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Abstract. The Tibetan Plateau (TP) hosts a variety of vegetation types, ranging from broadleaved and needle-
leaved forests at the lower altitudes and in mesic areas to alpine grassland at the higher altitudes and in xeric areas.
Accurate and detailed mapping of the vegetation distribution on the TP is essential for an improved understanding
of climate change effects on terrestrial ecosystems. Yet, existing land cover datasets for the TP are either provided
at a low spatial resolution or have insufficient vegetation types to characterize certain unique TP ecosystems, such
as the alpine scree. Here, we produced a 10 m resolution TP land cover map with 12 vegetation classes and 3
non-vegetation classes for the year 2022 (referred to as TP_LC10-2022) by leveraging state-of-the-art remote-
sensing approaches including Sentinel-1 and Sentinel-2 imagery, environmental and topographic datasets, and
four machine learning models using the Google Earth Engine platform. Our TP_LC10-2022 dataset achieved an
overall classification accuracy of 86.5 % with a kappa coefficient of 0.854. Upon comparing it with four existing
global land cover products, TP_LC10-2022 showed significant improvements in terms of reflecting local-scale
vertical variations in the southeast TP region. Moreover, we found that alpine scree, which is ignored in existing
land cover datasets, occupied 13.99 % of the TP region, and shrublands, which are characterized by distinct
forms (deciduous shrublands and evergreen shrublands) that are largely determined by the topography and are
missed in existing land cover datasets, occupied 4.63 % of the TP region. Our dataset provides a solid foundation
for further analyses which need accurate delineation of these unique vegetation types in the TP. TP_LC10-2022
and the sample dataset are freely available at https://doi.org/10.5281/zenodo.8214981 (Huang et al., 2023a) and
https://doi.org/10.5281/zenodo.8227942 (Huang et al., 2023b), respectively. Additionally, the classification map
can be viewed at https://cold-classifier.users.earthengine.app/view/tplc10-2022 (last access: 6 June 2024).
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1 Introduction

The Earth’s surface is physically covered by various types
of land cover, including forests, grasslands, croplands, lakes,
wetlands, etc. The accurate mapping and classification of
land cover are fundamental components of Earth observa-
tions. By understanding the distribution and characteristics of
different land cover types, land cover mapping supports the
assessment of carbon stocks, vegetation dynamics, and land–
atmosphere interactions, contributing to the implementation
of effective climate change mitigation measures (Z. Wang
et al., 2022; Liu et al., 2022; Li et al., 2018).

The advent of remote-sensing technology has enabled
the generation of global-scale land cover products at vari-
ous resolutions. For instance, products like MCD12Q1, pro-
duced using MODIS data (Friedl et al., 2010, 2002), and
the ESA CCI product derived from sensors like MERIS
(Agency, 2014) have significantly contributed to the under-
standing of global ecosystem responses to climate change.
However, their spatial resolutions are hundreds of meters,
so they are unable to provide an accurate representation
of the land surface conditions (Tian et al., 2021), par-
ticularly in spatially heterogeneous regions, such as the
mountainous southeast Tibetan Plateau (TP) (Yang et al.,
2017; Grekousis et al., 2015). In response to this limita-
tion, several medium- to high-resolution land cover products
have been created using satellite images from Landsat and
Sentinel-2. Notable examples include GlobeLand30 (Chen
et al., 2021, 2015), FROM_GLC30 (Gong et al., 2013), and
GLC_FCS30 (X. Zhang et al., 2021) based on Landsat and
FROM_GLC10 (Chen et al., 2019), Dynamic World (Brown
et al., 2022), Esri Land Cover (Karra et al., 2021), and ESA
WorldCover (Zanaga et al., 2022) based on Sentinel-2. How-
ever, these products use different classification systems, re-
sulting in large divergences in certain regions (Shi et al.,
2023; Hua et al., 2018), and they are often inadequate to re-
flect the diverse and unique land cover types in important
ecosystems (C. Liu et al., 2023), such as those in the TP.

Renowned as the “Third Pole” of the world (Shukla and
Sen, 2021), the TP holds a dual significance as a sensitive
area and an indicator zone for global climate change (Hua
et al., 2021; Li et al., 2022; Trew and Maclean, 2021; Pepin
et al., 2022). It hosts a variety of vegetation types, ranging
from broadleaved and needle-leaved forests at the lower al-
titudes and in mesic areas to alpine grassland at the higher
altitudes and in xeric areas. However, many of the unique
vegetation types in the TP, such as the alpine scree ecosys-
tem in the transitional zone from alpine grasslands to bare
rocks at very high altitudes and the shrubland ecosystem in
the transitional zone from forests to grasslands, are not well
represented in existing land cover datasets (Li et al., 2014).
Furthermore, shrublands in the TP can have either evergreen
leaves or deciduous leaves, depending on the local environ-
ments in which they grow, yet they are largely ignored in
existing 10 m resolution land cover datasets (Venter et al.,

2022). It is very important to monitor these unique ecosys-
tems in the TP, given that the TP has experienced dramatic
warming (Fu et al., 2021), increased humidity (Yang et al.,
2014), rapid glacier retreat (F. Zhao et al., 2022), permafrost
thawing (Gao et al., 2021), expansion of lakes (Zhang et al.,
2020), and vegetation changes (Wang et al., 2020; Duan
et al., 2021; Gao et al., 2014) in recent decades. Thus, de-
tailed and accurate mapping of the diverse vegetation types
in the TP is required for understanding climate change effects
on the terrestrial ecosystem, but this is challenging to accom-
plish, given that shrublands are often confused with forests
or alpine meadows and alpine grasslands are commonly mis-
classified as bare land in most products (Liu et al., 2021; Cai
et al., 2022; Yu et al., 2014). Moreover, the extremely rough
terrain in the TP results in large mountain shadows and varia-
tions in slope aspects, which complicates the accurate detec-
tion of vegetation types from satellite imagery (Pizarro et al.,
2022; X. Wang et al., 2023).

To address the aforementioned challenges, we developed a
specific vegetation remote-sensing fine-classification system
tailored for the TP and consisting of 12 vegetation classes
and 3 non-vegetation classes. We then created a compre-
hensive training and validation dataset consisting of 10 242
samples through manual interpretation and field trips; based
on this dataset, we performed land cover classification of
the TP by integrating multiple data sources in the Google
Earth Engine (GEE) platform, including satellite imagery
from Sentinel-1 and Sentinel-2, topography, temperature,
and precipitation. We investigated the performance of four
different classification models provided in GEE and selected
the highest-accuracy one to generate a 10 m resolution land
cover product for the TP in 2022, referred to as TP_LC10-
2022.

2 Study area and data

2.1 Study area

The TP spans from the northern foot of the West Kunlun
Mountains and Qilian Mountains to the southern foot of the
Himalayas and other mountain ranges and from the western
edge of the Kunlun Mountains and Pamir Plateau to the east-
ern edge of the Hengduan Mountains (Fig. 1). It lies between
latitudes 25°59′30′′ and 40°1′0′′ N and longitudes 67°40′37′′

and 104°40′57′′ E, covering a total area of 3.083 million km2.
Its average elevation is approximately 4320 m (Zhang et al.,
2022).

