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Abstract. The spatial and temporal resolutions of contemporary microwave-based sea surface salinity (SSS)
measurements are insufficient. Thus, we developed a gap-free gridded daily SSS product with higher spatial
and temporal resolutions, which can provide information on short-term variability in the East China Sea (ECS),
such as the front changes by Changjiang diluted water (CDW). Specifically, we conducted gap-filling for daily
SSS products based on the Geostationary Ocean Color Imager (GOCI) with a spatial resolution of 1 km (0.01°),
using a machine learning approach during the summer seasons from 2015 to 2019. The comparison of the Soil
Moisture Active Passive (SMAP), Copernicus Marine Environment Monitoring Service (CMEMS), and Hy-
brid Coordinate Ocean Model (HYCOM) SSS products with the GOCI-derived SSS over the entire SSS range
showed that the SMAP SSS was highly consistent, whereas the HYCOM SSS was the least consistent. In the
< 31 psu range, the SMAP SSS was still the most consistent with the GOCI-derived SSS (R2

= 0.46; root mean
squared error: RMSE= 2.41 psu); in the > 31 psu range, the CMEMS and HYCOM SSS products showed sim-
ilar levels of agreement with that of the SMAP SSS. We trained and tested three machine learning models –
the fine trees, boosted trees, and bagged trees models – using the daily GOCI-derived SSS as output, including
the three SSS products, environmental variables, and geographical data. We combined the three SSS products
to construct input datasets for machine learning. Using the test dataset, the bagged trees model showed the
best results (mean R2

= 0.98 and RMSE= 1.31 psu), and the models that used the SMAP SSS as input had
the highest level. For the dataset in the > 31 psu range, all the models exhibited similarly reasonable perfor-
mances (RMSE= 1.25–1.35 psu). The comparison with in situ SSS data, time series analysis, and the spatial
SSS distribution derived from models showed that all the models had proper CDW distributions with reasonable
RMSE levels (0.91–1.56 psu). In addition, the CDW front derived from the model gap-free daily SSS product
clearly demonstrated the daily oceanic mechanism during the summer season in the ECS at a detailed spatial
scale. Notably, the CDW front in the zonal direction, as captured by the Ieodo Ocean Research Station (I-ORS),
moved approximately 3.04 km d−1 in 2016, which is very fast compared with the cases in other years. Our model
yielded a gap-free gridded daily SSS product with reasonable accuracy and enabled the successful recognition
of daily SSS fronts at the 1 km level, which was previously not possible with ocean color data. Such successful
application of machine learning models can further provide useful information on the long-term variation of
daily SSS in the ECS. The gridded gap-free SSS dataset at 0.01°× 0.01° spatial resolution is freely available at
https://doi.org/10.22808/DATA-2023-2 (Shin et al., 2023).
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1 Introduction

Sea surface salinity (SSS) affects marine biogeochemical
environments, atmosphere–ocean interactions, and vertical
ocean circulation (Dinnat et al., 2019; Durack et al., 2016).
Gridded SSS products are useful for research on climate
change and its variability (Lyman and Johnson, 2014; Ciais
et al., 2013; Domingues et al., 2008; Bagnell and Devries,
2021). In particular, gridded SSS products can provide useful
information for monitoring SSS variations in waters affected
by river outflow and coastal regions (Geiger et al., 2013;
Chen and Hu, 2017; Moon et al., 2019). The East China
Sea (ECS) – a continental marginal sea in the western Pacific
– receives freshwater from the Changjiang (Yangtze) River,
which is the fifth-largest river based on discharge (Beard-
slev et al., 1985). Changjiang River discharge (CRD) forms
Changjiang diluted water (CDW) by mixing with saline am-
bient waters and causes seasonal and interannual changes
in the ECS and Yellow Sea (YS) (Lie et al., 2003; Chen
et al., 2008). In summer, owing to the prevailing southerly
wind and increasing CRD, the CDW extends eastward to-
ward the island of Jeju in South Korea by approximately 12–
17 km d−1 and lasts approximately 1–2 months (Kim et al.,
2009; Yamaguchi et al., 2012). The CDW generally refers to
seawater with a salinity of no more than 31 psu. Low-salinity
events caused by the CDW affect the environment by altering
the biological or physical properties of seawater, e.g., caus-
ing sea surface warming by impeding vertical heat exchange
(Chang and Isobe, 2003; Moon et al., 2019). Therefore, spa-
tiotemporally continuous gridded SSS data with a high spa-
tial resolution and a temporal resolution of at least 1 d are
essential for monitoring the rapidly changing CDW in the
ECS.

