bentamy et al., 2017; Liang et al.,
2022). This study utilizes the energy-balance-based MEP
method to estimate ocean evaporation, introducing a novel
approach to redistributing surface energy budgets and offer-
ing a streamlined parameterization scheme distinct from con-
ventional bulk methods used for estimating ocean heat fluxes.
In contrast to existing approaches that used reanalysis-based
schemes (e.g., NCEP, ECMWF, and GEOS) and their as-
sociated parameterizations to estimate LE, this study em-
ploys satellite observations to directly estimate ocean heat
fluxes, thereby minimizing error propagation associated with
the model structures and assimilation schemes.

Current global ocean surface heat flux datasets can be
classified into five categories based on their deriving ap-
proaches (Tang et al., 2023): remote-sensing-based (e.g.,
J-OFURO3), atmospheric-reanalysis-based (e.g., ERA5),
machine-learning-based (e.g., OHFv2), in situ-based (e.g.,
NOC), and hybrid-based (e.g., OAFlux) approaches. Com-
pared to terrestrial flux products, these ocean flux prod-
ucts generally have a coarser spatial resolution ranging from
0.25 to 1.875°. Recent studies have conducted comprehen-
sive assessments of global ocean heat flux datasets regard-
ing their accuracy and error characteristics across spatial
and temporal scales (Bentamy et al., 2017; Tang et al.,

2023). However, substantial discrepancies remain among
these datasets, particularly in terms of spatial patterns, an-
nual means, and interannual variabilities. Therefore, devel-
oping a new global dataset using the innovative method could
advance our understanding of deriving algorithms, improve
temporal and spatial coverage of flux variables with a higher
accuracy, and provide alternative reference to assess ocean
surface heat fluxes in various applications. The primary ob-
jectives of this study are as follows: (1) to develop and vali-
date the MEP approach for estimating ocean heat fluxes us-
ing observations from 129 stations, (2) to investigate the im-
pact of heat storage on ocean energy allocation and the in-
fluence of the Bowen ratio on energy partitioning for heat
flux estimations, and (3) to produce a MEP-derived ocean
heat flux product (spatial resolution: 0.25°; temporal cover-
age: 1988–2017) and present its spatiotemporal patterns.

2 Methods

2.1 Components of ocean surface energy balance

The global ocean energy balance equation is as follows
(Meehl, 1984; Wang et al., 2021):

Rn = LE+H +G (1)

Rn = Rns+Rnl = R
↓
s −R

↑
s +R

↓

l −R
↑

l , (2)

where Rn, Rns, and Rnl are net radiation, net shortwave radi-
ation (the difference of incoming radiation R↓s and reflected
solar radiation R↑s ), and net longwave radiation (the differ-
ence of incoming longwave radiation R↓l and outgoing long-
wave radiation R↑l ), respectively; H is sensible heat, LE is
latent heat; andG is the heat flow through the surface. Unlike
terrestrial surfaces, the energy balance equation for the ocean
surface accounts for distinct energy exchange processes, in-
cluding the impact of seawater mixing and dynamics on en-
ergy transfer. For the ocean surface, the flux term G has two
components:

G=Gt +Gv, (3)

where Gt is the change in the ocean heat content (1OHC,
or heat storage), and Gv is the lateral heat transported by
ocean currents and other processes. The Gt can be quanti-
fied as the vertical integration of temperature profile in a col-
umn of depth (Meehl, 1984, Li et al., 2023). Both the heat
storage and the ocean heat transport Gv are difficult to quan-
tify, which requires large masses of hydrographic variables
and performing integrations at different depths. Since the lat-
eral heat transport by ocean currents is zero at the global
scale (Wang et al., 2021), G can be regarded as equivalent
to the change in ocean heat content or heat storage at the
global level. For the consistency throughout the paper, this
study will consider the concept ofG flux as equivalent to the
changes in the heat storage.
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2.2 The maximum entropy production theory

2.2.1 The original MEP model

The MEP model simulates ocean surface heat fluxes using
input variables of net radiation (Rn), surface skin temperature
(Ts), and surface specific humidity (qs) under the constraint
of the surface energy balance. The latent heat, sensible heat,
and surface thermal energy flux (Q) are calculated as[

1+B(σ )+
B(σ )
σ

Is

I0
|H |−

1
6

]
H = Rn (4)

E = B(σ )H (5)
Q= Rnl−E−H (6)

B(σ )= 6

(√
1+

11
36
σ − 1

)
, σ =

λ2

cpRv

qs

T 2
s

(7)

I0 = ρacp
√
C1kz

(
C2

kzg

ρacpTr

) 1
6
, (8)

where B(σ ) is the reciprocal Bowen ratio, σ is a dimen-
sionless parameter that characterizes the phase change at the
ocean surface, λ (J kg−1) is the latent heat of vaporization
of liquid surface, cp (103 Jkg−1 K−1) is the specific heat of
air under constant pressure, and Rv (461 Jkg−1 K−1) is the
gas constant of water vapor. I0 is the “apparent thermal in-
ertia” of air and describes the turbulent transport process of
the boundary layer based on the Monin–Obukhov similar-
ity theory (MOST) (Wang and Bras, 2010). Is is the ther-
mal inertia of the ocean surface (Jm−2 K−1 s−1/2) and can
be parameterized as Is =

√
ρcλ (with density ρ, the specific

heat c), which represents the physical property of the sur-
face (Is = 1.56× 103 Jm−2 K−1 s−1/2 for water surface and
1.92× 103 Jm−2 K−1 s−1/2 for ice surface).

Over the sea ice surface, assumed to be saturated, the spe-
cific humidity qs can be derived as a function of surface tem-
perature Ts using the Clausius–Clapeyron equation (El Sharif
et al., 2019; Shaman and Kohn, 2009).

qs = ε
es(Ts)
P
= ε

e0

P
exp

[
λs

Rv

(
1
T0
−

1
Ts

)]
, (9)

where ε (= 0.622) represents the ratio of the molecular
weight of water vapor to that of dry air, es(Ts) denotes the sat-
uration vapor pressure at temperature Ts, e0 is the saturation
vapor pressure at the reference temperature T0 (273.15 K),
and P is the atmospheric pressure (mbar).

2.2.2 Specific improvements on the MEP model

According to the MEP theory, the net solar radiation (Rns)
entering the water surface medium is absorbed by the wa-
ter body, with the allocable radiation flux denoted as Rnl =

E+H +Q (Eq. 6). Consequently, the expression for ocean
heat uptake (heat storage) is derived as G= Rn−E−H =

Rns+Q. While this theory has received preliminary valida-
tion in shallower water bodies, such as lake surfaces (Wang
et al., 2014), its applicability to deeper water bodies with
larger heat storage capacities in ocean surfaces requires fur-
ther evaluation. This study introduced two key hypotheses:
(1) the substantial heat storage capacity of the ocean could
exert a significant influence on seasonal latent and sensible
fluxes, potentially introducing bias to the MEP equations,
and (2) the notable underestimation of latent heat flux and
overestimation of sensible heat flux by the MEP model point
to a significant deviation from Bowen’s ratio formula, neces-
sitating a reasonable correction. To address this, the study
proposed two approaches for enhancing the MEP formulas:
(1) considering the impact of heat storage in the MEP’s en-
ergy balance equation and (2) adjusting the theoretical equi-
librium Bowen ratio within the MEP model. This can be
specifically represented as follows:[

1+
1
B∗o

]
H = Rn−G (10)

B∗o =
1

B(σ )
(11)

Boa = a×B
∗
o + b, (12)

where B∗o is the equilibrium Bowen ratio, which denotes the
theoretical ratio of sensible heat flux to latent heat flux when
the surface and the atmosphere are in equilibrium regarding
water vapor. The corresponding evaporation at this condition
is known as equilibrium evaporation (defined as the water
vapor evaporating from a saturated surface into a saturated
atmosphere). To accurately predict actual evaporation, a reli-
able functional relationship needs to be established to predict
Boa from B∗o . Empirical studies have introduced coefficients
to correlate B∗o to Boa under diverse environmental circum-
stances; for instance, the Priestley–Taylor coefficient was ex-
pressed as (Priestley and Taylor, 1972)

Boa = 0.79×B∗o − 0.21=
0.79− 0.21×B(σ )

B(σ )
. (13)

Further studies have led to the emergence of more updated
empirical coefficients. Hicks and Hess (1977) estimated the
actual Bowen ratio as Boa = 0.63×B∗o − 0.15 by aligning
it with direct observations of the fluxes. Yang and Roderick
(2019) deduced an empirical coefficient of 0.24 and formu-
lated it as Boa = 0.24×B∗o by fitting the Bowen ratio and sur-
face temperature data across the global ocean surface. Fur-
thermore, Liu and Yang (2021) derived a new equation as
Boa = 0.37×B∗o − 0.05 based on the atmospheric boundary
layer model. Given their favorable spatial applicability and
representativeness, this study opted to utilize these four Boa
∼ B∗o formulas to refine the MEP model and assess their suit-
ability. The revised reciprocal actual Bowen ratio was repre-
sented as

Earth Syst. Sci. Data, 17, 1191–1216, 2025 https://doi.org/10.5194/essd-17-1191-2025



Y. Yang et al.: Global ocean surface heat fluxes derived from the maximum entropy production framework 1195


B(σ )a1 =

1
Boa
=

B(σ )
0.79−0.21×B(σ )

B(σ )a2 =
1
Boa
=

B(σ )
0.63−0.15×B(σ )

B(σ )a3 =
1
Boa
=

B(σ )
0.24

B(σ )a4 =
1
Boa
=

B(σ )
0.37−0.05×B(σ )

 , (14)

where B(σ )a1 ∼ B(σ )a4 represents the four empirical Bowen
ratio formulas for comparisons in this study. Thus, the work-
flow of the improved MEP model was conducted by replac-
ing the original B(σ ) with the corrected B(σ )a and then com-
bining Eqs. (5), (7)–(9), and (14) into the MEP energy bal-
ance equation considering heat storage (Eq. 10), ultimately
leading to the determination of latent and sensible heat flux.