Due to the combined influence of climate, topography, and
human activities over time, the vegetation cover types in the
TP vary significantly at different altitudes. The northwestern
and central regions are characterized by extensive bare lands,
alpine screes, and persistent snow cover. In the southern and
eastern areas, there is a distribution of evergreen forests and
mixed forests consisting of needle-leaved and broadleaved
trees. The transitional zone between these regions is charac-
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Figure 1. Overview of the study area colored by elevation. The black lines are the field trip routes along national roads. The photos show
examples of landscape views of typical vegetation types in the Tibetan Plateau.

terized by shrublands, alpine grasslands, and alpine mead-
ows. We investigated the vegetation cover in a field trip car-
ried out along national road nos. 318 and 109 in July 2023
(Fig. 1), which covered all the vegetation types in the TP.

2.2 Data

2.2.1 Satellite imagery

We used both the optical imagery from Copernicus Sentinel-
2 and radar imagery from Copernicus Sentinel-1 for the clas-
sification. Sentinel-2 comprises two high-resolution multi-
spectral imaging satellites, each equipped with a multispec-
tral imager. It has 13 bands, with spatial resolutions of 10 m
for four bands, 20 m for six bands, and 60 m for three bands.
The study utilized level-2A products from the year 2022,
which had undergone processing via the Sen2Cor tool at the
Copernicus Scientific Data Hub (Doxani et al., 2018). An-
nual remote-sensing images have proven to accurately cap-
ture phenological changes in specific vegetation cover and
have been successfully utilized in various large-scale land
cover classification studies (Verde et al., 2020). Hence, in this
study, the Sentinel-2 remote-sensing images from the entire

year of 2022 were selected for band feature extraction. In
this study, the initial step involved retaining the images with
a cloud cover of less than 10 %. Subsequently, the quality
assessment information (QA band) was utilized to exclude
pixels with inadequate quality through cloud masking.

Sentinel-1 comprises two polar-orbiting satellites posi-
tioned in the same orbital plane. For this research, the
ground range detected (GRD) data obtained in wide-swath
(IW) mode were chosen. The GRD data consist of single-
polarization (VV) and dual-polarization (VV and VH) inter-
ferometric wave modes offering 10 m resolution (Prats-Iraola
et al., 2015). It enables the provision of radar images suitable
for land and maritime services, regardless of weather con-
ditions and time of day. The median-compositing method in
GEE (Souza et al., 2020; Phan et al., 2020) was applied to
process all bands of Sentinel-1 and Sentinel-2.

2.2.2 Topography data

The Shuttle Radar Topography Mission (SRTM) (Farr et al.,
2000) was designed to generate high-quality digital eleva-
tion models (DEMs) globally using synthetic-aperture radar
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technology. The data collected by SRTM were used to create
a global elevation model with a horizontal accuracy of 16 m
and a vertical accuracy of 6 m at a spatial resolution of 30 m
(Yang et al., 2011).

2.2.3 Precipitation data

The Climate Hazards Group InfraRed Precipitation with Sta-
tion data (CHIRPS) (Funk et al., 2015) is a comprehensive
dataset documenting global precipitation from 1981 to the
present. CHIRPS integrates satellite imagery with in situ sta-
tion data, allowing the generation of gridded rainfall time se-
ries suitable for trend analysis and seasonal drought monitor-
ing at a resolution of 0.05°.

2.2.4 Temperature data

The ERA5-Land dataset (Muñoz-Sabater et al., 2021) offers
a comprehensive reanalysis of land variables and presents
a consistent perspective on their evolution over multiple
decades at a higher resolution than ERA5. As the land com-
ponent of the ECMWF ERA5 climate reanalysis, ERA5-
Land combines model data and global observations to create
a coherent dataset utilizing the principles of physics. Nine-
teen extra bands were incorporated by GEE, with each cor-
responding to an accumulation band, and the hourly values
were calculated as the difference between two successive
forecast steps (Muñoz-Sabater, 2019). For this study, hourly
temperature data with a resolution of 0.1° from 2022 were
used.

3 Methodology

3.1 Land cover classification

The advancement of cloud computing technology in remote
sensing has revolutionized the rapid analysis and application
of Earth system science on a large scale, even globally. GEE
stands out among these technologies, offering online visual-
ization, computation, and analysis capabilities for extensive
Earth science data (Gorelick et al., 2017; Kumar and Mu-
tanga, 2018). Consequently, we opted to utilize GEE for data
processing and analysis. Importantly, the satellite data and
auxiliary data relevant to this study can be readily accessed
through GEE. Figure 2 presents our comprehensive classi-
fication system, which comprises four main steps: (1) sam-
pling strategy, (2) data preprocessing and feature construc-
tion, (3) classification model comparison, and (4) accuracy
assessment and intercomparison.

3.1.1 Classification system

The TP harbors the world’s highest and one of the most dis-
tinctive alpine vegetation communities, posing challenges to
its inclusion in both global and Chinese land cover classi-
fication systems. To address this issue, we have developed

an adapted classification system specifically tailored to the
alpine vegetation types found in the TP. The basis for con-
structing this classification system is as follows:

1. Comprehensive vegetation functional types. We have
categorized the vegetation in the TP based on plant
growth form (trees, shrubs, and herbs), leaf phenology
(evergreen and deciduous), leaf type (broadleaved and
needle-leaved), and ecosystem type. This classification
system results in 12 vegetation types, including 5 types
of tree cover (including evergreen needle-leaved for-
est (ENF), deciduous needle-leaved forest (DNF), ever-
green broadleaved forest (EBF), deciduous broadleaved
forest (DBF), and mixed forest (MF)); 2 types of shrub
cover (including evergreen shrubland (ES) and decid-
uous shrubland (DS)); 2 types of herb cover (includ-
ing alpine grassland (AG) and alpine meadow (AM));
3 special vegetation cover types (including alpine scree
(AS), wetland (WL), and cultivated vegetation (CV));
and 3 non-vegetation land cover types (including bare
land (BL), water body (WB), and permanent ice and
snow (PIS)).

2. Discriminability of different vegetation functional types
in remote-sensing imagery. During the classification
stage, we can effectively differentiate various land cover
types, including diverse vegetation, utilizing the dis-
criminative capabilities of the multispectral bands of
Sentinel-2 (X. Liu et al., 2023). Moreover, the incor-
poration of high-resolution Google Earth imagery, with
a spatial resolution of up to 0.3 m, enhances the distin-
guishability of land cover types during the sample se-
lection phase. This ensures the feasibility of visually in-
terpreting large-scale samples from remote-sensing im-
agery and obtaining reliable and up-to-date information
(Gong et al., 2013).

In this study, we did not specifically select samples of built-
up areas and instead categorized bare land together with
built-up areas for two primary reasons. Firstly, built-up areas
account for only 0.092 % of the total area in ESA World-
Cover2021, highlighting their relatively small extent com-
pared to other land cover types (Zanaga et al., 2022). Sec-
ondly, the bare land in our product exhibits spectral char-
acteristics similar to those of built-up areas, resulting in the
classification of most built-up areas as bare land (Li et al.,
2017).

