Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3345-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3345-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
Léo Seyfried
Shom, 42 Avenue Gaspard Coriolis, BP 45017 – 31032 Toulouse CEDEX 5, France
Exail robotics SAS, ZI Toulon EST, 262 Rue des Frères Lumière, 83130 La Garde, France
Laurie Biscara
Shom, 13 Rue du Chatellier, 29200 Brest, France
Héloïse Michaud
CORRESPONDING AUTHOR
Shom, 42 Avenue Gaspard Coriolis, BP 45017 – 31032 Toulouse CEDEX 5, France
Fabien Leckler
Shom, 13 Rue du Chatellier, 29200 Brest, France
France Energies Marines, 25 Avenue Alexis de Rochon, 29280 Plouzané, France
Audrey Pasquet
Shom, 42 Avenue Gaspard Coriolis, BP 45017 – 31032 Toulouse CEDEX 5, France
Marc Pezerat
Shom, 13 Rue du Chatellier, 29200 Brest, France
Clément Gicquel
Shom, 13 Rue du Chatellier, 29200 Brest, France
Related authors
No articles found.
Damien Sous, Marc Pézérat, Solène Déalbéra, Héloïse Michaud, and Denis Morichon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2285, https://doi.org/10.5194/egusphere-2025-2285, 2025
Short summary
Short summary
The circulation of nearshore water is of primary importance for the health of coastal ecosystems and the coastal hazards, such as erosion. The present study focuses on the role played by bottom friction, which is particularly important in rocky or coral reef areas. Using field observations and numerical simulations, we show that the waves are able to increase the bottom friction and therefore affect the whole circulation and water level dynamics.
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025, https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary
Short summary
This study presents a new global wave model that improves predictions of sea states in tropical areas by using a high-resolution grid and corrected wind fields. The model is validated globally with satellite data and nearshore using in situ data. The model allows for the first time direct comparisons with in situ data collected at 10–30 m water depth, which is very close to shore due to the steep slope usually surrounding volcanic islands.
Léo Seyfried, Laurie Biscara, Fabien Leckler, Audrey Pasquet, and Héloise Michaud
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-316, https://doi.org/10.5194/essd-2021-316, 2021
Manuscript not accepted for further review
Short summary
Short summary
The French Flooding Prevention Action Program of Saint-Malo focuses on improving the knowledge of coastal flooding risks. The proposed approach is to use in-situ data collection. Bathymetric and oceanographic measurement campaigns were conducted during the winter of 2018–2019. Topo-bathymetric and oceanographic datasets have been built from these measurement campaigns. These data allow the development and validation of numerical models to improve the prediction of coastal flooding risks.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Cited articles
Amante C. J. and Eakins, B. W.: Accuracy of interpolated bathymetry in Digital Elevation models, J. Coastal Res., 76, 123–133, https://doi.org/10.2112/SI76-011, 2016. a
Ardhuin, F., Rascle, N., and Belibassakis, K.: Explicit wave-averaged primitive equations using a generalized Lagrangian mean., Ocean Model., 20, 35–60, 2008. a
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88, https://doi.org/10.1016/S1463-5003(01)00012-9, 2002. a
Bennis, A., Ardhuin, F., and Dumas, F.: On the coupling of wave and three-dimensional circulation models : Choice of theoretical framework, pratical implementation and adiabatic tests, Ocean Model., 40, 260–272, 2011. a