2.3 Sensitivity analysis

To quantify the influence of input variables in the MEP model
on evaporation estimate at the ocean surface, the sensitivity
coefficient (S) was computed as (Beven, 1979; Isabelle et al.,
2021)

Si =
∂LE

∂xi

xi

LE
, (15)

where Si represents the sensitivity coefficient of LE to each
variable xi . The magnitude of Si reflects the degree of im-
pact of the variable’s changes on LE; a larger absolute value
indicates a greater influence of the variable on LE. A pos-
itive value signifies a positive correlation between evapora-
tion and the variable’s changes, while a negative value indi-
cates a negative correlation. For example, a sensitivity coef-
ficient of 0.5 represents that a 10 % increase in the variable
would result in a 5 % increase in LE. The sensitivity levels
can be categorized into four classes based on the absolute
value |Si | (Lenhart et al., 2002; Yin et al., 2010): |Si |> 1 in-
dicates very high sensitivity, 1> |Si |> 0.2 denotes high sen-
sitivity, 0.2> |Si |> 0.05 reflects moderate sensitivity, and
|Si |< 0.05 suggests negligible sensitivity.

2.4 Data fusion methods

To drive the improved MEP model with high-quality input
data, this study aims to obtain a heat storage dataset with op-
timal accuracy. The accuracy of the heat storage dataset was
assessed using three approaches: (1) an individual dataset, (2)
a fused dataset generated using the Bayesian three-cornered
hat (BTCH) method (He et al., 2020), and (3) an ensemble
means obtained by the arithmetic average (AA) method. Pre-
vious studies have demonstrated that the BTCH method ef-
fectively quantifies uncertainties across diverse datasets and
improves accuracy by integrating multiple datasets without
requiring prior knowledge (Long et al., 2017; Liu et al.,
2021; Duan et al., 2024). A recent study further evaluated
various data fusion methods, including BTCH and the AA
methods, for addressing uncertainties in global evapotranspi-
ration estimates derived from different datasets. The findings

revealed that while both BTCH and AA are effective in iden-
tifying lower-quality evapotranspiration datasets, their abil-
ity to consistently produce higher-accuracy datasets remains
uncertain and, in some cases, may even degrade the overall
accuracy (Shao et al., 2022). The performance of these fusion
methods is highly sensitive to the selection of input datasets.
For instance, the AA method is particularly susceptible to
the influence of lower-quality datasets, especially when the
sample size is small. Similarly, the performance of BTCH di-
minishes as the error covariance among the included datasets
increases. Consequently, following a comparative analysis of
the accuracy of individual, BTCH, and AA fusion datasets,
this study selected the optimal heat storage dataset to drive
the MEP model. Since BTCH is not the primary focus of this
study, detailed method descriptions can be found in He et al.
(2020).

3 Data materials

3.1 Input data for MEP model

The performance of both the original and improved maxi-
mum entropy production (MEP) models was evaluated us-
ing observed data from in situ buoy stations, as described in
Sect. 3.2. The optimal empirical Bowen ratio formula for the
MEP model was then determined by multi-site assessments.
Subsequently, the improved MEP model was applied to esti-
mate global heat fluxes using long-term remote sensing data,
as detailed in Sects. 3.3 and 3.4. Specifically, the input vari-
ables of net radiation, heat storage, and sea surface temper-
ature driving the improved MEP model were derived from
the J-OFURO3 dataset, spanning 1988–2017 with a spatial
resolution of 0.25°, as outlined in Sect. 4.3.

3.2 In situ buoy observations

A total of 129 in situ buoy sites were employed for ocean
heat flux calculation and validation with MEP model and
its modified version, as listed in Table 1. About 96 % of
selected sites (124 of 129 all sites) were collected from
the Global Tropical Moored Buoy Array (available at https:
//www.pmel.noaa.gov/, last access: December 2023), which
consists of the TAO Pacific Ocean (69 buoys), PIRATA
Atlantic Ocean (23 buoys), and RAMA Indian Ocean (32
buoys). Other sites include the Project WHOTS–WHOI
Hawaii Ocean Time-series Station (available at https://uop.
whoi.edu/ReferenceDataSets/whotsreference.html, last ac-
cess: December 2023), Project NTAS – Northwest Tropi-
cal Atlantic Station and Project STRATUS (https://uop.whoi.
edu/ReferenceDataSets/ntasreference.html, last access: De-
cember 2023) from the Upper Ocean Processes Group, and
the KEO and Papa moorings from Pacific Ocean climate sta-
tions (https://www.pmel.noaa.gov/ocs/data/fluxdisdel/, last
access: December 2023). For the availability of all buoy
stations, refer to the “Data availability” section. The obser-
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Table 1. Information about observational ocean surface heat fluxes of 129 buoy sites.

Buoy array Buoy Spatial coverage Temporal coverage Number of Number of
number LE(H ) records Rn records

TAO Pacific 69 165° E–95° W, 16 Dec 1989–16 Dec 2023 12 377 522
10° S–10° N

PIRATA Atlantic 23 40° W–10° E, 16 Sep 1997–16 Dec 2023 2644 631
20° S–20° N

RAMA Indian 32 55° E–100° E, 16 Nov 2001–16 Dec 2023 1862 286
25° S–15° N

WHOTS 1 158° W, 22.7° N 15 Aug 2004–15 Aug 2021 205 205

NTAS 1 51° W, 15° N 15 Apr 2001–15 Mar 2020 219 219

STRATUS 1 85.4° W, 19.6° S 15 Oct 2000–15 Jan 2021 235 235

KEO 1 144.6° E, 32.3° N 17 Jun 2004–12 Aug 2023 177 177

Papa 1 144.9° W, 50.1° N 08 Jun 2007–14 Nov 2023 181 181

Note that the number of records represents the effective count (excluding NA values) of latent and sensible heat flux observations.

vational sites covered the spatial range of 25°S− 50.1°N;
the temporal range spans from December 1989 to Decem-
ber 2023. Observational meteorological variables and heat
fluxes included the net longwave radiation, net shortwave
radiation, sea surface skin temperature, specific humidity
at 2 m height (if available, or computed as the function of
sea surface temperature (SST) according to the Clausius–
Clapeyron equation), latent heat flux, and sensible heat flux.
Limited by the availability of longwave radiation observa-
tions, the net radiation had a relatively shorter time series
length compared to latent and sensible heat fluxes. The sur-
face air–sea fluxes of buoy observations were computed us-
ing the COARE 3.0b algorithm, which have been widely ap-
plied for flux estimations and validations (Tang et al., 2023;
Bentamy et al., 2017; Fairall et al., 2003). All the selected
original buoy observation (except for KEO and Papa sites)
records were in monthly temporal resolution, and the origi-
nal daily observations of KEO and Papa had been aggregated
to monthly by a simple average method. The spatially dis-
tributed map of all selected sites is illustrated in Fig. S1 in
the Supplement.

3.3 Global turbulent heat flux datasets for evaluations

This study evaluated and compared seven global turbulent
heat flux products with observations, categorizing them into
three types: remote-sensing-based, atmosphere-reanalysis-
based, and hybrid-based (Table 2). These seven products en-
compassed monthly data spanning from 1988–2017, with
spatial resolutions ranging from 0.25 to 1°. The criterion for
dataset filtering prioritized products with relatively long time
series, typically exceeding 15 years.