3.1.2 Sampling strategy

Supervised classification models heavily depend on a sub-
stantial number of labeled samples for effective training and
validation (Foody and Mathur, 2004). While extracting sam-
ples directly from existing land cover products can save per-
sonnel, it introduces several issues: (1) extracted training
samples may inherit errors from previous land cover products
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Figure 2. Flowchart of the land cover classification carried out in this study.

(Xi et al., 2022); (2) utilizing low-resolution products to ex-
tract training samples for high-resolution land cover mapping
can lead to information loss and boundary effects between
adjacent land parcels (X. Zhang et al., 2021; Zhang and Roy,
2017); and (3) reconciling the classification systems of dif-
ferent products is difficult, and global land cover products
may not include specific land cover types for certain regions.
Therefore, collecting samples through visual interpretation
emerges as a more feasible approach (Schepaschenko et al.,
2019).

Google Earth integrates high-resolution imagery from
sources like QuickBird and GeoEye, providing reliable
remote-sensing data sources for visual interpretation. Select-
ing samples in areas without Google Earth image coverage

in 2022 poses a challenge. Normalized-difference vegetation
index (NDVI) time series have thus been used as auxiliary
data for land cover sample selection (Yang and Huang, 2021;
Feng et al., 2016). To ensure the selection of stable sam-
ples, this study examines the stability of land features by re-
viewing the Landsat NDVI time series from 2013 to 2022.
To eliminate the interference from clouds and snow in the
NDVI time series, the following operations were performed
on Landsat images: (1) pixels with cloud coverages of greater
than 50 % were filtered out and (2) a normalized-difference
snow index (NDSI) mask was applied to filter out pixels with
NDSI values greater than −0.4 when selecting forest and
shrub samples. To obtain a more continuous NDVI time se-
ries, the harmonic analysis of time series (HANTS) model
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Figure 3. Examples of the auxiliary data used for explaining the visual interpretation, including Google Earth imagery and the Landsat
monthly mean normalized-difference vegetation index (NDVI) time series for 2013–2022. The x axis represents month of the year, and the
y axis represents NDVI value.

was used for data interpolation and smoothing to remove
noise and reconstruct missing data (Zhou et al., 2015). By
following the steps outlined above, we detected land cover
changes during 2013–2022 using Landsat NDVI time series
(Fig. A2). This approach helps to avoid selecting sites where
land cover change has occurred. Additionally, the monthly
mean value of the NDVI time series for 2013–2022 was cal-
culated to determine the phenological characteristics of each
sample point (Chu et al., 2021). All samples were interpreted

based on Google Earth images, with subsequent verification
performed using NDVI time series as a supplementary mea-
sure to ensure stability and detect the phenology.

For instance, in Fig. 3, different color characteristics
are observed for evergreen shrubs and deciduous shrubs in
Google Earth imagery. Evergreen shrubs maintain their green
color even during winter, while deciduous shrubs appear
yellow-brown. However, during spring or summer, direct dif-
ferentiation between the two from imagery is not possible.
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Table 1. Number of training and validation samples for the 15 land
cover types.

Land cover type Number of Number of Total
training validation
samples samples

Bare land 883 234 1117
Alpine scree 583 129 712
Alpine grassland 607 149 756
Alpine meadow 949 226 1175
Evergreen needle-leaved forest 654 169 823
Deciduous needle-leaved forest 432 106 538
Evergreen broadleaved forest 550 130 680
Deciduous broadleaved forest 459 132 591
Mixed forest 215 78 293
Evergreen shrubland 566 153 719
Deciduous shrubland 663 157 820
Water body 504 114 618
Wetland 280 72 352
Cultivated vegetation 441 91 532
Permanent ice and snow 414 102 516

Total 8200 2042 10 242

Therefore, phenological characteristics are extracted from
their mean NDVI time series. Evergreen shrubs exhibit rela-
tively stable NDVI values, whereas deciduous shrubs show a
decrease in NDVI due to seasonal leaf shedding. Evergreen
needle-leaved forests, evergreen broadleaved forests, and ev-
ergreen shrublands exhibit similar trends and values in NDVI
time series. However, they can be discerned in Google Earth
images based on their distinctive crown shapes and textures
(Fig. 3).

Google Earth imagery does not accurately determine the
presence of herbaceous plant growth. Nevertheless, grass-
lands display a significant periodic increase in NDVI during
the growing season, while bare land exhibits a relatively flat
NDVI time series. This characteristic is utilized for identify-
ing bare land. Regarding alpine grasslands and alpine mead-
ows, judgments are based on area size, vegetation compo-
sition, moisture conditions, and terrain. Meadows typically
have a smaller area compared to grasslands and better mois-
ture conditions, and they are often accompanied by trees or
shrubs in the vicinity. Grasslands have a flatter distribution
area compared to meadows, as depicted in Fig. 3. Conse-
quently, effective differentiation between alpine grasslands
and alpine meadows is achieved.

Topography data (elevation, slope, and aspect) (Farr et al.,
2000), a 1 : 1 million Chinese vegetation map (Su et al.,
2020), and high-quality Google Maps photos were selected
for auxiliary judgment. Ultimately, a total of 10 242 sam-
ples were collected, as illustrated in Fig. 4. Subsequently, the
10 242 samples were mixed, and the samples for each cate-
gory were randomly divided into training and validation sets
in an approximate 4 : 1 ratio, as presented in Table 1. We
adjusted the ratio of training to validation samples to 4 : 1
instead of the commonly used 7 : 3 to enhance the model’s

fitting capability so that it could handle the complex distribu-
tion of features (Ramezan et al., 2021).

3.1.3 Feature construction for classification

The selected input bands for Sentinel-2 included B2–B8,
B8A, B9, B11, and B12. Among these bands, B2–B8, B11,
and B12 have been demonstrated to be effective in classify-
ing deciduous and coniferous tree species (Immitzer et al.,
2016; C. Li et al., 2021). Additionally, B8A is suitable for
boreal landscape classification (Abdi, 2020), while B9 values
demonstrate differences between bare soil and vegetation-
covered areas (Y. Zhao et al., 2023), making them useful for
classification purposes. For Sentinel-1 images, utilizing both
VV and VH can enhance classification accuracy, leading to
their selection as input features (Jacob et al., 2020; Stein-
hausen et al., 2018).

To better discern the characteristics of various land fea-
tures, we calculated several indices using Sentinel-2 imagery.
These included the NDVI, NDSI, normalized-difference wa-
ter index (NDWI), and optimized soil-adjusted vegetation in-
dex (OSAVI). NDVI is highly sensitive to vegetation growth
and is commonly used to distinguish between vegetated and
non-vegetated areas (Rouse et al., 1974). NDSI effectively
detects snow by utilizing the reflective properties of snow in
the short infrared band, making it advantageous for study-
ing ice and snow coverage in high mountain regions (Dozier,
1989). NDWI effectively distinguishes between water and
non-water features (Xu, 2006). OSAVI improves the sensi-
tivity and stability of vegetation indices by considering the
influence of soil reflectance, providing a more accurate re-
flection of vegetation coverage and growth conditions, par-
ticularly in cases of bare soil or sparse vegetation (Rondeaux
et al., 1996).