Three approaches are mainly followed for SSS estima-
tion: (1) methods involving in situ observations, resulting
in objective analysis data products (Roemmich and Gilson,
2009; Cheng and Zhu, 2016; Lu et al., 2020); (2) data as-
similation methods using model-derived reanalysis data and
combining numerical simulations with in situ observations
(Forget et al., 2015; Balmasede et al., 2013); and (3) meth-
ods involving satellite observations, i.e., passive microwave
and ocean color products (Reul et al., 2020; Chen and Hu,
2017; Wang and Deng, 2018; Kim et al., 2020, 2022a). First,
in situ observations are characterized by temporal and spa-
tial constraints, and in situ observation accuracy is suscep-
tible to influence by data ranges and regions (von Schuck-
mann et al., 2014; Zhou et al., 2004). Hence, SSS products
obtained from in situ measurements involve limitations re-
garding spatiotemporally continuous SSS monitoring over
vast areas. The Array for Real-time Geostrophic Oceanogra-
phy (ARGO), which was established in the 2000s, provides
in situ measurements of various oceanographic parameters,
including sea temperature and salinity, with a sparse array

of 3°× 3° (Dinnat et al., 2019; Vinogradova et al., 2019).
ARGO monitors seas in various parts of the world. How-
ever, there are a few in situ SSS observations from ARGO
floats in the ECS (Y. J. Kim et al., 2023). Second, the model-
derived reanalysis approach relies on model simulations that
use data assimilation schemes to constrain models based on
various types of observations, such as in situ and satellite
data (Palmer et al., 2017; Cheng et al., 2020; Storto et al.,
2019). Such products, particularly those below the ocean sur-
face, may be significantly affected by model biases. There-
fore, the accuracy of reanalysis products is lower than that of
observational products when adopting a data assimilation ap-
proach in applications such as long-term climate change. The
Hybrid Coordinate Ocean Model (HYCOM) and Copernicus
Marine Environment Monitoring Service (CMEMS) provide
SSS fields in the ECS. Because these reanalysis data were
generated and verified by mainly focusing on open-ocean
conditions, the accuracy is low in waters with low, rapidly
changing salinity levels, such as the ECS.

In contrast, satellite observations can resolve the limita-
tions of in situ observations and reanalysis data. Three pas-
sive microwave radiometers with an L band (1.4 GHz), in-
cluding Aquarius (August 2011 to June 2015), Soil Moisture
and Ocean Salinity (SMOS; since May 2010), and Soil Mois-
ture Active Passive (SMAP; since April 2015), have been
used to estimate SSS. L-band sensors estimate SSS based
on a dielectric constant model (Reul et al., 2020). Because
SMOS does not provide SSS data in the ECS due to sen-
sor errors, including land–sea contamination (LSC) and ra-
dio frequency interference (RFI) (Olmedo et al., 2018), only
SMAP data are currently available. SMAP has been used to
monitor SSS; however, uncertainties due to RFI and low sea
surface temperature (SST) often lead to major errors, espe-
cially in river-dominated coastal waters, such as the ECS. To
compensate for these limitations, Jang et al. (2021) attempted
to improve the SMAP SSS in river-dominated oceans using
machine learning approaches. They used the SMAP SSS, Tb
H-pol, Tb V-pol, Tb H/V, HYCOM SSS, SST, wind speed,
and wave height as inputs and in situ data as output. Jang
et al. (2022) produced a global SSS product by adding land
fraction, distance from land, and precipitation data. However,
the spatial (25–100 km) and temporal (5–7 d) resolutions of
these data were too coarse to identify rapidly changing small
mesoscale features in the ECS. In comparison, ocean color
sensors, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), Landsat series, and Geostationary
Ocean Color Imager (GOCI), can provide SSS products with
high spatial and temporal resolutions (Wang and Deng, 2018;
Chen and Hu, 2017). Specifically, GOCI, which operated
from 2010 to 2021, had high spatial (0.5 km) and tempo-
ral (eight images per day) resolutions for monitoring short-
and long-term SSS variations in the ECS. Several studies de-
tected SSS variations using GOCI (Liu et al., 2017; Sun et
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al., 2019; Kim et al., 2020, 2021). Choi et al. (2021) ana-
lyzed the variations in SSS, chlorophyll-a concentration, and
SST when Typhoon Soulik passed over the study area and
revealed that decreasing salinity effects were strongly exhib-
ited 2 d after the typhoon passed and then became weaker
1 week after the passage. Son and Choi (2022) elucidated
the spatial and temporal CDW variations in the ECS through
monthly GOCI-derived SSS maps for the 2011–2020 sum-
mer seasons. However, there has been a limit to the SSS es-
timation due to the wavelength band-associated calculations
of the ocean color sensor, i.e., the nonlinear relationship be-
tween the wavelength information of ocean color sensor data
and SSS. In addition, only monthly SSS maps can be recog-
nized, owing to severe cloud contamination.