Bertin, X., Bruneau, N., Breilh, J.-F., Fortunato, A. B., and Karpytchev, M.: Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay, Ocean Model., 42, 16–30, 2012. a
Bertin, X., Martins, K., de Bakker, A., Chataigner, T., Guérin, T., Coulombier, T., and de Viron, O.: Energy transfers and reflection of infragravity waves at a dissipative beach under storm waves, J. Geophys. Res.-Oceans, 125, e2019JC015714, https://doi.org/10.1029/2019JC015714, 2020. a
Bishop, C. T. and Donelan, M. A.: Measuring waves with pressure transducers, Coast. Eng., 11, 309–328, https://doi.org/10.1016/0378-3839(87)90031-7, 1987. a
Bonneton, P. and Lannes, D.: Recovering water wave elevation from pressure measurements, J. Fluid Mech., 833, 399–429, https://doi.org/10.1017/jfm.2017.666, 2017. a
Bonneton, P., Lannes, D., Martins, K., and Michallet, H.: A nonlinear weakly dispersive method for recovering the elevation of irrotational surface waves from pressure measurements, Coast. Eng., 138, 1–8, https://doi.org/10.1016/j.coastaleng.2018.04.005, 2018. a, b
Cariolet, J.: Inondation des côtes basses et risque associés en Bretagne: vers un redéfinition des processus hydrodynamiques liés aux conditions météo-océaniques et des paramètres morpho-sédimentaires, PhD thesis, Brest University, https://theses.hal.science/tel-00596426 (last access: 1 July 2024), 2011. a
Caspar, R., Costa, S., and Jacob, E.: Fronts froids et submersions de tempêtes dans le nord-ouest de la France : le cas des inondations par la mer entre l’estuaire de la Seine et de la Somme, La Météorologie, 57, 37–47, 2007. a
Cochet, C. and Lambert, M.: The Rance tidal power plant model, in: Proceedings of the XXIVth TELEMAC-MASCARET User Conference, Graz University of Technology, Austria, 17 to 20 October 2017, 191–196, https://hdl.handle.net/20.500.11970/104510 (last access: 1 July 2024), 2017. a
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015. a
Couderc, F., Duran, A., and Vila, J.-P.: An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, J. Comput. Phys., 343, 235––270, 2017. a
Crossland, C. J., Kremer, H. H., Lindeboom, H. J., Crossland, J. I. M., and Tissier, M. D. A. L. (Eds.): Coastal Fluxes in the Anthropocene, Springer Berlin Heidelberg, https://doi.org/10.1007/3-540-27851-6, 2005. a
Dagorne, A.: Contribution à l’étude géomorphologique et sédimentologique du littoral de la région de Dinard-Saint-Briac (Ille-et-Vilaine), PhD thesis, Rennes University, 1966. a
Dagorne, A.: Le sud du golfe normand-breton: carte sédimentologique des fonds détritiques du prélittoral et répartition du calcaire organogène total., Tech. Rep., Doc. Lab. Géomorphologie Dinard, 2, 1968. a
Daire, M.-Y., Martin, C., and Olmos, P.: Case Study 3H – Côte d’Emeraude, France. Archaeology, Art & Coastal Heritage: Tools to Support Coastal Management (Arch-Manche), edited by: Satchell, J. and Tidbury, L, Arch-Manche Technical Report, Tech. Rep., https://www.academia.edu/9436433/Arch_Manche_Archaeology_Art_and_Coastal_Heritage_tools_to_support_coastal_management_and_climate_change_planning_across_the_Channel_Regional_Sea_Technical_Report (last access: 1 July 2024), 2014. a
Danielson, J. J., Poppenga, S. K., Brock, J. C., Evans, G. A., Tyler, D. J., Gesch, D. B., Thatcher, C. A., and Barras, J. A.: Topobathymetric Elevation Model Development using a New Methodology: Coastal National Elevation Database, J. Coastal Res., 76, 75–89, https://doi.org/10.2112/si76-008, 2016. a
DHI: Plan de prévention des risques littoraux de Saint Malo, Rapport de phase 2, Tech. Rep., DHI, https://www.ille-et-vilaine.gouv.fr/contenu/telechargement/29144/218240/file/PPRLSM_phase_2_light.pdf (last access: 1 July 2024), 2016. a