The topography significantly influences the vertical dis-
tribution of vegetation in high mountain areas (Zou et al.,
2023). Therefore, in this study, we included elevation, slope,
and aspect as input features for classification. Additionally,
we incorporated annual precipitation and mean annual tem-
perature as classification feature indicators (F. Wang et al.,
2023; Shen et al., 2015). For bands with a spatial resolution
different from 10 m, we employed bicubic interpolation to
resample them to 10 m resolution for mapping (Liu et al.,
2020). All the features and their detailed descriptions are pre-
sented in Table 2.

3.1.4 Classification model comparison

Machine learning is a technique typically employed in
remote-sensing image classification. To identify the most ap-
propriate classification model, we compared four widely-
used machine learning models in GEE, including random
forest (RF) (Breiman, 2001), gradient tree boosting (GTB)
(Friedman, 2001), support vector machine (SVM) (Hearst
et al., 1998), and minimum distance (MD) (Wacker and
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Figure 4. Spatial distribution of the 10 242 samples for land cover classification in the Tibetan Plateau.

Table 2. Features used for land cover classification.

Data source Feature Description

Sentinel-1
VV Single co-polarization, vertical transmit and vertical receive, descending orbit
VH Dual-band cross-polarization, vertical transmit and horizontal receive, descending orbit

Sentinel-2

B2 Blue band reflectance (blue)
B3 Green band reflectance (green)
B4 Red band reflectance (red)
B5 Vegetation red-edge 1 band reflectance
B6 Vegetation red-edge 2 band reflectance
B7 Vegetation red-edge 3 band reflectance
B8 Near-infrared band reflectance (NIR)
B8A Narrow near-infrared band reflectance
B9 Water vapor band reflectance
B11 Shortwave infrared 1 band reflectance (SWIR1)
B12 Shortwave infrared 2 band reflectance (SWIR2)
NDVI NDVI= (NIR− red)/(NIR+ red)
DNSI NDSI= (green−SWIR1)/(green+SWIR1)
NDWI NDWI= (green−NIR)/(green+NIR)
OSAVI OSAVI= (NIR− red)/(NIR+ red+ 0.16)

SRTM
Elevation
Slope
Aspect

CHIRPS Annual precipitation

ERA5-Land Annual mean temperature Temperature of air at 2 m above the surface of land or inland waters

Landgrebe, 1972). We fine-tuned the parameters of all the
classification models to achieve optimal results (Table A1).
The classification model with the highest overall perfor-
mance was chosen to generate the land cover map and cal-
culate the area proportion of each land cover type.

3.1.5 Accuracy assessment and intercomparison

The accuracy of remote-sensing image classification is com-
monly assessed using a confusion matrix, which provides
four quantitative indicators: producer’s accuracy (PA), for
measuring omission errors; user’s accuracy (UA), for mea-
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suring commission errors; overall accuracy (OA); and the
kappa coefficient.

To compare with four existing global land cover
datasets, namely ESA WorldCover2021, FROM_GLC10-
2017, FROM_GLC30-2015, and GLC_FCS30-2020, we
merged pixels belonging to the same class (Table A2) and
employed randomly sampled validation samples. Addition-
ally, we selected three 0.1°× 0.1° grids within the TP to com-
pare the visual classification results of TP_LC10-2022 with
the existing four land cover products.

4 Results and discussion

4.1 Comparison of classification models

Table 3 presents the evaluation results from different clas-
sification models applied to the study area using GEE. The
results demonstrate that the RF model achieved the high-
est accuracy, with an overall accuracy (OA) of 86.5 % and a
kappa coefficient of 0.854. The gradient-tree-boosting (GTB)
model closely followed, with an OA of 85.6 % and a kappa
coefficient of 0.844. The minimum-distance (MD) model
yielded an OA of 79.7 % and a kappa of 0.781, while the
support vector machine (SVM) exhibited significantly lower
classification results, with an OA of 64.7 % and a kappa of
0.618.

The high accuracy achieved by RF and GTB models can
be attributed to their ensemble-learning algorithms based on
decision trees. These algorithms combine multiple decision
trees to enhance model performance and generalization ca-
pabilities (Salditt et al., 2022). In contrast to the findings
of Abdi (2020), where RF and SVM exhibited similar OAs,
our SVM showed a decline of 21.8 % compared to RF (Tu
et al., 2020). This discrepancy may be attributed to RF’s abil-
ity to mitigate the correlation between samples and features
through random sampling and feature selection, resulting in
improved classification performance and robustness. More-
over, RF can effectively handle high-dimensional data and
capture nonlinear relationships by integrating multiple deci-
sion trees (Tu et al., 2020; Gislason et al., 2006).

The other three classification models aside from SVM ef-
fectively distinguished water bodies from other land cover
types, achieving a PA exceeding 0.99. However, all classifi-
cation models performed fairly well in differentiating mixed
forests. For instance, SVM achieved a low PA of only 0.269
for mixed-forest classification. Despite the integration of var-
ious machine learning models within GEE, including algo-
rithms like RF, a distinct absence of direct support for deep
learning persists. This is notable even in light of the well-
established and showcased capabilities of deep learning in
the fine-grained classification of land cover (Y. Wang et al.,
2023). This limitation, to a certain extent, poses a hindrance
to the extensive application of large-scale land cover map-
ping.

The utilization of multisource remote-sensing data can of-
fer a more comprehensive understanding of land cover (Xu
et al., 2022; Chen et al., 2017). Given the importance of fea-
tures, all features contributed to the mapping, and elevation
contributed slightly more to the accuracy of the classifica-
tion (Fig. A1). This is attributed to the impact of the TP’s
rugged terrain on the hydrothermal conditions in distinct re-
gions, leading to notable variations in vegetation phenology
(Hwang et al., 2011; Sang et al., 2024).

4.2 Land cover classification map

Figure 5a provides an overview of the TP_LC10-2022 prod-
uct and four global land cover products, along with the pro-
portion of each land cover type in TP_LC10-2022. Alpine
meadow and alpine grassland account for 23.76 % and
16.48 %, respectively. Alpine scree surprisingly ranks fourth,
with 13.99 %, after alpine meadow, bare land, and alpine
grassland. Evergreen needle-leaved forest has the largest area
among the forest types, and deciduous shrubland has a larger
area than evergreen shrubland, reaching 3.57 %, which sur-
passes all other forest types except for evergreen needle-
leaved forest. Table A4 presents the statistical area results
of 5 land cover products in the TP, highlighting significant
discrepancies among them.

According to Fig. 5b, the ESA WorldCover2021,
FROM_GLC10-2017, and FROM_GLC30-2015 products
overestimate the area of bare land in the TP, which is sim-
ilar to the issues observed in the FROM_GLC-agg and ESA
CCI land cover products (Liu et al., 2021; Yu et al., 2014).
This may be due to the misclassification of alpine grass-
land as bare land because these products captured less spec-
tral information during the growing season of alpine grass-
lands. GLC_FCS30-2020 exhibits the highest consistency
with TP_LC10-2022 regarding bare land (Table A4 and
Fig. 5), and it classified more grasslands while failing to
differentiate between grasslands and meadows. Additionally,
GLC_FCS30-2020 assigned 61.44 % of the total TP area to
grassland, indicating an overestimation of grassland extent
(Table A4).