The Clouds and Earth’s Radiant Energy Systems Synop-
tic Edition 4 A (CERES SYN1deg_Ed4 A, hereafter referred
to as CERES4, available at https://ceres.larc.nasa.gov/data/,
last access: December 2023) offers net radiation data, derived
from clear-sky upward shortwave, downward shortwave, up-
ward longwave, and downward longwave flux measurements
(Wielicki et al., 1996; Rutan et al., 2015). Another remote-
sensing-based radiation product, the Global Energy and Wa-
ter Cycle Experiment–Surface Radiation Budget (GEWEX-
SRB, available at https://asdc.larc.nasa.gov/project/SRB, last
access: December 2023) (Pinker and Laszlo, 1992), in con-
junction with CERES4, demonstrated good accuracy in re-
trieving Rn, as validated by six global observing networks
(Liang et al., 2022).

The J-OFURO3 is the third-generation dataset developed
by the Japanese Ocean Flux Data Sets with Use of the
Remote Sensing Observations (J-OFURO) research project
(available at https://search.diasjp.net/en/dataset/JOFURO3_
V1_1, last access: October 2020) (Tomita et al., 2019). It
calculated turbulent heat flux with the latest version of the
COARE3.0 algorithm and provided datasets for Rn, LE, H ,
and SST in this study. Validation with in situ observations
showed that J-OFURO3 offered a superior performance of
latent heat compared to the other five satellite products from
2002–2013 (Tomita et al., 2019).

Two atmosphere reanalysis products include the
fifth-generation European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric Re-Analysis52
(ERA5, available at https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-single-levels-monthly-means?tab=
overview, last access: December 2023) (Hersbach et al.,
2020) and the Modern-Era Retrospective analysis for
Research and Applications Version 2 (MERRA-2, available
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Table 2. The information on the seven used global radiation and heat flux products.

Product Variables Spatial resolution Time span Type Reference

CERES4 Rn 1° 2000–2017 Remote sensing Rutan et al. (2015)
GEWEX-SRB Rn 1° 1988–2017 Remote sensing Pinker et al. (1992)
J-OFURO3 Rn, SST, LE, H 0.25° 1988–2017 Remote sensing Tomita et al. (2019)
ERA5 Rn, LE, H , P 0.25° 1988–2017 Atmosphere reanalysis Hersbach et al. (2020)
MERRA-2 Rn, LE, H 1/2°× 2/3° 1988–2017 Atmosphere reanalysis Gelaro et al. (2017)
OAFlux LE, H 1° 1988–2017 Hybrid-based Yu et al. (2008)
IAPv4-OHC OHC 1° 1988–2017 Hybrid-based Cheng et al. (2017)

at https://disc.gsfc.nasa.gov/datasets/M2TMNXOCN_5.12.
4/summary, last access: November 2018) (Gelaro et al.,
2017). Both ERA5 and MERRA-2 products employed the
bulk formula based on the MOST to calculate heat fluxes.
Validation results from previous studies have demonstrated
good consistency with buoy estimates regarding heat fluxes
(Pokhrel et al., 2020; Chen et al., 2020).

The OAFlux (available at https://oaflux.whoi.edu/, last
access: November 2018), a hybrid-based product devel-
oped under the Objectively Analyzed Air–Sea Fluxes
(OAFlux) project at the Woods Hole Oceanographic Insti-
tution (WHOI) (Yu et al., 2008), was utilized for compar-
isons with ocean heat fluxes derived from distinct methods.
This product calculates fluxes based on the COARE3.0 bulk
algorithm and employs a variational objective analysis to de-
termine the optimal fitting of independent variables. Detailed
descriptions on all utilized global turbulent heat flux products
and their validation performances against buoy observations
with reported studies are available in Tang et al. (2023).

3.4 Ocean heat content data

Remote sensing data for heat storage (G) were primarily de-
rived from two categories: the first category included data
obtained from the residual of the energy balance equation
(Rn−LE−H ), including J-OFURO3, ERA5, and MERRA-
2; the second category was calculated from changes in ocean
heat content (OHC). The ocean heat content data were ob-
tained from the IAP OHC gridded analysis (IAPv4, available
at http://www.ocean.iap.ac.cn/, last access: December 2023)
dataset, covering an ocean depth of 0–6000 m (Cheng et al.,
2017), and have been extensively utilized in global ocean
heat analysis, ocean warming, and climate change studies (Li
et al., 2023; Cheng et al., 2022, 2024). The delta OHC was
calculated using the numerical differentiation method (Xu
et al., 2019) as

1OHC(i)=
OHC(i+ 1)−OHC(i− 1)

21i
,

where i denotes the OHC of the ith month. At the WHOTS
site, this study compared the OHC changes at different
depths with the observed G, derived as Rn−LE−H (Ta-
ble S1 in the Supplement). Since the OHC variation from

0− 100m depth exhibited the smallest error with the obser-
vations, the data from 0− 100m depth range were chosen as
the heat storage. This study assessed the suitability of G flux
and 1OHC for global evaporation estimations, with the aim
of minimizing the errors introduced by input variable data in
the MEP model.

This study evaluated the accuracy of all the variables
(Rn, Ts, and G) using the aforementioned datasets on a
global scale by comparing them against buoy observations
(in Sect. 4.3), to optimize input accuracy for driving the MEP
model. To maintain consistency in the analysis, this study re-
sampled all products to 1° spatial resolution when compar-
ing the Bowen ratio across multiple products. Nevertheless,
when conducting site validations with buoy observations, the
original resolution of the data was preserved to minimize un-
certainty attributable to scale effects.

4 Results

4.1 The new MEP model with heat storage and the
revised Bowen ratio formulas

To demonstrate how the MEP model has been developed
and improved, we show the comparisons of different MEP
models in simulating heat fluxes across 129 global buoy sta-
tions (Fig. 1). Limited by the availability of RnL data, we
used LE+H instead of the available energy (Rn−G), en-
abling the utilization of more observational records to ver-
ify the MEP model. The original MEP model (without con-
sidering heat storage) showed a significant negative corre-
lation between LE and H (with R2 exceeding 0.65 as in
Fig. 1a and c), with considerable errors, where the RMSE
of LE was 134.6 Wm−2 and that of H was 37 Wm−2. Af-
ter incorporating the influence of heat storage effects (repre-
sented as MEP_M, as depicted in Fig. 1b and h), the MEP-
simulated LE showed a good consistency with buoy obser-
vations, with an R2 value of 0.97 and a reduced RMSE of
27 Wm−2. However, the MEP_M method revealed a signifi-
cant bias in the partitioning of LE and H from the available
energy. Specifically, LE was underestimated by 25 % (re-
gression slope= 0.75), while H was overestimated by 46 %
compared to observations. This finding agreed with previ-
ous research findings that equilibrium evaporation tended to
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underestimate actual evaporation from saturated surfaces by
20%− 30% (Yang and Roderick, 2019; Philip, 1987). The
significant difference between Boa and B∗o could exist as the
equilibrium evaporation is considered the lower limit of ac-
tual evaporation from saturated surfaces (Priestley and Tay-
lor, 1972). To address the deviation between Boa and B∗o , it
is necessary to convert the equilibrium Bowen ratio into the
actual Bowen ratio, allowing for a more reasonable and ac-
curate allocation of surface energy budget.

After incorporating the effects of heat storage, four vari-
ants of the MEP model were developed by replacing B∗o with
Boa derived from four different empirical formulas. These
variants were defined as follows: M_0.24 (where Boa =

0.24B∗o ), M_0.79 (where Boa = 0.79B∗o − 0.21), M_0.63
(where Boa = 0.63B∗o − 0.15), and M_0.37 (where Boa =

0.37B∗o − 0.05). Adjusting the Bowen ratio significantly
improved the accuracy of the energy flux estimates. The
simulated LE exhibited strong agreement with observa-
tions, with all R2 exceeding 0.97 and RMSE ranging from
4.7 Wm−2 (for M_0.24) to 7.1 Wm−2 (for M_0.79), which
was lower than that derived from B∗o (RMSE= 27Wm−2).
Both M_0.79 and M_0.63 tended to underestimate LE, es-
pecially when LE exceeded 200 Wm−2 (Fig. 1d and e). For
the simulated H , the M_0.24 outperformed the other three,
showing the smallest errors and highest R2.

Specifically, the spatial patterns in simulated errors for
the four variants of the MEP model were obtained (Fig. 2),
along with the errors across different observational buoy
arrays (Fig. 3). Overall, the four variants of the im-
proved MEP models demonstrated relatively lower bias at
low latitudes (10° S–10° N) but exhibited larger bias in
higher-latitude regions (above 15° N), particularly at the
KEO, WHOTS, and STRATUS buoy sites. Comparing the
four formulas across varying latitudes, the M_0.24 for-
mula exhibited the smallest RMSE (ranging from 3.6 to
12 Wm−2) (Fig. 3c), while the M_0.79 formula showed
the largest errors (RMSE ranging from 3.9 to 26.6 Wm−2).
This consistency was also evident in the Kling–Gupta ef-
ficiency (KGE) coefficient, with M_0.24 demonstrating su-
perior performance in terms of accuracy, robustness, and
adaptability. In terms of the M_0.24 formula, the predic-
tion errors across observational arrays ranked as follows:
RAMA < PIRATA < TAO/TRION < Papa < KEO <

STRATUS < WHOTS < NTAS. The arrays with relatively
larger RMSE (NTAS in the Atlantic Ocean, WHOTS, and
STRATUS in the Pacific Ocean) may originate from the
larger observed values of LE (Fig. S2).