To overcome this problem, machine learning approaches
have been used for SSS estimation. Kim et al. (2020) de-
veloped an SSS detection algorithm using a multilayer per-
ceptron neural network (MPNN), which was applicable only
for the summer of 2016. They used GOCI remote sensing
reflectance (Rrs), SST, longitude, and latitude as inputs and
SMAP data as output. Kim et al. (2022a) performed a GOCI-
II-based SSS estimation in the ECS for the summer of 2021
using an MPNN. They provided the spatial distribution of
low-salinity water near the southwestern Korean coasts at an
hourly temporal resolution and a spatial resolution of 250 m,
which was better than that of GOCI (500 m). For long-term
SSS monitoring in the ECS, Kim et al. (2022b) trained the
MPNN using Ocean Color Climate Change Initiative (OC-
CCI) data and in situ data collected during the summer sea-
sons of 1997–2021. They investigated the CDW front in the
ECS using an SSS-estimated MPNN model. Monthly cumu-
lative isohaline footprints revealed that the CDW propagates
to the northeast and forms a longitudinally oriented ocean
front. They mentioned that it is difficult to produce a monthly
SSS distribution map because of frequent cloud cover, sun
glint, and thick aerosols. Because CDW progresses rapidly,
SSS variations caused by CDW must be identified at a daily
or finer temporal resolution. If gap-free daily SSS maps with
high spatial resolutions can be obtained, the understanding
of SSS variations in the ECS can be enhanced. Here, we
performed gap-filling for a GOCI-derived daily SSS prod-
uct with a spatial resolution of 1 km (0.01°) using a ma-
chine learning approach. For this, we compared three SSS
products, i.e., SMAP, CMEMS, and HYCOM, in the ECS
during the summers of 2015–2019. We then trained and
tested three machine learning models, i.e., fine trees, boosted
trees, and bagged trees, using the SSS product, environmen-
tal variables, and geographical data. Finally, we analyzed the
CDW front in the ECS during the summer using the gap-free
GOCI-derived daily SSS product.

2 Materials

2.1 SSS and environmental data

Figure 1 shows the study area (29–35° N, 119.5–129° E),
including the ECS and YS. Table 1 presents a summary
of the inputs and outputs used for model training and test-
ing. All data were obtained according to the study area.
The SMAP, HYCOM, and CMEMS SSS products were
used as reference SSS data. Among passive microwave ra-
diometers with L bands, the SMAP product produced by
the Jet Propulsion Laboratory (JPL) has a daily tempo-
ral resolution (8 d running mean) (https://podaac.jpl.nasa.
gov/dataset, last access: 1 July 2024). We used the ver-
sion 5.0 SMAP-SSS level-3 product (SMAP_RSS_L3_SSS_
SMI_8DAY-RUNNINGMEAN_V5), which has been avail-
able since 27 March 2015. SMAP went into safe mode,
and data collection was disrupted over 38 d from 17 June to
25 July 2019. The datasets are gridded to 0.25°× 0.25°. HY-
COM is a data-assimilative hybrid isopycnal-sigma-pressure
coordinate ocean model, which forms the computational core
of the Global Ocean Forecasting System (GOFS). Multiple
datasets, including ARGO data with in situ temperature and
salinity (TS) profiles, satellite SST, and altimeter sea sur-
face height (SSH) anomalies, are used for HYCOM assim-
ilation. We used GOFS 3.1 Global Analysis data (https://tds.
hycom.org/thredds/catalog.html, last access: 1 July 2024),
with a temporal frequency of 3 h and a spatial resolution of
0.08°× 0.08°. We used the seawater salinity (SS) at a depth
of 0.49 m of the CMEMS Global Ocean Physics Reanal-
ysis data (GLOBAL_MULTIYEAR_PHY_001_030) (https:
//resources.marine.copernicus.eu/products, last access: 1
July 2024). The GLORYS12V1 product is the CMEMS
global ocean eddy-resolving reanalysis and assimilates al-
timetry data. It has a spatial resolution of 0.08°× 0.08° and
50 standard levels. The observations were assimilated us-
ing a reduced-order Kalman filter, along-track altimeter data,
satellite SST, and in situ TS profiles.