Dodet, G., Leckler, F., Sous, D., Ardhuin, F., Filipot, J., and Suanez, S.: Wave Runup Over Steep Rocky Cliffs, J. Geophys. Res.-Oceans, 123, 7185–7205, https://doi.org/10.1029/2018jc013967, 2018. a, b
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes, Surv. Geophys., 40, 1563–1601, https://doi.org/10.1007/s10712-019-09557-5, 2019. a
Duran, A., Vila, J.-P., and Baraille, R.: Energy-stable staggered schemes for the shallow water equations, J. Comput. Phys., 401, 109051, https://doi.org/10.1016/j.jcp.2019.109051, 2020. a
Eakins, B. W. and Grothe, P. R.: Challenges in Building Coastal Digital Elevation Models, J. Coastal Res., 297, 942–953, https://doi.org/10.2112/jcoastres-d-13-00192.1, 2014. a, b
Eakins, B. W., Taylor, L. A., Carignan, K. S., and Kenny, M. R.: Advances in Coastal Digital Elevation Models, Eos, Transactions American Geophysical Union, 92, 149–150, https://doi.org/10.1029/2011eo180001, 2011. a, b
Famin, V., Michon, L., and Bourhane, A.: The Comoros archipelago: a right-lateral transform boundary between the Somalia and Lwandle plates, Tectonophysics, 789, 228539, https://doi.org/10.1016/j.tecto.2020.228539, 2020. a
Filipot, J.-F., Roeber, V., Boutet, M., Ody, C., Lathuiliere, C., Louazel, S., Schmitt, T., Ardhuin, F., Lusven, A., Outré, M., Suanez, S., and Hénaff, A.: Nearshore wave processes in the Iroise Sea: field measurements and modelling, in: Coastal Dynamics 2013 – 7th International Conference on Coastal Dynamics, Arcachon, France, June 2013, 605–614, https://hal.science/hal-00879930 (last access: 1 July 2024),2013. a
Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu, Y.: 2021: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.011, 2021. a
Furgerot, L., Poprawski, Y., Violet, M., Poizot, E., du Bois, P. B., Morillon, M., and Mear, Y.: High-resolution bathymetry of the Alderney Race and its geological and sedimentological description (Raz Blanchard, northwest France), J. Maps, 15, 708–718, https://doi.org/10.1080/17445647.2019.1657510, 2019. a
Gesch, D. and Wilson, R.: Development of a Seamless Multisource Topographic/Bathymetric Elevation Model of Tampa Bay, Mar. Technol. Soc. J., 35, 58–64, https://doi.org/10.4031/002533201788058062, 2001. a
Hamm, L. and Peronnard, C.: Wave parameters in the nearshore: A clarification, Coast. Eng., 32, 119–135, 1997. a
Hébert, H., Abadie, S., Benoit, M., Créach, R., Frère, A., Gailler, A., Garzaglia, S., Hayashi, Y., Loevenbruck, A., Macary, O., Maspataud, A., Marcer, R., Morichon, D., Pedreros, R., Rebour, V., Ricchiuto, M., Schindelé, F., Silva Jacinto, R., Terrier, M., Toucanne, S., Traversa, P., and Violeau, D.: Project TANDEM (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014–2018): a French initiative to draw lessons from the Tohoku-oki tsunami on French coastal nuclear facilities, in: EGU General Assembly Conference Abstracts, 6421, https://meetingorganizer.copernicus.org/EGU2014/EGU2014-6421-1.pdf (last access: 1 July 2024), 2014. a
IHO: Standards of Competence for Category “B” Hydrographic Surveyors, Publication S-5B, 1st edn., Version 1.0.1 – June 2017, Tech. Rep., IHO, https://iho.int/uploads/user/pubs/standards/s-5/S-5B_Ed1.0.1.pdf (last access: 1 July 2024), 2017b. a
IHO: Standards of Competence for Category “A” Hydrographic Surveyors, Publication S-5A, 1st edn., Version 1.0.2 – June 2018, Tech. rep., IHO, https://iho.int/uploads/user/pubs/standards/s-5/S-5A_Ed1.0.2.pdf(last access: 1 July 2024), 2018. a