4.2 Dynamics of heat fluxes and Bowen ratio between
original and improved MEP model

To thoroughly investigate the role of heat storage in the par-
titioning of surface energy and its implications for the tem-
poral dynamics of heat fluxes, we selected the KEO site for
detailed analysis. This selection was based on the site’s long-

term observational records and notable variability in flux pat-
terns, which offered an ideal context for a rigorous compari-
son of model-simulated error margins.

The improved MEP methods demonstrated comparable
performance in estimating heat fluxes at the KEO site when
compared with other 128 sites (Figs. 1 and S3), with the MEP
(M_0.24) model exhibiting the most effective performance.
Analysis of the time series data revealed significant varia-
tions in latent heat, sensible heat, and Bowen ratio (Fig. 4). In
the original MEP theory, the estimated LE exhibited an op-
posite variation cycle (peak versus trough) compared to the
observations. For instance, over a yearly period, the observed
peak in LE occurred in January 2005 (269 Wm−2) and the
trough in June 2005 (6.9 Wm−2). In contrast, the MEP sim-
ulated the peak in LE to occur in August 2005 (105 Wm−2)
and the trough in December 2004 (0.7 Wm−2), resulting in
a phase difference of 7 months for the peak and 6 months
for the trough values. Sensible heat flux (Fig. 4b) showed
similar phase differences: observed H peaked in January
2005 (79 Wm−2) and reached its minimum in June 2005
(−3 Wm−2), whereas MEP simulated H to peak in August
2005 (46 Wm−2) and reach its minimum in December 2004
(0.6 Wm−2), consistent with the pattern observed for LE. It
was noteworthy that the original MEP model-simulated vari-
ations in LE and H align with Rn (Fig. S4), which was rea-
sonable over land where the small G value can often be dis-
regarded. However, over the ocean, the observed variations
in Rn and LE do not align in terms of their cycles. The
maximum Rn occurred in June 2004 (329 Wm−2), and the
minimum occurred in December 2004 (142 Wm−2), with a
6-month delay in relation to the variations in LE. Specifi-
cally, the peak Rn corresponded to the trough of LE, and the
trough Rn corresponded to the peak of LE. This delay indi-
cated that the heat storage effect delayed the peak of LE and
altered the seasonal variations in LE and H .

For the patterns in the Bowen ratio, both the original
MEP formula and the modified formulas exhibited consis-
tent patterns with the observed values. The observed maxi-
mum Bowen ratio occurred in January 2005 (0.29) and the
minimum in June 2005 (−0.4). However, the original MEP
formula simulated a maximum of 1.01 and a minimum of
0.44, indicating a significant overestimation compared to the
observed Bowen ratio. This discrepancy suggested that on
the ocean surface, the available energy (Rn−G) was pre-
dominantly allocated to LE (Fig. S4). Among the four em-
pirical formulas, M_0.24-simulated LE,H , and Bowen ratio
values were closest to the observed values. The median of
the observed Bowen ratio was 0.11, while the original MEP
Bowen ratio was 0.66. Among the four modified Bowen ratio
formulas (M_0.24, M_0.79, M_0.63, M_0.37), their median
Bowen ratios were 0.15, 0.32, 0.27, and 0.19, respectively,
with M_0.24 being the closest to the observed Bowen ratio.

Heat storage is crucial for the energy distribution process
over the ocean surface. While the original MEP formulas
have been effectively validated when applied to surfaces with
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Figure 1. Scatter density plots of monthly latent heat flux (a–f) and sensible heat flux (g–l) derived by the original and modified MEP methods
versus observations from 129 buoy stations (as in Table 1). (a) The original MEP method; (b) the modified MEP method considering the heat
storage effect; (c) the modified MEP method considering both the heat storage and empirical Bowen ratio formula Boa = 0.24B∗o ; and (d–f)
the modified MEP method considering both the heat storage and empirical Bowen ratio formulas Boa = 0.79B∗o−0.21, Boa = 0.63B∗o−0.15,
and Boa = 0.37B∗o − 0.05. Panels (g–l) are the same as (a–f) but for sensible heat flux.

shallow depths such as water and snow (Wang et al., 2014),
they exhibit significant uncertainty when applied to the ocean
surface. This discrepancy primarily arises from the fact that
land is a non-transparent medium with relatively small heat
storage values at monthly scales. Similarly, shallow water
bodies also exhibit small heat storage values that can often
be ignored. In the study by Wang et al. (2014), for example,
two lakes with depths of 2 m (Lake Tämnaren) and 4 m (Lake

Råksjö) still resulted in underestimated LE. However, for
deeper lakes (generally> 3m depth), heat storage becomes
significant and cannot be neglected (Zhao et al., 2016; Zhao
and Gao, 2019). On deep ocean surfaces, with the most re-
cent average depth estimate of 3682 m from NOAA satellite
measurements, heat storage variations can influence depths
up to 6000 m (Cheng et al., 2017). Therefore, the impact of
heat storage was substantial and cannot be disregarded. In
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Figure 2. Spatial distribution of RMSE values in the comparison between latent heat flux estimated by the improved MEP method (modified
by four different Bowen ratio formulas) and buoy observations from 129 stations.

Figure 3. Comparisons between latent heat flux estimated by the improved MEP method using four empirical Bowen ratio formulas and the
buoy observations from each buoy array in terms of RMSE (a), KGE value (b), and latitudinal means of RMSE (c). Latitudinal means are
based on data from 129 available buoy sites.
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Figure 4. The interannual variations (a, c and e) and variabilities (b, d, and f) in latent heat flux, sensible heat flux, and Bowen ratio at the
KEO site from 17 June 2004 to 12 August 2023. The fluxes in the comparison include observations and the estimates from MEP using the
original formula (MEP), the formula incorporating the ocean heat storage (MEP(M)), and four other formulas considering both ocean heat
storage and adjustment of the Bowen ratio. Note that (a) and (c) only display results using MEP M_0.24 among all four empirical Bowen
ratio formulas for clearer comparison.

the original MEP theory, heat storage was not considered
in the energy balance equation, where it was assumed that
the net solar radiation (Rns) is absorbed by the ocean and
RnL = LE+H +Q. Then, the heat storage was obtained as
G= Rns+Q. In this study, we compared the characteristics
of MEP-derivedG (Rns+Q) with the observedG flux (G=
Rn−LE−H ; Fig. S5). MEP-derived G showed a good cor-
relation (R = 0.96) and consistent trends with the observed
values (Fig. S5a and b), ranging from−4 to 81 Wm−2. How-
ever, MEP-calculated Q (ranged from −210 to −65 Wm−2)
exhibited a negative correlation with the observed G (which
ranged from−386 to 200 Wm−2). Both MEP-derivedG and
Q fluxes were significantly underestimated. Therefore, the
prediction errors in LE and H originated from the inability
to accurately quantify the heat storage. Hence, considering
the influence of heat storage was crucial for accurately pre-
dicting LE and H over the ocean surface.

4.3 Evaluation of global radiation and heat storage flux

4.3.1 Evaluation of net radiation

After considering the effect of heat storage and the Bowen
ratio, the improved MEP method demonstrated its high per-
formance at the site scale. The results suggested that the im-
proved MEP method held substantial promise for further ap-
plication at a global scale. To facilitate this, we assessed the
primary input variables of the improved MEP method (in-
cluding Rn, G, and Ts) to identify datasets with the best ac-
curacy.

Net radiation, as the primary variable in the energy balance
equation, significantly influenced the uncertainty of the MEP
model (Huang et al., 2017). Selecting a reliable Rn product
was essential for accurately estimating global latent and sen-
sible heat fluxes. Previous studies have evaluated the avail-
able global ocean surface Rn datasets at a daily scale us-
ing observations from 68 moored buoy sites (Liang et al.,
2022). In this study, we conducted a comprehensive eval-
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Table 3. Evaluation of global monthly net radiation products against buoy observations.