2.2 Environmental data and GOCI-derived SSS daily
map

For the SST data, we used the Group for High
Resolution SST (GHRSST) Level 4 Multi-scale Ultra-
high Resolution (MUR) Global Foundation SST anal-
ysis version 4.1 data (https://podaac.jpl.nasa.gov/dataset/
MUR-JPL-L4-GLOB-v4.1, last access: 1 July 2024). The
MUR SST analysis is part of the NASA Making Earth Sys-
tem data records for Use in Research Environments (MEa-
SUREs) program. The objective of creating the MUR SST
was to develop a coherent and consistent daily SST map at
a high spatial resolution. The MUR SST has a spatial res-
olution of 0.01°. For other environmental data, we used the
SSH above the geoid, eastward seawater velocity (uo), and
northward seawater velocity (vo) at a depth of 0.49 m of the
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GLORYS12V1 product. We used the eastward and north-
ward components of 10 m wind datasets with 1/4° provided
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Reanalysis v5 (ERA5). The data frequency
is hourly, and daily mean data were used. The wind data were
converted to eastward wind stress (wsu) and northward wind
stress (wsv) using an equation based on the air density, drag
coefficient, and wind speed (Trenberth et al., 1990). Geo-
graphical data, such as longitude and latitude, used in the
gridded data were matched to the gridded map with the scale
of SST variable. In addition, we used the GOCI-derived SSS
daily map of the ECS developed by Kim et al. (2021). It has
a spatial resolution of 0.005°. They employed the MPNN
approach using the hourly GOCI Rrs product as input and
SMAP SSS data as output for 2015–2020.

2.3 In situ data

Figure 1 shows the locations of the shipboard measurement
data and the Ieodo Ocean Research Station (I-ORS) used
to validate the model performance. We used serial oceano-
graphic observation data provided by the National Institute
of Fisheries Science (NIFS) serial oceanographic observa-
tion stations (http://www.nifs.go.kr/kodc/soo_list.kodc, last
access: 1 July 2024). The station and observation layers con-
sist of 25 lines with 207 stations and 14 standard water col-
umn layers (0–500 m), respectively. Data are available from
1961 to present and are usually obtained six times a year,
whereas, in the case of the ECS, data are available four times
a year. As shown in Fig. 1, we used SSS data with a wa-
ter level of 0 m obtained from the ECS (lines 315, 316, and
317), West Sea (lines 311 and 312) and South Sea (lines 203,
204, 205, 206, and 400). We obtained 861 SSS measure-
ments at 103 observation points during the June–September
period of 2015–2019. The I-ORS salinity data were obtained
from the Korea Institute of Ocean Science and Technology
(KIOST) (https://kors.kiost.ac.kr/en/data/sub4.php, last ac-
cess: 1 July 2024). They are provided at depths of 3, 5, 8, 13,
18, 28, 34, and 40 m. The time interval is 10 min. We used
salinity data at a depth of 3 m with daily averaging from June
to September 2016 (122 d). The I-ORS is located at 32.12° N,
125.18° E. This station has an advantage in terms of low-
salinity water monitoring because it is geographically located
on the path of the CDW, extending from the Changjiang
River to the waters of the Korean Peninsula. All data were
used as quality control (QC) flag 1 (good), and the specified
measurement accuracy is ±0.003 psu.

3 Methods

Figure 2 shows a schematic representation of the generation
of the gap-free daily SSS product. In this study, we used
a daily SSS map at 03:00 UTC during the summer period
(June–September) from 2015 to 2019 (610 d) estimated from
the GOCI Rrs. We also obtained daily maps of other data

Figure 1. The study area in the red solid box (29–35° N, 119.5–
129° E) includes the East China Sea (ECS) and Yellow Sea (YS).
Orange dots indicate the serial shipboard observation stations from
the National Institute of Fisheries Science (NIFS), and the blue tri-
angle indicates the location of the Ieodo Ocean Research Station
(I-ORS). The two datasets were used for the model testing.