Jourdan, D., Paradis, D., Pasquet, A., Michaud, H., Baraille, R., Biscara, L., Dalphinet, A., and Ohl, P.: La phase-3 du projet HOMONIM: définition et contenu, in: XVIèmes Journées, Le Havre, Editions Paralia, https://doi.org/10.5150/jngcgc.2020.087, 2020. a
Krogstad, H. E., Gordon, R. L., and Miller, M. C.: High-resolution directional wave spectra from horizontally mounted acoustic Doppler current meters, J. Atmos. Ocean. Tech., 5, 340–352, 1988. a
Le Deunf, J., Schmitt, T., Keramoal, Y., Jarno, R., and Fally, M.: Automating the Management of 300 Years of Ocean Mapping Effort in Order to Improve the Production of Nautical Cartography and Bathymetric Products: Shom’s Téthys Workflow, Geomatics, 3, 239–249, https://doi.org/10.3390/geomatics3010013, 2023. a
Le Menn, M. and Morvan, S.: Velocity Calibration of Doppler Current Profiler Transducers, Journal of Marine Science and Engineering, 8, 847, https://doi.org/10.3390/jmse8110847, 2020. a
Louvart, L. and Grateau, C.: The Litto3D project, in: Europe Oceans 2005, Brest, France, 20–23 June 2005, IEEE, https://doi.org/10.1109/oceanse.2005.1513237, 2005. a
Macnab, R. and Jakobsson, M.: Something old, something new: compiling historic and contemporary data to construct regional bathymetric maps, with the Arctic Ocean as a case study, The International Hydrographic Review, 1, https://journals.lib.unb.ca/index.php/ihr/article/view/20481 (last access: 1 July 2024), 2000. a
Marsaleix, P., Michaud, H., and Estournel, C.: 3D phase-resolved wave modelling with a non-hydrostatic ocean circulation model, Ocean Model., 136, 28–50, https://doi.org/10.1016/j.ocemod.2019.02.002, 2019. a
Martins, K., Bonneton, P., Mouragues, A., and Castelle, B.: Non-hydrostatic, Non-linear Processes in the Surf Zone, J. Geophys. Res.-Oceans, 125, e2019JC015521, https://doi.org/10.1029/2019jc015521, 2020. a, b
Maspataud, A., Biscara, L., Hébert, H., Schmitt, T., and Créach, R.: Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts, in: EGU General Assembly Conference Abstracts, 17, EGU2015-1590-4, https://meetingorganizer.copernicus.org/EGU2015/EGU2015-1590-4.pdf (last access: 1 July 2024), 2015. a, b, c, d
Melet, A., Teatini, P., Cozannet, G. L., Jamet, C., Conversi, A., Benveniste, J., and Almar, R.: Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers, Surv. Geophys., 41, 1489–1534, https://doi.org/10.1007/s10712-020-09594-5, 2020. a
Michaud, H., Marsaleix, P., Leredde, Y., Estournel, C., Bourrin, F., Lyard, F., Mayet, C., and Ardhuin, F.: Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf, Ocean Sci., 8, 657–681, https://doi.org/10.5194/os-8-657-2012, 2012. a
Michaud, H., Pasquet, A., Baraille, R., Leckler, F., Aouf, A., Dalphinet, A., Huchet, M., Roland, A., Dutour-Sikiric, M., Ardhuin, F., and Filipot, J.: Implementation of the new French operational coastal wave forecasting system and application to a wave-current interaction study, in: 14th International Workshop on Wave Hindcasting and Forecasting & 5th Coastal Hazard Symposium, 8–13 November 2015 Key West, Florida, http://www.waveworkshop.org/14thWaves/Papers/proceedings_michaud_final.pdf (last access: 1 July 2024), 2015. a
Michaud, H., Le Goff Le Gourrierec, L., Marsaleix, P., Sous, D., Dealbera, S., Bouchette, F., Bertin, X., Seyfried, L., Leballeur, L., Krien, Y., Meulé, S., Lavaud, L., Estournel, C., Maticka, S., Pasquet, A., Biscara, L., Brosse, F., and Pezerat, M.: Wave transformation on a rocky shore : from field work on Ré Island to 3D modeling, in: Coast. Eng. Proceedings, ICCE2022, in: 37th International Conference on Coast. Eng., Sydney Australia, 4–9 December 2022, https://doi.org/10.9753/icce.v37.waves.29, 2023. a
