Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3193-2024
https://doi.org/10.5194/essd-16-3193-2024
Data description paper
 | 
10 Jul 2024
Data description paper |  | 10 Jul 2024

Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea

Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo

Related authors

Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021,https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
IAPv4 ocean temperature and ocean heat content gridded dataset
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024,https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Probabilistic reconstruction of sea-level changes and their causes since 1900
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024,https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024,https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024,https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
Haibin Ye, Chaoyu Yang, Yuan Dong, Shilin Tang, and Chuqun Chen
Earth Syst. Sci. Data, 16, 3125–3147, https://doi.org/10.5194/essd-16-3125-2024,https://doi.org/10.5194/essd-16-3125-2024, 2024
Short summary

Cited articles

Bagnell, A. and DeVries, T.: 20th century cooling of the deep ocean contributed to delayed acceleration of Earth's energy imbalance, Nat. Commun., 12, 4604, https://doi.org/10.1038/s41467-021-24472-3, 2021. 
Balmaseda, M. A., Trenberth, K. E., and Källén, E.: Distinctive climate signals in reanalysis of global ocean heat content, Geophys. Res. Lett., 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013. 
Beardslev, R. C., Limeburner, R., Yu, H., and Cannon, G. A.: Discharge of the changjiang (Yangtze river) into the East China Sea, Cont. Shelf. Res., 4, 57–76, https://doi.org/10.1016/0278-4343(85)90022-6, 1985. 
Chang, P. H. and Isobe, A.: A numerical study on the changjiang diluted water in the yellow and East China seas, J. Geophys. Res., 108, 3299, https://doi.org/10.1029/2002JC001749, 2003. 
Chen, C., Xue, P., Ding, P., Beardsley, R. C., Xu, Q., Mao, X., Gao, G., Qi, J., Li, C., Lin, H., Cowles, G., and Shi, M.: Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea, J. Geophys. Res.-Oceans, 113, C02002, https://doi.org/10.1029/2006JC003994, 2008. 
Download
Short summary
We overcame the limitations of satellite and reanalysis sea surface salinity (SSS) datasets and produced a gap-free gridded SSS product with reasonable accuracy and a spatial resolution of 1 km using a machine learning model. Our data enabled the recognition of SSS distribution and movement patterns of the Changjiang diluted water (CDW) front in the East China Sea (ECS) during summer. These results will further advance our understanding and monitoring of long-term SSS variations in the ECS.
Altmetrics
Final-revised paper
Preprint