for the same period. To match the spatial resolution of the
gridded maps, input and output data, as shown in Table 1,
were sampled at 0.01°, which is the spatial resolution of the
SST level. The SMAP, CMEMS, and HYCOM SSS products
were compared with the corresponding GOCI-derived daily
SSS map through histograms, spatial distributions, and scat-
ter plots. In addition, the data were divided into below and
above 31 psu, which is the standard for identifying the CDW,
and each of the two categories was evaluated for consis-
tency with the corresponding GOCI-derived SSS. Thereafter,
the machine learning models were trained using a training
dataset consisting of pixel pairs of GOCI-derived SSS and
various combinations of data, such as environmental factors
and geographical data. We evaluated the quantitative perfor-
mance of each machine learning model using a test dataset.
After confirming the performances using in situ SSS, we in-
vestigated the time series and spatial SSS distribution of each
model. The optimal model was then selected. Finally, we
analyzed the CDW front in the ECS as estimated from the
selected model. To determine the CDW front, we applied
a Savitzky–Golay filter with a window size of four, which
smooths according to a quadratic polynomial fitted over each
window. This method is more effective when the data vary
rapidly. The SSS variations at the location of the I-ORS es-
timated by the model were compared during the summers of
2015–2019, and the daily progress rate of the CDW was cal-
culated using the time series diagram for the zonal section at
the latitude where the I-ORS is located.
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Table 1. Summary of the inputs and output used for training and testing of the machine learning model. The output data were used for the
daily SSS map derived from the Geostationary Ocean Color Imager (GOCI) by Kim et al. (2021). In situ SSS data for the model testing were
provided by the NIFS and I-ORS.

Data Variable Dataset Data Horizontal
type source resolution

Input Sea surface salinity (SSS) SMAP_RSS_L3_SSS_SMI_8DAY-
RUNNINGMEAN_V5

SMAP 0.25°× 0.25°

GOFS 3.1 GLBv0.08 HYCOM 0.08°× 0.08°

GLOBAL_REANALYSIS_PHY_001_030 CMEMS 0.08°× 0.08°

Sea surface height (SSH) GLOBAL_REANALYSIS_ PHY_ 001_ 030 CMEMS 0.08°× 0.08°

Eastward horizontal
velocity (uo)

Northward horizontal
velocity (vo)

Eastward component of
10 m wind (wsu)

ERA5 ECMWF 0.25°× 0.25°

Northward component
of 10 m wind (wsv)

Sea surface temperature
(SST)

MURSST GHRSST Level 4 0.01°× 0.01°

Geographical data
(longitude and latitude)

– – 0.01°× 0.01°

Output Daily SSS GOCI-derived daily SSS (Kim et al., 2021) GOCI 0.005°× 0.005°

Validation In situ SSS In situ observations NIFS and I-ORS Point observation

3.1 Machine learning models

Machine learning models were trained and tested using var-
ious input variable groups. Table 2 summarizes the com-
position of the input variables, the number of pixel pairs,
and the training time for the models. To identify the ex-
tent to which the three SSS datasets affected the accuracy
of the model, we created seven input variable groups: three
input groups (Models 1, 2, and 3) containing only one of
the SMAP, CMEMS, and HYCOM SSS products; three in-
put groups (Models 4, 5, and 6) containing combinations of
two of the SSS datasets; and one input group containing all
three SSS datasets (Model 7). Other data (SST, SSH, uo, vo,
wsu, wsv, longitude, and latitude) were included in all the in-
put groups. We matched the pixel pairs between the GOCI-
derived daily SSS map and the corresponding factor maps.
Because the SMAP SSS does not capture the coast due to its
low spatial resolution, the input groups that included it had
a small number of matched pixel pairs. In contrast, the in-
put groups containing only the CMEMS and HYCOM SSS
products had 500 000 matched pixel pairs or more. For each
model, the training and test datasets were 80 % and 20 % of
the matched pixel pairs, respectively. Due to differences in
spatial resolution between input data, the locations of non-

