Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-1101-2025
https://doi.org/10.5194/essd-17-1101-2025
Data description paper
 | 
17 Mar 2025
Data description paper |  | 17 Mar 2025

Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps

Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr

Related authors

Retrieving frozen ground surface temperature under the snowpack in Arctic permafrost area from SMOS observations
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3963,https://doi.org/10.5194/egusphere-2024-3963, 2025
Short summary
Advanced Bayesian Method for Timely Small-Scale Forest Loss Detection in the Brazilian Amazon and Cerrado with Sentinel-1 Time-Series
Marta Bottani, Laurent Ferro-Famil, Juan Doblas, Stéphane Mermoz, Alexandre Bouvet, and Thierry Koleck
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 43–49, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-43-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-43-2024, 2024
DETER-RT: The new INPE-TropiSCO deforestation monitoring system in the Amazon biome
Juan Doblas, Mariane Souza Reis, Stéphane Mermoz, Claudio Aparecido Almeida, Thierry Koleck, Cassiano Gustavo Messias, Luciana Soler, Alexandre Bouvet, and Sidnei J. S. Sant’Anna
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 127–133, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-127-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-127-2024, 2024
Tackling high biomass in tropical forests through the BIOMASS mission
Thuy Le Toan, Ludovic Villard, Dinh Ho Tong Minh, Juan Doblas, Stephane Mermoz, Laurent Ferro-Famil, Thierry Koleck, Alexandre Bouvet, Milena Planells, and Laurent Polidori
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 287–293, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-287-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-287-2024, 2024
A comprehensive land surface vegetation model for multi-stream data assimilation, D&B v1.0
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, Luke Smallmann, Susan Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zähle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek El-Madany, Mirco Migliavacca, Marika Honkanen, Yann Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaetan Pique, Amanda Ojasalo, Shaun Quegan, Peter Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
EGUsphere, https://doi.org/10.5194/egusphere-2024-1534,https://doi.org/10.5194/egusphere-2024-1534, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025,https://doi.org/10.5194/essd-17-855-2025, 2025
Short summary
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025,https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary
Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025,https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025,https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary
A Sentinel-2 machine learning dataset for tree species classification in Germany
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data, 17, 351–367, https://doi.org/10.5194/essd-17-351-2025,https://doi.org/10.5194/essd-17-351-2025, 2025
Short summary

Cited articles

Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017. a, b, c
Avitabile, V., Herold, M., Heuvelink, G., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., and Berry, N. J.: An integrated pan-tropical biomass map using multiple reference datasets, Global Change Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, 2016. a, b, c, d, e, f, g, h, i
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2, 182–185, 2012.  a, b
Baret, F. and Guyot, G.: Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens. Environ., 35, 161–173, https://doi.org/10.1016/0034-4257(91)90009-U, 1991. a
Boitard, S., Mialon, A., Rodriguez-Fernandez, N., Richaume, P., Salazar Neira, J. C., and Kerr, Y. H.: Technical Note: AGB and TH estimation from SMOS LVOD, Tech. rep., Centre d'Etudes Spatiales de la Biosphère, Université de Toulouse, CNES/CNRS/IRD/UPS, https://data.catds.fr/cecsm/Land_products/L4_Above_Ground_Biomass/documentation/NT_AGB_maps_from_VOD.pdf (last access: 8 November 2024), 2023. a
Download
Short summary
Aboveground biomass (AGB) is a critical component of the Earth's carbon cycle. The presented dataset aims to help monitor this essential climate variable with AGB time series from 2011 onward, derived with a carefully calibrated spatial relationship between the measurements of the Soil Moisture and Ocean Salinity (SMOS) mission and pre-existing AGB maps. The produced dataset has been extensively compared with other available AGB time series and can be used in AGB studies.
Share
Altmetrics
Final-revised paper
Preprint