The TP exhibits significant variations in annual rainfall
and land surface temperature across its diverse regions, re-
sulting in distinct hot and cold spots (Rao et al., 2019; Wu
et al., 2019). Consequently, leveraging climate data can prove
beneficial when categorizing alpine meadows in the south-
eastern TP and alpine grasslands in the northwestern TP
at regional climatic scales, given their high sensitivity to
changes in annual precipitation and land surface temperature
(Su et al., 2020; Wang et al., 2021). Our study also found that
incorporating resampled coarse-resolution climate data can
help improve the classification accuracy of finer-resolution
data (Jia et al., 2014). However, this may cause potential loss
of spatial information (Xu et al., 2020), which has not been
observed in the TP_LC10-2022 dataset.
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Table 3. Comparison of classification results from random forest (RF), gradient tree boosting (GTB), minimum distance (MD), and support
vector machine (SVM) at their best performance. A bold font is used to indicate the highest UA and PA for each land cover type as well as
the highest OA and kappa among the four models.

BL AS AG AM ENF DNF EBF DBF MF ES DS WB WL CV PIS OA Kappa

RF
PA 0.974 0.884 0.953 0.894 0.805 0.830 0.915 0.750 0.462 0.856 0.847 1.000 0.611 0.923 0.941 0.865 0.854
UA 0.942 0.851 0.953 0.831 0.764 0.871 0.815 0.786 0.800 0.851 0.821 0.983 0.898 0.884 0.941

GTB
PA 0.979 0.868 0.919 0.894 0.769 0.774 0.892 0.788 0.513 0.843 0.834 0.991 0.639 0.923 0.902

0.856 0.844
UA 0.942 0.855 0.951 0.835 0.756 0.872 0.835 0.759 0.741 0.838 0.775 0.983 0.885 0.894 0.902

SVM
PA 0.688 0.791 0.584 0.681 0.396 0.717 0.646 0.636 0.269 0.621 0.643 0.833 0.597 0.780 0.784

0.647 0.618
UA 0.703 0.729 0.561 0.661 0.429 0.623 0.587 0.592 0.447 0.674 0.574 0.969 0.642 0.664 0.930

MD
PA 0.885 0.814 0.711 0.863 0.876 0.660 0.777 0.780 0.397 0.745 0.771 1.000 0.625 0.758 0.971

0.797 0.781
UA 0.885 0.766 0.914 0.739 0.643 0.946 0.863 0.665 0.674 0.891 0.742 0.950 0.750 0.852 0.846

BL: bare land; AS: alpine scree; AG: alpine grassland; AM: alpine meadow; ENF: evergreen needle-leaved forest; DNF: deciduous needle-leaved forest; EBF: evergreen broadleaved forest; DBF: deciduous
broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous shrubland; WB: water body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice and snow.

Table 4. Confusion matrix of the TP_LC10-2022 product extracted using the random-forest (RF) classification model. A bold font denotes
correctly classified sample points.

BL AS AG AM ENF DNF EBF DBF MF ES DS WB WL CV PIS Total PA

BL 228 2 2 0 0 0 0 0 0 0 0 1 0 1 0 234 0.974
AS 1 114 0 5 0 1 0 0 0 0 4 0 0 0 4 129 0.884
AG 1 1 141 4 0 0 0 0 0 0 0 0 1 1 0 149 0.953
AM 0 3 4 202 0 0 0 2 0 2 6 0 2 4 1 226 0.894
ENF 0 0 0 2 136 5 9 1 3 12 1 0 0 0 0 169 0.805
DNF 0 0 0 2 1 88 0 7 0 3 5 0 0 0 0 106 0.830
EBF 0 0 0 0 11 0 119 0 0 0 0 0 0 0 0 130 0.915
DBF 0 0 0 3 5 1 8 99 6 2 3 0 0 5 0 132 0.750
MF 0 0 0 0 20 1 9 9 36 2 1 0 0 0 0 78 0.462
ES 0 2 0 2 5 1 1 2 0 131 8 0 0 0 1 153 0.856
DS 0 5 0 8 0 4 0 5 0 2 133 0 0 0 0 157 0.847
WB 0 0 0 0 0 0 0 0 0 0 0 114 0 0 0 114 1.000
WL 12 0 1 11 0 0 0 1 0 0 1 1 44 1 0 72 0.611
CV 0 1 0 4 0 0 0 0 0 0 0 0 2 84 0 91 0.923
PIS 0 6 0 0 0 0 0 0 0 0 0 0 0 0 96 102 0.941

Total 242 134 148 243 178 101 146 126 45 154 162 116 49 96 102 2042
UA 0.942 0.851 0.953 0.831 0.764 0.871 0.815 0.786 0.800 0.851 0.821 0.983 0.898 0.884 0.941

OA 0.865
Kappa 0.854

BL: bare land; AS: alpine scree; AG: alpine grassland; AM: alpine meadow; ENF: evergreen needle-leaved forest; DNF: deciduous needle-leaved forest; EBF: evergreen broadleaved forest; DBF: deciduous
broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous shrubland; WB: water body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice and snow.

Table 4 illustrates the confusion matrix of TP_LC10-2022,
with an overall accuracy of 86.5 % and a kappa coefficient
of 0.854. Water body achieved a PA of 100 %, while mixed
forest only reached 46.2 %. Figure 6 shows that most mixed
forests are challenging to differentiate from other forest
types, with over 25 % of mixed forests misclassified as ever-
green needle-leaved forests and 11.5 % misclassified as ever-
green broadleaved forests or deciduous broadleaved forests.
The classification accuracy of wetlands is also unsatisfactory,
with a PA of only 61.1 %. Over 16 % of wetlands were classi-
fied as bare land, and over 15 % were incorrectly classified as
alpine meadows. The UA for the water body reached 98.3 %,
while evergreen needle-leaved forests had the lowest UA at
76.4 %.

In addition, the spectral variations within urban areas have
also resulted in substantial uncertainties. Our approach of

categorizing built-up areas and bare land may lead to the mis-
classification of urban pixels. To minimize the uncertainties
in urban areas on our final map, we applied the ESRI land
cover map for 2022 to mask off urban pixels (Karra et al.,
2021).