Products R2 ME MAE RMSE PBIAS NSE KGE
(W m−2) (W m−2) (W m−2) (%)

J-OFURO3 0.96 1.6 7.3 10.0 1.0 0.96 0.97
ERA5 0.79 28.8 30.3 39.0 17.8 0.45 0.77
MERRA-2 0.78 39.7 41.2 49.2 24.8 0.15 0.68
CERES4 0.81 31.4 32.6 40.6 19.6 0.42 0.76
GEWEX-SRB 0.78 32.6 33.8 41.8 20.2 0.37 0.76

Note that the evaluation period for all datasets is 1988–2017, except for CERES4, which spans from March 2000 to
December 2017. ME is mean error, MAE is mean absolute error, PBIAS is the percentage bias, NSE is
Nash–Sutcliffe efficiency, and KGE is Kling–Gupta efficiency. The best-performing statistics are indicated in bold
type.

uation of current available monthly Rn products, including
three remote-sensing-based products (CERES4, GEWEX-
SRB, and JOFURO3) and two atmosphere-reanalysis-based
products (ERA5 and MERRA-2) at 129 buoy sites. All prod-
ucts exhibited good consistency with buoy observations (Ta-
ble 3 and Fig. S6), with R2 values greater than 0.78. In
terms of RMSE, the error rankings for all products were J-
OFURO3 (10 Wm−2) < ERA5 (39.03 Wm−2) < CERES4
(40.67 Wm−2)<GEWEX-SRB (41.83 Wm−2)<MERRA-
2 (49.23 Wm−2). It was evident that J-OFURO3 demon-
strated the highest accuracy, as indicated by RMSE, Nash–
Sutcliffe efficiency (NSE), and KGE statistics. This result
was also consistent with previous assessments of global Rn
(Liang et al., 2022), emphasizing J-OFURO3 as the least er-
roneous among all individual products and superior to ex-
isting alternatives including CERES4, ERA5, MERRA-2,
GEWEX-SRB, JRA55, OAFlux, and TropFlux.

4.3.2 Evaluation of heat storage

The study underscored the importance of considering heat
storage in simulating heat fluxes using the improved MEP
model. For the first time, we assessed global heat storage us-
ing the J-OFURO3, ERA5, MERRA-2, and 1OHC datasets.
In addition to assessing these individual datasets, we inves-
tigated the potential for enhancing accuracy through data fu-
sion methods. We employed the BTCH and AA method to
fuse heat storage data and compared the accuracy between
individual datasets and fused datasets (Table 4). The results
revealed that while using the AA method (e.g., AA4) for fu-
sion yields smaller errors compared to ERA5, MERRA-2,
and 1OHC, it still failed to achieve the accuracy of the J-
OFURO3 product. Similarly, the BTCH method, despite fus-
ing data from three or four sources, also does not match the
accuracy of the J-OFURO3 method, as indicated by metrics
of R2, RMSE, and KGE. The heat storage derived from J-
OFURO3 data showed high consistency with observations
(R2
= 0.95), as illustrated in Fig. 5 (spatial distribution of

errors depicted in Fig. S7). Therefore, this study employed
the heat storage data derived from the J-OFURO3 dataset as
the input for the MEP model.

Figure 5. Assessment of heat storage (G) flux derived from the re-
motely sensed J-OFURO3 dataset against buoy observations. Dis-
tinct colors represent data collected from different buoy arrays.

To ensure consistency with the radiation data source, the
SST data from J-OFURO3 were utilized for Ts inputs, which
were derived as the ensemble median from 12 global SST
products (Tomita et al., 2019). Ultimately, the input variables
including net radiation, heat storage, and sea surface temper-
ature for driving MEP model were all determined from the J-
OFURO3 dataset spanning from 1988–2017. Saturated spe-
cific humidity was computed as a function of SST and sur-
face air pressure (from ERA5) using the Clausius–Clapeyron
equation. The reliability of gridded data for the variables Rn,
G, and Ts was simultaneously examined at an observational
site (Fig. S8), where all three variables demonstrated high
consistency with observed data from August 2004 to Decem-
ber 2017 (with R2 > 0.96), effectively capturing the monthly
dynamics of Rn, G, and Ts.
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Table 4. Assessment of monthly heat storage between global remote sensing datasets and buoy observations.

Products R2 ME MAE RMSE PBIAS NSE KGE
(W m−2) (W m−2) (W m−2) (%)

J-OFURO3 0.95 −3.5 15.3 19.7 −7.4 0.94 0.91
ERA5 0.88 7.0 25.1 33.2 14.8 0.84 0.80
MERRA-2 0.86 11.6 27.1 36.1 24.5 0.81 0.72
OHC 0.35 −48.2 64.4 86.9 −101.9 −0.11 −0.10
BTCH3-1 (EMJ) 0.89 7.1 22.8 30.5 15.1 0.86 0.81
BTCH3-2 (EMO) 0.88 4.6 24.0 31.4 9.9 0.85 0.86
BTCH4 0.91 5.9 19.7 26.2 12.5 0.90 0.86
AA2(EM) 0.87 9.3 25.4 34.1 19.7 0.83 0.76
AA3 (EMJ) 0.91 4.7 20.2 26.7 10.1 0.90 0.87
AA4 (EMJO) 0.91 11.5 21.4 28.6 24.4 0.88 0.74

Note: BTCH3-1(EMJ) represents the fusion of three products (ERA5, MERRA-2, and J-OFURO3) using the BTCH method;
TCH3-2(EMO) represents the fusion of ERA5, MERRA-2, and OHC; BTCH4 represents the fusion of ERA5, J-OFURO3,
MERRA-2, and OHC. AA denotes the simple arithmetic average (AA) method. AA2 (EM) means the ensemble mean of
ERA5 and MERRA-2 using the AA method. AA3 (EMJ) means the ensemble mean of ERA5, MERRA-2, and J-OFURO3.
AA4 (EMJO) means the ensemble mean of all products (ERA5, MERRA-2, J-OFURO3, and OHC). The evaluation period
spans from 1988 to 2017, and the best-performing statistics are indicated in bold type.

4.4 Estimating long-term global ocean surface heat
fluxes with the improved MEP model

4.4.1 New estimate of global latent and sensible heat
fluxes

After identifying the optimal driving dataset, this study em-
ployed the best-performing improved MEP method (i.e.,
M_0.24), hereinafter referred to as MEP for simplicity, while
the original MEP formula was denoted as MEP (ori) for
global scale estimation, producing new estimations of latent
and sensible heat fluxes for the period 1988–2017 (Table 5).
The MEP model calculated the multi-year average LE as
92.87 Wm−2 and the sensible heat flux as 12.27 Wm−2 from
1988–2017. In comparison,LE ranged from 88.95 (OAFlux)
to 100.54 Wm−2 (MERRA-2), and H ranged from 10.17 (J-
OFURO3) to 13.16 Wm−2 (MERRA-2) for the other four
products. The original MEP method yielded estimates of LE
as 52.70 Wm−2 and H as 25.07 Wm−2, significantly un-
derestimating LE and overestimating H compared to es-
timates from other products. As previously demonstrated
(Sects. 4.1 and 4.2), the original MEP method overestimated
G (42.20 Wm−2) and exhibited notable deviations in the
Bowen ratio. Therefore, the improved MEP method provided
a more reasonable global estimation of LE and H .

Regarding the global spatial pattern (Fig. 6), the MEP-
derived latent heat exhibited higher values in low-latitude
regions but significantly decreased at latitudes higher than
45° N or 45° S. The highest LE values were observed in
the southern Indian Ocean near Australia, the Pacific and
Atlantic regions near South America, and the Indian Ocean
near southern Africa. The peak values were observed within
western boundary current systems (ranged from 200 to
260 Wm−2), including the Gulf Stream in the North Atlantic
and the Kuroshio in the western North Pacific. Impacted by

Table 5. Global area-averaged multi-annual mean estimates of la-
tent heat flux.

LE products LE Evaporation H G

(W m−2) (mmyr−1) (W m−2) (W m−2)

MEP (0.24) 92.8 1195.5 12.2 19.7
ERA5 99.2 1277.8 12.0 34.2
MERRA-2 100.5 1294.3 13.2 35.5
J-OFURO3 94.9 1222.2 10.1 19.7
OAFlux 88.9 1145.1 10.4 /

MEP (ori) 52.7 678.5 25.1 42.2

Note that the period spans from 1988–2017. The MEP (0.24) denotes the improved MEP
model, while MEP (ori) represents the original MEP model.

the variations in oceanic currents near the Equator, two gen-
eral areas of higher LE have emerged (Yu, 2011), leading
to notably low LE at the Equator (88 Wm−2), peaking at
∼ 18°S at 132 Wm−2 (Figs. 6 and 7). The MEP-estimated
LE exhibited a similar spatial pattern with the other four
products globally (Fig. 6), particularly resembling OAFlux
between 15° S and 15° N (Fig. 7). Overall, for the region be-
tween 30° S and 30° N, the LE values were ranked as fol-
lows: OAFlux < MEP < J-OFURO3 < ERA5 < MERRA-
2, which was consistent with the magnitude of available en-
ergy. For sensible heat, MEP-derived H closely resembled
that of ERA5 and MERRA-2, with higher values predomi-
nantly occurring in two western boundary current systems:
the southern Indian Ocean near the Australia area and the
Arctic Ocean. The improved MEP method mitigated the is-
sue of overestimating H in middle to high latitudes com-
pared to its original form (Fig. 6l), resulting in a more re-
alistic spatial pattern. In high latitudes, J-OFURO3 exhibited
higher H values than MEP and other comparable products
in the Northern Hemisphere, with negative values observed
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between 45 and 55° S. MEP generally estimatedH within an
intermediate range compared to other products, displaying a
distribution that was more reasonable than that of J-OFURO3
product.

