Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3307-2024
https://doi.org/10.5194/essd-16-3307-2024
Data description paper
 | 
19 Jul 2024
Data description paper |  | 19 Jul 2024

A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types

Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian

Related authors

Generation of global 1 km daily land surface – air temperature difference and sensible heat flux products from 2000 to 2020
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136,https://doi.org/10.5194/essd-2025-136, 2025
Preprint under review for ESSD
Short summary
A seamless global daily 5 km soil moisture product from 1982 to 2021 using AVHRR satellite data and an attention-based deep learning model
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553,https://doi.org/10.5194/essd-2024-553, 2025
Preprint under review for ESSD
Short summary
UNSUPERVISED SEGMENTATION OF SMALLHOLDER FIELDS IN MOZAMBIQUE USING PLANETSCOPE IMAGERY
M. C. A. Picoli, J. Radoux, X. Tong, A. Bey, P. Rufin, M. Brandt, R. Fensholt, and P. Meyfroidt
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 975–981, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, 2022
Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel
Wenmin Zhang, Martin Brandt, Xiaoye Tong, Qingjiu Tian, and Rasmus Fensholt
Biogeosciences, 15, 319–330, https://doi.org/10.5194/bg-15-319-2018,https://doi.org/10.5194/bg-15-319-2018, 2018

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025,https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary
GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025,https://doi.org/10.5194/essd-17-855-2025, 2025
Short summary
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025,https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary
Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025,https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary

Cited articles

Abdi, A. M.: Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data, GISci. Remote Sens., 57, 1–20, https://doi.org/10.1080/15481603.2019.1650447, 2020. a, b
Agency, E. S.: Land Cover CCI Product user guide version 2, https://www.esa-landcover-cci.org/?q=webfm_send/84 (last access: 9 August  2023), 2014. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1007/978-3-030-56485-8_3, 2001. a
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci. Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022. a
Cai, L., Wang, S., Jia, L., Wang, Y., Wang, H., Fan, D., and Zhao, L.: Consistency Assessments of the land cover products on the Tibetan Plateau, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 15, 5652–5661, https://doi.org/10.1109/JSTARS.2022.3188650, 2022. a
Download
Short summary
The Tibetan Plateau, with its diverse vegetation ranging from forests to alpine grasslands, plays a key role in understanding climate change impacts. Existing maps lack detail or miss unique ecosystems. Our research, using advanced satellite technology and machine learning, produced the map TP_LC10-2022. Comparisons with other maps revealed TP_LC10-2022's excellence in capturing local variations. Our map is significant for in-depth ecological studies.
Share
Altmetrics
Final-revised paper
Preprint