Although we employed the Sentinel-2 median composi-
tion method in this study, we acknowledge the potential en-
hancement that time-series analysis could bring to our re-
search. In comparison to median composition, time-series
analysis has the potential to more comprehensively cap-
ture phenological information on vegetation, thereby yield-
ing more accurate land cover classification results (Xie et al.,
2019; Nguyen et al., 2020). However, time-series methods
also have their limitations, such as the requirement for a
greater number of valid observations (Hemmerling et al.,
2021). For example, for the summer of 2022 (June–August),
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Figure 5. Overall comparison between TP_LC10-2022 and other land cover maps. (a) TP_LC10-2022 and the proportions of 15 land
cover types. (b) An overview of four land cover products for the Tibetan Plateau, including ESA WorldCover2021, FROM_GLC10-2017,
FROM_GLC30-2015, and GLC_FCS30-2020. Legend fusion rules for WorldCover2021 and FROM_GLC10-2017 are provided in Table A2,
and those for FROM_GLC30-2015 and GLC_FCS30-2020 are given in Table A3.

when we set the “CLOUDY_PIXEL_PERCENTAGE” pa-
rameter to 10 %, 20 %, 30 %, and 40 % and applied QA band
masking, we lost 13.59 %, 5.81 %, 2.44 %, and 1.32 % of the
Sentinel-2 image area in the TP. The removed pixels were
concentrated mainly in the cloudy southeastern TP (shown
for a 10 % threshold in Fig. A3) (Tang et al., 2022). This
constraint can preclude the attainment of desired outcomes

in regions where cloud-free image availability is low (Chu
et al., 2021; Coluzzi et al., 2018).

The blue, red-edge, and shortwave-infrared (SWIR) bands
of mono-temporal median Sentinel-2 imagery have proven
effective for vegetation classification, distinguishing between
crop types and tree species (Immitzer et al., 2016). As shown
in Fig. A4, both evergreen and deciduous vegetation exhibit
similar trends in Sentinel-2 multispectral bands, but they
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Figure 6. The confusion proportions for each of the land cover types in TP_LC10-2022. BL: bare land; AS: alpine scree; AG: alpine
grassland; AM: alpine meadow; ENF: evergreen needle-leaved forest; DNF: deciduous needle-leaved forest; EBF: evergreen broadleaved
forest; DBF: deciduous broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous shrubland; WB: water body; WL:
wetland; CV: cultivated vegetation; PIS: permanent ice and snow.

display significant differences in spectral reflectance values.
This indicates that median-composited bands of Sentinel-2,
along with constructed spectral indices, can be used to dis-
tinguish between evergreen and deciduous vegetation. Me-
dian composites are affected by the number of available im-
ages, so we ensured that there was a minimum of three high-
quality observations across the entire TP when preprocessing
the annual Sentinel-2 images. The composites from at least
three Sentinel images make it possible to achieve the seam-
less effect shown in Fig. A4 in various locations over large
areas of the TP. The integration of multiple satellite images
over time helps capture the phenology of different vegeta-
tion types while mitigating the influence of outliers (Carrasco
et al., 2019; Pizarro et al., 2022; Tu et al., 2020; Verde et al.,
2020; Xie et al., 2019).

However, relying solely on median-composited bands of
Sentinel-2 and constructed spectral indices may not suffice
to achieve a high classification accuracy, emphasizing the
importance of multisource data. Notably, elevation emerges
as the most important feature among all the ancillary ones
(Fig. A1), reflecting the natural distribution of vegetation
types, which is predominantly shaped by latitudinal zonation
in the mountainous TP (Sherman et al., 2008) (Figs. A5 and
7). Conversely, in flat areas where the vegetation distribu-
tion is minimally influenced by the topography or in urban
areas where the vegetation distribution is affected by anthro-
pogenic activity, topographic information may exhibit limi-
tations in land cover classification (Zeng et al., 2019). Thus,
leveraging features derived from multisource data allows us
to amplify and capture differences between evergreen and de-
ciduous vegetation as well as between shrubs and woodlands,
ultimately leading to a high classification accuracy (Xu et al.,
2018; Yan et al., 2023).

4.3 Intercomparison with other products

The land cover samples selected remained stable across the
years from 2013 to 2022 for the other four land cover prod-
ucts, thus making them comparable to our TP_LC10-2022
map. Therefore, we validated the aggregation of samples into
eight categories and assessed the performance of TP_LC10-
2022 and the four other land cover products in the TP region,
as depicted in Table 5.

For shrubland, the classification performance of the four
global land cover products is remarkably low. Notably,
ESA WorldCover2021 achieves a PA and UA of 0 for
shrubland classification. Among these land cover products,
FROM_GLC30-2015 exhibits the highest UA for shrubland
classification, albeit a mere 59.3 %. This suggests substantial
shortcomings in the precise classification of shrubland in the
TP region by the current land cover products.

A simultaneous visual comparison of the five products was
conducted. In Fig. 7a, TP_LC10-2022 and FROM_GLC30-
2015 exhibit superior performance, revealing more intricate
forest details compared to the other products. Notably, other
products largely disregard vast areas of high-elevation alpine
shrublands above the timberline, while TP_LC10-2022 de-
lineates them (shown in brown) and exhibits distinct verti-
cal zonation. In Fig. 7b, the other four products, particularly
FROM_GLC30-2015 and GLC_FCS30-2020, tend to mis-
classify shrublands as forests, whereas TP_LC10-2022 accu-
rately differentiates between forests and shrubs. In Fig. 7c,
both FROM_GLC10-2017 and FROM_GLC30-2015 depict
scattered shrublands but lack continuity. The four products
other than TP_LC10-2022 overestimate grasslands and un-
derestimate the extent of shrubland areas. This discrepancy
may stem from the similar phenological characteristics of
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Figure 7. Detailed comparison of TP_LC10-2022 with four other global land cover products. Panels (a), (b), and (c) present 0.1°× 0.1°
grids used for detailed comparisons. Legend fusion rules for WorldCover2021 and FROM_GLC10-2017 are provided in Table A2, and those
for FROM_GLC30-2015 and GLC_FCS30-2020 are given in Table A3.

deciduous shrublands and meadows, which poses difficul-
ties when distinguishing them based on spectral features
(X. Li et al., 2021). However, TP_LC10-2022 integrates
topographic and climatic factors as classification features,
facilitating precise differentiation between shrublands and
grasslands.

Lakes and glaciers are the sentinels of global climate
change and constitute the foundation of the TP as a crucial
water source for surrounding regions (Zhang et al., 2017;

Zhang and Duan, 2021). Precisely extracting the boundaries
of lakes and glaciers is imperative for quantitatively moni-
toring lake expansion and glacier melting as well as under-
standing the dynamic relationship between them and precipi-
tation (R. Zhao et al., 2022; Tong et al., 2016; J. Zhang et al.,
2021). Our land cover data, samples, and mapping method-
ology can serve as baseline support for these endeavors (Yan
et al., 2020; Korzeniowska and Korup, 2017), facilitating the
effective utilization of available water resources and promot-
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Table 5. Comparison of mapping accuracy based on validation samples merged into eight land cover types. The fusion rules for the five land
cover products are provided in Table A2. A bold font indicates the highest UA and PA for each land cover type as well as the highest OA and
kappa among the five products.