Oltman-Shay, J. and Guza, R.: A data-adaptive ocean wave directional-spectrum estimator for pitch and roll type measurements, J. Phys. Oceanogr., 14, 1800–1810, 1984. a
Pasquet, A., Michaud, H., Seyfried, L., Baraille, R., Biscara, L., Y., K., and Jourdan, D.: Improving storm surge and wave forecasts from regional to nearshore scales, in: 9th EuroGOOS International conference, Shom, Ifremer, EuroGOOS AISBL, May 2021, Brest, France, 162–168, hal-03328367v2, 2021. a
Pastol, Y.: Use of Airborne LIDAR Bathymetry for Coastal Hydrographic Surveying: The French Experience, J. Coastal Res., 62, 6–18, https://doi.org/10.2112/si_62_2, 2011. a
Pineau-Guillou, L. and Dorst, L.: Creation of Vertical Reference Surfaces at Sea Using Altimetry and GPS, in: Reference Frames for Applications in Geosciences, IAG Symp., 138, 229–235, https://doi.org/10.1007/978-3-642-32998-2_33, 2013. a
Richard, G.: An extension of the Boussinesq-type models to weakly compressible flows, Eur. J. Mech. B-Fluid., 89, 217–240, 2021. a
Seyfried, L., Michaud, H., and Pasquet, A.: Réanalyse et modélisation des surcotes et états de mer, Livrable Shom no. 4, PAPI Saint-Malo, Axe 2, Action 2.I, Tech. Rep., Shom, https://services.data.shom.fr/static/specifications/Jalon_4_PAPI_Saint-Malo_Axe2_V3.pdf (last access: 1 July 2024), 2021. a, b, c
Tawil, T. E., Guillou, N., Charpentier, J.-F., and Benbouzid, M.: On Tidal Current Velocity Vector Time Series Prediction: A Comparative Study for a French High Tidal Energy Potential Site, Journal of Marine Science and Engineering, 7, 46, https://doi.org/10.3390/jmse7020046, 2019. a
Tew-Kai, E., Quilfen, V., Cachera, M., and Boutet, M.: Dynamic Coastal-Shelf Seascapes to Support Marine Policies Using Operational Coastal Oceanography: The French Example, Journal of Marine Science and Engineering, 8, 585, https://doi.org/10.3390/jmse8080585, 2020. a
The WAVEWATCH III® Development Group: User manual and system documentation of WAVEWATCH III® version 5.16. Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 326 pp. + Appendices., https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf (last access: 1 July 2024), 2016. a
Valcke, S., Craig, T., and Coquart, L.: OASIS3-MCT User Guide, OASIS3-MCT 3.0, Tech. Rep. TR/CMGC/15/38, CERFACS/CNRS SUC URA No1875, Toulouse, France, https://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf (last access: 1 July 2024), 2015. a
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos, Transactions American Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013. a
Wong, A. M., Campagnoli, J. G., and Cole, M. A.: Assessing 155 Years of Hydrographic Survey Data for High Resolution Bathymetry Grids, in: OCEANS 2007, 29 September–4 October 2007, Vancouver, BC, Canada, IEEE, https://doi.org/10.1109/oceans.2007.4449373, 2007. a
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and Merrifield, M. A.: Forcing Factors Affecting Sea Level Changes at the Coast, Surv. Geophys., 40, 1351–1397, https://doi.org/10.1007/s10712-019-09531-1, 2019. a
Short summary
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom conducted an extensive sea campaign, mapping the bay's topography and exploring coastal processes. High-resolution data improve knowledge of the interactions between waves, tide and surge and determine processes responsible for submersion. Beyond science, these findings contribute crucially to a local warning system, providing a tangible solution to protect the community from coastal threats.
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom...
Altmetrics
Final-revised paper
Preprint