4.4.2 Validation of global latent heat products against
the observational sites

To evaluate the discrepancies between MEP-estimated LE
and other datasets, this study validated global-scale LE at
129 observational sites (as depicted in Fig. 8 and Table 6).
MEP-estimated LE showed strong consistency with buoy
observations, achieving anR2 of 0.79, an ME of 1.26 Wm−2,
and an RMSE of 16 Wm−2, all surpassing those of alterna-
tive products, underscoring its superior performance. More-
over, the MEP method exhibited superior performance with
a higher NSE value of 0.77 and KGE of 0.89, demonstrat-
ing enhanced accuracy, reliability, and robustness. Accord-
ing to the RMSE evaluation criterion, the ranking of best-
performing LE products was MEP, J-OFURO3, OAFlux,
ERA5, and MERRA-2. In a recent comprehensive assess-
ment of 15 global ocean LE products (Tang et al., 2023),
RMSE values ranged from 17.2 to 45.3 Wm−2, in which
J-OFURO3 emerged as the best-performing product with
the lowest RMSE of 17.2 Wm−2, highest correlation coeffi-
cient (R) of 0.89, and ME of 6.5 Wm−2. Studies have also
shown minimal bias was given by J-OFURO3 on a daily
scale (Bentamy et al., 2017). This superior performance of
the J-OFURO3 dataset can be attributed to the use of con-
tinuously updated bulk algorithms (COARE 3.0 version), the
ongoing optimization of near-surface parameters (Tomita et
al., 2018), and the improved spatial resolution (0.25°). In this
study, the improved MEP estimation of LE outperformed
that of J-OFURO3, demonstrating higher accuracy and lower
error (ME= 1.26Wm−2), thereby establishing it as the most
accurate global LE product currently available.

4.4.3 Comparisons of Bowen ratios

The improved MEP model achieved accurate LE estimation
after refining the process of partitioning the surface energy
budget, specifically through revisions to the Bowen ratio.
The improved MEP method notably decreased the global-
scale Bowen ratio, as illustrated in Figs. 9 and 10. Regard-
ing latitude averages, the Bowen ratio of the original MEP
formula ranged from 0.37 to 1.48 (with a median of 0.80),
whereas the modified MEP Bowen ratio ranged from 0.09
to 0.35 (median of 0.18). Specifically, in the low-latitude re-
gion (10° S–10° N), the Bowen ratio of the modified MEP
formula decreased from 0.37 to approximately 0.1, aligning
closely with the Bowen ratios obtained from other reanaly-
sis products (MERRA-2, ERA5, OAFlux, and J-OFURO3).
Globally, the median Bowen ratios of the products were
as follows: MERRA-2 (0.15), MEP (0.12), ERA5 (0.09),
OAFlux (0.08), and J-OFURO3 (0.06). Spatially, the MEP

Bowen ratio resembled ERA5 in middle to low latitudes
but exhibited deviations from other products at high lati-
tudes, where those products showed fluctuating changes in
the Bowen ratio (Fig. 10). For instance, other products dis-
played abrupt transitions from negative to positive Bowen
ratios in the Arctic and Antarctic regions, whereas MEP-
derived values demonstrated greater stability in variations
at higher latitudes. This discrepancy was likely due to the
reanalysis products relying on the bulk method, which was
sensitive to variations in wind speed and temperature gradi-
ents, leading to errors in simulating high wind speeds at the
poles and causing fluctuations in latent and sensible heat. In
contrast, the MEP model strictly adheres to energy conser-
vation principles and operates independently of wind speed
and temperature gradients, resulting in a more accurate esti-
mate of the Bowen ratio. For example (Fig. S9), at the high-
latitude Papa buoy site (144.9° W, 50.1° N), the Bowen ra-
tio estimated by MEP (median 0.24) closely matched the
observed Bowen ratio (median 0.23). In contrast, all other
products underestimated the Bowen ratio, with J-OFURO3
(median −0.09) and OAFlux frequently exhibiting negative
values. The Bowen ratio derived from MEP fit well with
a generalized additive model (GAM) (Fig. 9). The implicit
functional relationship between Bowen ratio and latitude is
expressed as follows (R2

= 0.996, p < 0.001): Boa(lat)=
0.207218+ f(lat)+ ε, where f (lat) represents a smoothing
function derived from a smooth curve, and ε denotes the
error term. However, the specific functional form of f (lat)
cannot be explicitly determined. Therefore, a polynomial
regression method was employed to explicitly fit Boa and
latitude, resulting in the following (R2

= 0.91, p < 0.001):
Boa = 9.97×10−2

−3.45×10−4
×lat+4.71×10−5

×lat2+ε
(as in Fig. S10). This equation can serve as a reference for
partitioning surface energy in data-sparse oceanic regions.

4.5 Spatial–temporal variability of ocean evaporation

Heat flux reflects the energy exchange between the ocean and
the atmosphere, while evaporation (ET) reflects moisture ex-
change within the water cycle. The spatiotemporal patterns
in evaporation were analyzed using Sen’s slope and Mann–
Kendall test methods (Fig. 11). For the global ocean, approx-
imately 74 % of the regions showed an increasing trend, with
about 27 % of the grids exhibiting statistically significant in-
creases (p < 0.05). In contrast, 26 % displayed a decreasing
trend, with only 5 % of the grids showing a statistically sig-
nificant decrease (p < 0.05). For whole periods, the regions
with the highest increasing trends were predominantly ob-
served near western boundary current systems, the conver-
gence zones of the East Australian Current and the South
Equatorial Current, and the convergence zones of the East-
ern South Equatorial Current and the Brazil Current along
South America. Decreasing trends were primarily observed
in equatorial regions of the Pacific and Atlantic oceans, as
well as near the Labrador and Kuroshio currents and north of
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Figure 6. Global spatial maps of annual mean latent heat flux (LE) and sensible heat flux (H ) during 1988–2017. Panels (a–f) depict latent
heat flux derived from the improved MEP method, J-OFURO3, ERA5, MERRA-2, OAFlux, and the original MEP method. Panels (g–l) show
sensible heat flux from the same datasets.

Table 6. Evaluation of latent heat flux from different methods against buoy observations.

Products R2 ME MAE RMSE PBIAS NSE KGE
(W m−2) (W m−2) (W m−2) (%)

MEP 0.79 1.3 12.2 15.9 1.2 0.77 0.89
J-OFURO3 0.78 6.3 13.4 17.4 5.8 0.73 0.87
ERA5 0.81 18.4 19.9 23.9 17.3 0.48 0.80
MERRA-2 0.74 27.1 28.1 32.9 25.5 0.02 0.70
OAFlux 0.68 3.4 14.9 19.1 3.2 0.67 0.79

Note that the evaluation period spans from 1988–2017, and the best-performing statistics are indicated in bold
type.

the Antarctic Circle. It was indicated that regions with sig-
nificant increases (decreases) in evaporation generally cor-
respond closely to the distribution of major warm currents
(cold currents) spatially. However, global ocean evaporation
experienced a notable shift around 2003, as illustrated in

Fig. 11b and c. The downward trend observed from 2003–
2017 counteracted a significant portion of the growth trend
that occurred during the previous 16 years (1988–2003), par-
ticularly evident in the midlatitude regions (15° S–20° N). In
the middle to low latitudes (0–30° N), nearly all ocean grids
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Figure 7. Meridional profiles of latent heat (left panel), sensible heat (middle panel), and their sum representing available energy (right
panel) for the period 1988–2017, produced by MEP, J-OFURO3, ERA5, MERRA-2, and OAFlux datasets.

Figure 8. Scatter density plots of latent heat flux taken from different products versus observations from 129 buoy stations during the period
1988–2017: (a) improved MEP model, (b) J-OFURO3, (c) ERA5, (d) MERRA-2, and (e) OAFlux. A total of 15 444 records of latent heat
observations are included.
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Figure 9. Global ocean latitudinal averaged Bowen ratio derived by the MEP method and four other products from 1988–2017. (a) Latitudinal
averaged Bowen ratio derived from the MEP model using original and modified Bowen ratio formulas, with points fitted by a generalized
additive model (GAM). (b) Statistical distribution of the latitudinal annual mean Bowen ratio.

exhibited opposite trends around 2003. Spatially, regions that
displayed the largest increasing trends during 1988–2003
transitioned to show the most substantial decreasing trends
between 2003 and 2017. This includes regions associated
with western boundary current systems, convergence zones
of the East Australian Current and the South Equatorial Cur-
rent, and equatorial regions of the Pacific and Atlantic oceans
(Fig. 11c). To further investigate the shift in ocean evap-
oration after 2003, we analyzed the interannual variability
of global annual mean area-weighted evaporation using all
available datasets (as shown in Fig. 12).