BL GL FST SHR WB WL CV PIS O.A Kappa

GLC_FCS30-2020
PA 0.726 0.757 0.956 0.026 0.965 0.167 0.516 1.000

0.691 0.604
UA 0.769 0.538 0.709 0.216 0.965 1.000 0.797 0.903

FROM_GLC30-2015
PA 0.902 0.518 0.936 0.063 0.981 0.048 0.440 0.931

0.663 0.578
UA 0.531 0.524 0.758 0.593 0.737 0.375 0.688 0.979

FROM_GLC10-2017
PA 0.961 0.493 0.953 0.058 0.982 0.085 0.824 0.971

0.683 0.604
UA 0.520 0.474 0.820 0.563 0.974 0.188 0.773 1.000

WorldCover2021
PA 0.936 0.604 0.935 0.000 0.991 0.521 0.802 1.000

0.706 0.631
UA 0.569 0.509 0.787 0.000 0.863 0.974 1.000 0.990

TP_LC10-2022
PA 0.970 0.928 0.935 0.881 1.000 0.556 0.923 0.961 0.919 0.900
UA 0.912 0.872 0.962 0.889 0.974 0.889 0.857 0.980

BL: bare land; GL: grassland; FST: forest; SHR: shrubland; WB: water body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice and snow.

ing the sustainable development of the economy and society
in the Greater Tibetan Plateau area and downstream regions
of rivers originating from the TP (Ding et al., 2019).

Alpine forests play a crucial role in carbon storage and
sequestration, thereby enhancing ecosystem services in the
TP (Lin et al., 2023; Z. Wang et al., 2022; H. Zhao et al.,
2023). Our study revealed that TP_LC10-2022 yielded the
smallest forested area (8.60 %), while GLC_FCS30-2020
and FROM_GLC30-2015 yielded the largest and second-
largest areas of alpine forest, respectively (12.86 % and
11.89 %) (Table A4). Conversely, the area of shrubland ex-
hibited nearly the opposite trend (Table A4). Confusion also
arises between alpine grassland and bare land, potentially
leading to variations in carbon storage estimation for each
vegetation type. These discrepancies could impact efforts re-
lated to forest resource protection and grassland management
for animal husbandry (Li et al., 2020; Yu et al., 2022).

Alpine screes are extensively distributed across the TP,
but they are frequently disregarded from other products. Our
product presents the initial description of alpine scree vegeta-
tion locations, which will contribute to environmental mon-
itoring and biodiversity research in the periglacial zone of
the TP (Li et al., 2014). Shrublands play a vital role as
carbon sinks in ecosystems and have substantial implica-
tions for biomass estimation and global carbon cycling (Ma
et al., 2021; Nie et al., 2018). TP_LC10-2022 accurately pre-
dicts the spatial distribution of shrublands, which is of con-
siderable importance when forecasting the impact of future
changes in the biomass and carbon cycle on global-scale
ecosystems (Chang et al., 2022).

High-resolution and accurate land cover data encompass-
ing diverse vegetation types are crucial for monitoring large-
scale alpine vegetation dynamics (F. Wang et al., 2023;
Z. Wang et al., 2022; Wang et al., 2020). For instance, relying
on land cover maps such as ESA WorldCover as the foun-

dation to examine tree lines and vegetation lines in the TP
may lead to the underestimation of tree lines due to misclas-
sifications of grasslands and shrublands (Fig. 7) (Zou et al.,
2023). Additionally, the vegetation line may also be underes-
timated because of the absence of alpine scree (Fig. 7). In our
future work, we aim to leverage Sentinel-2, Sentinel-1, and
other multisource data to annually generate TP_LC10 prod-
ucts. This approach will facilitate alpine vegetation monitor-
ing and change detection, thereby enriching our comprehen-
sion of the dynamic TP amidst intensifying global climate
change (Y. Wang et al., 2022).

5 Data availability

The TP_LC-2022 product generated in this paper is available
at https://doi.org/10.5281/zenodo.8214981 (Huang et al.,
2023a). The TP_LC-2022 product covering the entire Ti-
betan Plateau is grouped into 54 3°× 3° tiles in the Geo-
TIFF format (EPSG: 4326), which are named “TP_LC10-
2022_E**N**.tif”, where “E**N**” corresponds to the lon-
gitude and latitude information for the upper left corner of
each regional land cover map. The multisource data used in
this study, including the Sentinel-2 data, can be directly ac-
cessed from Google Earth Engine.

The corresponding sample dataset, produced by
manual interpretation and field trips, is available at
https://doi.org/10.5281/zenodo.8227942 (Huang et al.,
2023b). The classification map can be viewed at https://cold-
classifier.users.earthengine.app/view/tplc10-2022 (Huang et
al., 2024).
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6 Conclusions

We present a detailed land cover map of the Tibetan Plateau
that includes 12 vegetation types and 3 non-vegetation types
at 10 m spatial resolution for the year 2022 (TP_LC10-2022).
This was obtained by integrating multisource data, includ-
ing Sentinel-1, Sentinel-2, SRTM, CHIRPS, and ERA5-Land
data, and applying and comparing four classification mod-
els via GEE. TP_LC10-2022 achieved an overall accuracy
of 86.5 % and a kappa coefficient of 0.854 % when using
the RF model, which outperformed other classification mod-
els, including GTB, MD, and SVM. Comparisons between
TP_LC10-2022 and four widely used land cover products
(GLC_FCS30-2020, FROM_GLC30-2015, FROM_GLC10-
2017, and WorldCover2021) demonstrated that TP_LC10-
2022 has a higher overall accuracy and reflects the local-
scale variations of vegetation types with latitude. In partic-
ular, TP_LC10-2022 incorporated unique land cover types
like alpine scree, alpine grassland, and alpine meadow, which
accounted for 54.23 % of the total coverage. Moreover, it ac-
curately depicted the distribution of shrubland, which occu-
pied 4.63 % of the TP and was underestimated in the other
products. The proposed vegetation classification system for
the TP can serve as a foundation for land cover mapping in
this region and a reference approach for mapping shrubland
globally. The developed TP_LC10-2022 product can facili-
tate the monitoring of vegetation changes and the study of
the response to climate change in the TP.

Appendix A

Table A1. Optimal parameters for random forest (RF), gradient tree
boosting (GTB), minimum distance (MD), and support vector ma-
chine (SVM) in this study.

Model Optimal parameters

RF numberOfTrees: 100

GTB numberOfTrees: 75

MD metric: “mahalanobis”
kNearest: 1

SVM decisionProcedure: “Voting”
kernelType: ‘RBF’
gamma: 0.000005
cost: 2000
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Table A2. Table for cross-walking between different land cover products.

Target type TP_LC2022 WorldCover2021 FROM_GLC10-2017 FROM_GLC30-2015 GLC_FCS30-2020

Bare land Bare land Bare/sparse vegetation Bare land Bareland Bare areas
Built-up Impervious area Impervious surface Impervious surfaces

Consolidated bare areas
Unconsolidated bare areas

Grassland Alpine grassland Grassland Grassland Natural grassland Grassland
Alpine meadow Grassland, leaf-off Sparse vegetation

Sparse herbaceous
Herbaceous cover

Forest Evergreen broadleaved forest Tree cover Forest Broadleaf, leaf-on Open evergreen broadleaved forest
Deciduous broadleaved forest Broadleaf, leaf-off Closed evergreen broadleaved forest
Evergreen needle-leaved forest Needleleaf, leaf-on Open deciduous broadleaved forest
Deciduous needle-leaved forest Needleleaf, leaf-off Closed deciduous broadleaved forest
Mixed forest Mixed leaf, leaf-on Open evergreen needle-leaved forest

Closed evergreen needle-leaved forest
Open deciduous needle-leaved forest
Closed deciduous needle-leaved forest

Shrubland Evergreen shrubland Shrubland Shrubland Shrubland, leaf-on Shrubland
Deciduous shrubland Shrubland, leaf-off Evergreen shrubland

Deciduous shrubland

Water body Water body Permanent water bodies Water body Water Water body

Wetland Wetland Herbaceous wetland Wetland Marshland Wetlands
Mudflat
Marshland, leaf-off

Cultivated vegetation Cultivated vegetation Cropland Cropland Rice paddy Rainfed cropland
Greenhouse Tree or shrub cover (orchard)
Orchard Irrigated cropland
Bare farmland
Other (cropland)

Permanent ice and snow Permanent ice and snow Snow and ice Snow and ice Snow Permanent ice and snow
Ice

Excluded Alpine scree Moss and lichen Tundra Herbaceous tundra Lichens and mosses

This table includes only land cover types present within the study area.
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Table A3. Table for cross-walking between FROM_GLC30-2015 and GLC_FCS30-2020.

Target type FROM_GLC30-2015 GLC_FCS30-2020

Bare land Bareland Bare areas
Impervious surface Impervious surfaces

Consolidated bare areas
Unconsolidated bare areas

Grassland Natural grassland Grassland
Grassland, leaf-off Sparse vegetation

Sparse herbaceous
Herbaceous cover

Evergreen broadleaved forest Broadleaf, leaf-on Open evergreen broadleaved forest
Closed evergreen broadleaved forest

Deciduous broadleaved forest Broadleaf, leaf-off Open deciduous broadleaved forest
Closed deciduous broadleaved forest

Evergreen needle-leaved forest Needleleaf, leaf-on Open evergreen needle-leaved forest
Closed evergreen needle-leaved forest

Deciduous needle-leaved forest Needleleaf, leaf-off Open deciduous needle-leaved forest
Closed deciduous needle-leaved forest

Mixed forest Mixed leaf, leaf-on

Evergreen shrubland Shrubland, leaf-on Evergreen shrubland

Deciduous shrubland Shrubland, leaf-off Deciduous shrubland

Water body Water Water body

Wetland Marshland Wetlands
Mudflat
Marshland, leaf-off

Cultivated vegetation Rice paddy Rainfed cropland
Greenhouse Tree or shrub cover (orchard)
Orchard Irrigated cropland
Bare farmland
Other (cropland)

Permanent ice and snow Snow Permanent ice and snow
Ice

Tundra/lichens and mosses Herbaceous tundra Lichens and mosses

This table includes only land cover types present within the study area.
The “cloud” class in FROM_GLC30-2015 and “shrubland” class in GLC_FCS30-2020 have been omitted from the table due to
their small areas.
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Table A4. Area statistics from land cover products for the Tibetan Plateau.

TP_LC10-2022 FROM_GLC30-2015 GLC_FCS30-2020 WorldCover2021 FROM_GLC10-2017

Land cover type Area Proportion Area Proportion Area Proportion Area Proportion Area Proportion

BL 58.75 19.05 % 147.67 47.89 % 45.71 14.82 % 134.75 43.70 % 156.45 50.74 %

AG 50.83 16.48 %
96.75 31.38 % 189.44 61.44 % 108.44 35.17 % 89.35 28.98 %

AM 73.25 23.76 %

ENF 11.44 3.71 % 27.91 9.05 % 31.52 10.22 %

28.49 9.24 % 29.46 9.55 %
DNF 2.26 0.73 % 0.02 0.01 % 0.37 0.12 %
EBF 4.53 1.47 % 2.94 0.95 % 3.45 1.12 %
DBF 6.80 2.20 % 1.69 0.55 % 4.31 1.40 %
MF 1.46 0.47 % 4.10 1.33 % 0.00 0.00 %

ES 3.28 1.06 % 1.70 0.55 % 0.22 0.07 %
0.37 0.12 % 1.59 0.51 %

DS 11.02 3.57 % 0.41 0.13 % 4.13 1.34 %

WB 6.43 2.09 % 12.38 4.02 % 6.05 1.96 % 6.86 2.22 % 10.06 3.26 %

WL 6.84 2.22 % 0.19 0.06 % 0.55 0.18 % 0.37 0.12 % 2.06 0.67 %

CV 5.14 1.67 % 2.04 0.66 % 2.81 0.91 % 1.35 0.44 % 3.02 0.98 %

PIS 23.18 7.52 % 10.46 3.39 % 19.08 6.19 % 12.95 4.20 % 16.36 5.30 %

AS/tundra/
43.15 13.99 % 0.05 0.01 % 0.00 0.00 % 14.77 4.79 % 0.00 0.00 %

lichen/moss

Total 308.34 100.00 % 308.31 99.99 % 307.66 99.78 % 308.34 100.00 % 308.34 100.00 %

BL: bare land; AG: alpine grassland; AM: alpine meadow; ENF: evergreen needle-leaved forest; DNF: deciduous needle-leaved forest; EBF: evergreen broadleaved forest; DBF:
deciduous broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous shrubland; WB: water body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice
and snow; AS: alpine scree.
The unit of area is 104 km2, and the unit of proportion is %.
Please refer to Table A3 for the rules for comparing land cover between FROM_GLC30-2015 and GLC_FCS30-2020.
The “cloud” class in the FROM_GLC30-2015 product and the “shrubland” class in the GLC_FCS30-2020 product have been omitted from the table due to their small areas.
All built-up pixels have been merged with bare land.

Figure A1. Statistical chart of the importance of different features in the random forest classification model. AP: annual precipitation; AMT:
annual mean temperature.
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Figure A2. Landsat NDVI time series and HANTS-filtered NDVI time series for stability verification. Panel (a) depicts a deciduous needle-
leaved forest, while panel (b) shows a transition from forest to farmland at the edge of the deciduous broadleaved forest in 2015; this area
was annually cultivated following deforestation.

Figure A3. Number of available observations with cloud cover < 10 % from Sentinel-2 optical data for the Tibetan Plateau during summer
2022 (1 June 2022 to 31 August 2022).
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Figure A4. Sentinel-2 spectral curves for forest and shrubland types. The spectral curve for each type was derived by calculating the average
and standard deviation of the surface reflectance across all samples for the processed cloud-free Sentinel-2 median composite for 2022 in
the Tibetan Plateau. ENF: evergreen needle-leaved forest; DNF: deciduous needle-leaved forest; EBF: evergreen broadleaved forest; DBF:
deciduous broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous shrubland.

Figure A5. Box plot derived from the SRTM for the distribution of sample elevation across different land cover types in the Tibetan Plateau.
BL: bare land; AS: alpine scree; AG: alpine grassland; AM: alpine meadow; ENF: evergreen needle-leaved forest; DNF: deciduous needle-
leaved forest; EBF: evergreen broadleaved forest; DBF: deciduous broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS:
deciduous shrubland; WB: water body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice and snow.
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