Over the multi-year period from 1988 and 2017, MEP,
J-OFURO3, ERA5, and MERRA-2 all exhibited significant
increasing trends in ET. MEP estimated an evaporation in-

crease rate of 2.31 mmyr−1, whereas OAFlux showed a non-
significant trend (Fig. 12). While different datasets revealed
varying magnitudes of evaporation changes, most exhibited
a similar temporal pattern: an increasing trend from 1988 to
around 2003, followed by a hiatus during 2003–2010, and
ultimately a decreasing trend after 2010 (Fig. 12a). Specif-
ically, MEP indicated an increasing trend in evaporation of
3.58 mmyr−1 from 1988–2010, followed by a decrease of
2.18 mmyr−1 after 2010 (Fig. 12a). The slowdown and tran-
sition of evaporation during 2003–2010 aligned with the con-
cept of a “global warming hiatus” (Medhaug et al., 2017;
Sung et al., 2023), referring to the period when global mean
surface air temperatures did not continue to rise between
1988 and 2012. Previous studies have proposed four potential
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Figure 10. Global distribution of ocean annual mean Bowen ratio during 1988–2017: (a) improved MEP method, (b) J-OFURO3, (c) ERA5,
(d) MERRA-2, (e) OAFlux, and (f) MEP original method.

Figure 11. Spatial distribution of multi-year trends in ocean evaporation estimated by the improved MEP method during (a) the period
1988–2017, (b) the period 1988–2003, (c) the period 2003–2017, and (d) the latitudinal average changes across three different periods.
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Figure 12. Time series of area-averaged multi-annual mean evaporation from the improved MEP method (a), available energy (b), and sea
surface temperature (c) over the global oceans during 1988–2017. The dotted black line in panel (a) marks the year 2010, and the label
“S= 2.31” indicates that the MEP-estimated global multi-annual mean evaporation increased at a rate of 2.31 mmyr−1 during 1988–2017,
with change rates of different ET datasets represented by various colors. The dashed black lines in panels (b) and (c) denote the linear
regression lines.

explanations for this global warming hiatus: internal variabil-
ity, external drivers, the Earth’s response to CO2, and radia-
tive forcing (Medhaug et al., 2017). This study indicates that
changes in radiative forcing (Fig. 12b) can significantly af-
fect the interannual variability of evaporation (Fig. 12a) and
surface temperature (Fig. 12c). This finding is consistent with
previous research that attributed more than 50 % of the uncer-
tainty in MEP-modeled fluxes to the radiation term (Huang
et al., 2017). Although surface temperature began to increase
after 2012, the decrease in available energy remained the pri-
mary driver behind the decline in evaporation.

5 Discussion

5.1 Quantifying the impact of heat storage and radiation
with sensitivity analysis

The sensitivity analysis revealed the significant influence of
input variables on latent heat flux derived from the MEP
model. Notably, the heat storage (G) exhibited seasonal vari-
ations with both positive and negative values (Fig. 13). Pos-
itive G values coincided predominantly with summer in the
Northern Hemisphere (winter in the Southern Hemisphere),
specifically from June to August (Figs. 4 and S5). During this
season, intensified solar radiation enhances the net energy
input (Rn) at the ocean surface, leading to heat absorption

and retention. Consequently, the energy available (Rn−G)
for evaporation diminishes. The analysis indicated that Rn
significantly influenced the energy-driven evaporation pro-
cess, with a sensitivity coefficient exceeding 1 (median 1.74),
highlighting its pivotal role. In contrast, G negatively im-
pacted evaporation, as indicated by a sensitivity coefficient
of −0.74. Specific humidity (median 0.08) and sea surface
temperature had relatively minor effects, consistent with pre-
vious MEP model findings focused on terrestrial surfaces (Is-
abelle et al., 2021).

Conversely, negative values of heat storage predominate
during winter, particularly from December to February in
the Northern Hemisphere (June to August in the Southern
Hemisphere). Despite reduced solar radiation during this pe-
riod, residual heat stored from summer gradually releases
into the atmosphere, resulting in greater energy output than
input. This surplus energy increases the available energy for
evaporation, leading to a positive sensitivity coefficient for
G (median 0.29), second only to Rn (median 0.71). Conse-
quently, this process generally reduces sea surface tempera-
ture, resulting in a negative sensitivity coefficient for surface
temperature. Overall, these findings underscored the signifi-
cant influence ofRn on latent heat flux, withG ranking as the
second most influential variable in MEP estimates over ocean
surfaces. For instance, a 10 % decrease in positive G yielded
a 7.4 % increase in evaporation, while a 10 % increase in neg-
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Figure 13. Sensitivity coefficient associated with input variables for the improved MEP method at all 129 buoy stations: (a) for positive G
values and (b) for negative G values.

ativeG resulted in a 2.9 % increase in evaporation, assuming
other variables remain constant. Thus, Rn and G emerged as
two primary drivers of oceanic evaporation, with humidity
and temperature exerting minimal influence.

The accuracy of available energy estimates has a signifi-
cant impact on LE modeling, as it serves as the direct en-
ergy source for partitioning latent and sensible heat fluxes.
Although the bulk methods (e.g., COARE 3.0 algorithms)
used for estimating heat fluxes are independent of surface en-
ergy budget allocation, discrepancies in LE estimation still
correlate strongly with validated biases against observations
in available energy estimates (see Tables 3 and 4). Notably,
the MERRA-2 product exhibited higher errors in simulating
Rn andG compared to observations, leading to significant bi-
ases inLE estimation. In contrast, the ERA5 product demon-
strated superior performance in simulatingRn andG, thereby
achieving higher accuracy in LE estimation. Consequently,
the energy-balance-based MEP model excels in accurately
estimating surface heat fluxes by directly reflecting energy
allocation. Unlike bulk methods, the MEP approach reduces
sensitivity to temperature and humidity gradients, thereby
minimizing uncertainties in LE simulations (Pelletier et al.,
2018). This advancement enhances the MEP model’s utility
in global energy and water cycle research, particularly perti-
nent for future climate change studies.

5.2 Discrepancy in empirical Bowen ratio formulas

Bo plays a crucial role in understanding the surface energy
partitioning process. In this study, four empirical formulas
were utilized to modify the MEP model and evaluated against
the observed LE, each with distinct conditions of applicabil-
ity and suitability for integration with the MEP model:

1. Boa = 0.63B∗o − 0.15 was derived from direct observa-
tional data fitting (Hicks and Hess, 1977). This formula
was applicable for surface temperatures above 16 °C,

particularly within latitudes between 40° N and 40° S,
making it more suitable for lower-latitude regions.

2. Boa = 0.79B∗o − 0.21 was derived using the Priestley–
Taylor model under advection-free conditions (Priest-
ley and Taylor, 1972). The coefficients were determined
based on a mean α value of 1.26, although this value can
vary in practice. Recent studies have revealed signifi-
cant discrepancies due to the neglect of the interaction
between variations in Rn and Ts (Yang and Roderick,
2019).

3. To address this limitation, the equation Boa = 0.24B∗o
was developed based on the maximum evaporation the-
ory, considering the feedback mechanisms between Rn
and Ts while assuming thatG is small or negligible. The
empirical coefficient 0.24 was determined by fitting B
and Ts across the global ocean surface (Yang and Rod-
erick, 2019).

4. Boa = 0.37B∗o − 0.05 was formulated based on princi-
ples derived from atmospheric boundary layer (ABL)
theory (Liu and Yang, 2021), with coefficients also fit-
ted from relationships between Boa and Ts.

It should be noted that the derivations of Boa = 0.24B∗o and
Boa = 0.37B∗o−0.05 were based on fitting usingLE from the
OAFlux dataset rather than direct buoy observations. Overall,
the MEP model incorporated with Boa = 0.24B∗o exhibited
superior accuracy at both localized and global scales, effec-
tively mitigating the underestimation of LE in its original
estimates.

5.3 Contributions and implications of this study

The main contributions of this study include the following:

1. The MEP model’s energy balance equation over water
surfaces was revised to explicitly consider heat storage
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effect. This correction highlights the importance of heat
storage in estimating LE.

2. The energy partitioning of the MEP model was revised
to incorporate empirical Bowen ratio formulas, signifi-
cantly improving the heat flux estimations.

3. This study conducted the first thorough global assess-
ment of heat storage using extensive buoy observations
and remotely sensed data, enabling the MEP model to
produce the most accurate global LE estimates.

This study addresses the issue of underestimating LE by the
original MEP model, increasing the global average LE from
53 to 93 Wm−2 while reducing sensible heat flux from 25 to
12 Wm−2, improving the partitioning of energy budget. The
improved MEP model provided precise LE estimates com-
pared to existing datasets like J-OFURO3, ERA5, MERRA-
2, and OAFlux, enabling it to become a valuable benchmark
dataset for global evaporation studies.

From a methodological perspective, the improved MEP
method emerged as a novel approach for estimating energy
fluxes that diverges from traditional bulk methods. The con-
ventional bulk method requires multiple input parameters, in-
cluding air temperature, specific humidity, wind speed, sea
surface temperature, atmospheric pressure, and the observa-
tional height of all parameters (Fairall et al., 2003; Tomita
et al., 2021). This method demands numerous input vari-
ables, and the estimated fluxes are highly sensitive to changes
in temperature and humidity gradients. In contrast, the im-
proved MEP model requires only net radiation, heat storage,
surface temperature, and atmospheric pressure to simultane-
ously obtain latent and sensible heat fluxes, making it more
flexible to operate and robust against variations in input vari-
ables. Furthermore, the improved MEP model is not con-
strained by the magnitude of heat storage and theoretically
can be applied across various temporal scales (including sub-
daily and daily), beyond the monthly scale used in this study.
This underscores the applicability of the MEP method in ad-
dressing the constraints of traditional bulk methods, provid-
ing another independent approach to estimating heat fluxes
across diverse environmental conditions.

This study applied the improved MEP model to ocean sur-
face, with potential for future extension to lake and reservoir
surfaces. Compared to the Penman model for water body
evaporation (Tian et al., 2022; Zhao et al., 2022; Bai and
Guo, 2023), the major advantage of the MEP method lies in
its independence from wind speed, provided that heat storage
can be determined using an equilibrium temperature-based
approach (McMahon et al., 2013; Zhao and Gao, 2019). The
global LE dataset generated in this study, due to MEP’s in-
sensitivity to variations in air temperature and humidity, can
be applied in research related to ocean salinity (Liu et al.,
2019), ocean warming (Cheng et al., 2022), and global cli-
mate change and water cycle studies (Konapala et al., 2020).

5.4 Limitations

The improved MEP method proposed in this study offers a
novel approach for estimating ocean heat fluxes, producing
a validated long-term global dataset with high accuracy and
spatiotemporal continuity. Despite its advancements, the pro-
posed MEP method has several limitations that require fur-
ther refinement:

1. Uncertainty of driving data. The input variables of net
radiation, heat storage, and sea surface temperature for
the MEP model were sourced from the state-of-the-
art satellite-based J-OFURO3 dataset. This dataset was
constructed using observations from multiple satellite
sensors. The net radiation in J-OFURO3 was derived
by combining data from the CERES and the Interna-
tional Satellite Cloud Climatology Project (ISCCP) via
the creeping sea-fill method, along with 12 global sea
surface temperature products (Tomita et al., 2019). Con-
sequently, the uncertainty of the MEP-estimated fluxes
may arise from biases in input data derived from vari-
ous satellite sensors and their associated analysis meth-
ods. Therefore, it is essential to integrate multiple ap-
proaches to assess the uncertainty associated with the
input datasets. Moreover, due to the limited temporal
duration of the J-OFURO3 dataset, future work should
utilize input datasets with longer time series, finer spa-
tiotemporal resolution (Liang et al., 2022), and higher
accuracy to advance ocean heat flux estimations using
the MEP method.

2. Heat storage determination. This study did not em-
ploy a direct calculation method to obtain heat stor-
age. Given the unclear relationship between heat stor-
age and changes in ocean heat content at varying depths
(as shown in Table 4), we utilized an energy balance
residual-based approach to indirectly estimate heat stor-
age. Consequently, this may render the MEP method
susceptible to uncertainties in heat storage data derived
from auxiliary flux datasets. Future research should fo-
cus on understanding the relationship between ocean
heat content changes in the upper 100 m and heat stor-
age, with the goal of establishing a functional rela-
tionship between water column temperature at different
depths and heat storage.

3. Bowen ratio improvement. Accurate determination of
the Bowen ratio in high-latitude regions remains chal-
lenging. The Bowen ratio derived from the MEP method
showed significant discrepancies with other datasets in
these areas (Fig. 10), particularly in sea-ice-covered
Arctic regions, where other datasets exhibited no-
table overestimations and irregular fluctuations. There-
fore, incorporating more observational data from high-
latitude regions is essential for a better understanding of
energy partitioning patterns.
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6 Data availability

The GOHF-MEP dataset produced with the MEP
method, which includes global latent heat flux and
sensible heat flux at a monthly scale from 1988–2017,
can be freely downloaded from the Figshare platform
(https://doi.org/10.6084/m9.figshare.26861767.v2, Yang et
al., 2024). All the datasets used in this study are publicly
available online and are described in the “Data materials”
section.

7 Conclusions

In this study, we developed a new global ocean heat flux
product (GOHF-MEP) covering the period from 1988–2017.
This product is grounded in a maximum entropy produc-
tion theory framework, incorporating heat storage impacts
and Bowen ratio adjustments. GOHF-MEP represents the
first energy-balance-based dataset that diverges from ex-
isting global ocean heat flux datasets derived from bulk
methods. To assess the accuracy of the input variables for
the maximum entropy production framework, we utilized
five global datasets, including two remote-sensing-based
and three reanalysis-based, along with four global datasets
of heat storage derived from the energy balance equation
and ocean heat content changes. We employed data fusion
methods, including arithmetic averaging and the Bayesian
three-cornered hat method, to identify optimal input datasets
through validation against observations. The performance
of the newly produced GOHF-MEP dataset was evaluated
against extensive observations from 129 globally distributed
buoy stations using multiple statistical metrics. It was also
compared with four auxiliary products: J-OFURO3, ERA5,
MERRA-2, and OAFlux. Moreover, we analyzed the long-
term spatial–temporal variability of ocean latent heat flux.
Ultimately, we investigated the impacts of ocean heat stor-
age, net radiation, and Bowen ratio changes on heat flux es-
timations and surface energy partitioning.

The MEP framework provides new estimates of global
heat fluxes. The MEP-estimated long-term annual mean la-
tent heat flux is 93 Wm−2 (equivalent to 1196 mm yr−1 of
evaporation) during the period from 1988–2017. This esti-
mate is intermediate compared to other global flux prod-
ucts, which range from 90 Wm−2 (OAFlux) to 101 Wm−2

(MERRA-2). The MEP-estimated sensible heat flux is
12 Wm−2, falling within the range of 10.17 Wm2 (J-
OFURO3) to 13 W m2 (MERRA-2) reported by other cur-
rent products. Compared with previous heat flux products,
the MEP-estimated latent heat demonstrated higher accu-
racy when validated against observations, with an ME of
1.26 Wm−2, an RMSE of 16 Wm−2, and a KGE value of
0.89, outperforming all other contemporary global prod-
ucts. Approximately 74 % of oceanic regions experienced
an increasing trend in evaporation from 1988–2017. In
terms of long-term temporal variability, the global annual

mean evaporation exhibited an increase rate of 3.58 mmyr−1

from 1988–2010 but subsequently declined at a rate of
2.18 mmyr−1 from 2010–2017, which was consistent with
changes in surface available energy.

This study demonstrates that the improved MEP frame-
work has significantly improved the accuracy of the original
MEP theory, addressing both the underestimation of latent
heat and the overestimation of sensible heat flux. This im-
provement was achieved by incorporating the impact of heat
storage and modifying the Bowen ratio formula within the
MEP theory. The consideration of heat storage resolved the
issue of seasonal phase mismatches (approximately 6-month
lags) between MEP estimates and buoy observations. Build-
ing upon this improvement, this study further optimized the
energy partitioning process by correcting the Bowen ratio,
linearly adjusting the equilibrium Bowen ratio to align with
actual conditions. Four empirical Bowen ratio formulas for
modifying the MEP method were assessed globally, identi-
fying Boa = 0.24B∗o as the most accurate formula for esti-
mating latent heat flux within MEP method. The impact of
heat storage on estimating heat fluxes was quantified through
sensitivity analysis. Net radiation and heat storage were iden-
tified as the primary drivers of evaporation estimates. A 10 %
decrease in positive heat storage led to a 7.4 % increase in
evaporation, whereas a 10 % increase in negative heat stor-
age resulted in a 2.9 % increase.

Compared to existing bulk methods, the MEP model offers
several advantages, including the requirement for fewer input
variables, independence from wind speed, and insensitivity
to variations in temperature and humidity. The MEP-derived
ocean heat flux dataset has been validated and provides ac-
curate estimates of latent heat flux. Additionally, this MEP
method can be applied to estimate evaporation from other
deep-water surfaces, such as lakes and reservoirs where heat
storage is significant. Overall, the MEP-derived ocean heat
flux dataset provides high global accuracy, fine spatial resolu-
tion (0.25°), and extensive long-term temporal records. This
dataset is expected to be valuable for applications related to
global ocean warming, hydrological cycles, and their inter-
actions with other Earth system components in the context of
climate change.
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