valued pixels differ by input data, so they were adopted as
pixel pairs only if all the input values were available. This
is because the accuracy of the trained model is degraded if
non-valued pixels are included in the input dataset. Then,
if at least one of the input data had non-valued pixels, all
values of the pixel pairs were converted to zero values. For
the training of zero values within the matched images, we
added 10 % of the total number of zero matrices for each
training and test dataset group. For example, the total num-
ber of matched pixel pairs in input group 7 was 425 819,
and the numbers of pixel pairs in the training and testing
datasets were 340 656 and 85 163, respectively. By adding a
zero matrix of 10 % for each pixel pair, the final numbers of
pixel pairs for the training and testing datasets were 374 721
and 93 679, respectively. Using the seven input groups, we
trained and tested three machine learning models, i.e., the
(1) fine trees, (2) boosted trees, and (3) bagged trees models.
We used a fine regression tree with a minimum leaf size of
four. Regression trees are easy to interpret, are fast for fitting
and prediction, and require low memory usage. Boosted trees
are an ensemble of regression trees that use a least-squares
boosting algorithm. Boosting algorithms use relatively little
time or memory compared to bagging but might require more
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Figure 2. Schematic diagram showing the processes that led to the production of the gap-free Geostationary Ocean Color Imager (GOCI)-
derived daily sea surface salinity (SSS) map. We performed three steps. (1) We evaluated three SSS products in the ECS, including Soil
Moisture Active Passive (SMAP), Copernicus Marine Environment Monitoring Service (CMEMS), and Hybrid Coordinate Ocean Model
(HYCOM) SSS with the GOCI-derived SSS data; (2) machine learning models were trained and tested using the GOCI-derived SSS map and
various combinations of data, including SSS products and environmental data; and (3) we identified the Changjiang diluted water (CDW)
front generated from the gap-free daily SSS map.

ensemble members. The minimum leaf size was set to eight,
and the number of learners was 30 with a learning rate of 0.1
when the boosted trees model was trained. Bagged trees are
bootstrap-aggregated ensembles of regression trees. They are
often very accurate but can be slow and memory-intensive for
large datasets. The minimum leaf size and number of learn-
ers in the bagged trees model were the same as those in the
boosted trees model. The computational times rank as fol-
lows: bagged trees, boosted trees, and fine trees.

3.2 Performance evaluation

Data comparison was performed using the coefficient of de-
termination (R2), root mean squared error (RMSE), mean
squared error (MSE), and mean absolute error (MAE). The
MSE is the square of the RMSE. The MAE is always pos-
itive and similar to the RMSE but less sensitive to outliers.
The formulae are defined as follows:

R2
=


∑
i

(yi − ȳ)(xi − x̄)√∑
i

(yi − ȳ)2∑
i

(xi − x̄)2


2

, (1)

RMSE=

√√√√∑
i

(yi − xi)2

N
, (2)

MSE=
1
N

∑
i

(yi − xi)2, (3)

MAE=
1
N

∑
i

|yi − xi | , (4)

where N is the number of pairs and i represents an individual
pair. x represents the GOCI-derived SSS or in situ observa-
tion SSS. y represents the SSS products and the estimated
SSS. x̄ and ȳ are the mean values of x and y, respectively.
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Table 2. Composition of the input variables, number of pixel pairs, and training time required for each model. The three machine learning
models, i.e., the fine trees, boosted trees, and bagged trees models, were trained and tested for estimating SSS from seven input variable
groups.

Models Input variables Number of pixel pairs Training time (s)

SSS products Other data Fine trees Boosted trees Bagged trees

Model 1 SMAP

SST, SSH, uo, vo,
wsu, wsv, lon, lat

430 868 69.55 37.19 79.64

Model 2 CMEMS 567 946 150.43 93.97 185.97

Model 3 HYCOM 551 478 109.79 58.75 124.73

Model 4 SMAP+CMEMS 430 868 73.65 41.81 94.22

Model 5 SMAP+HYCOM 425 819 71.00 42.07 95.25

Model 6 CMEMS+HYCOM 551 376 112.82 63.12 135.95

Model 7 SMAP+CMEMS+HYCOM 425 819 73.50 45.90 97.51

4 Results and discussions

4.1 Comparison of the existing SSS with GOCI-derived
SSS

To confirm the characteristics of the SSS products in the
study area, we examined the statistical distribution of the
SMAP, CMEMS, and HYCOM SSS products against that
of the GOCI-derived SSS product (Fig. 3a). The distribu-
tion of the SMAP SSS product was most similar to that
of the GOCI-derived SSS product, with the median values
of the SMAP and GOCI-derived SSS products being 31.04
and 30.86 psu, respectively. However, the SSS ranges of the
CMEMS and HYCOM SSS products, especially the one of
the latter product, had high probabilities at values close to
35 psu and low probabilities in the range between 25 and
30 psu. For the HYCOM SSS product, there were no val-
ues below 20 psu. The median values of the CMEMS and
HYCOM SSS products were 32.72 and 33.50 psu, respec-
tively. The HYCOM SSS product showed the lowest degree
of agreement with the GOCI-derived SSS product. Figure 3b
shows a clear shift of the CDW during summer in the GOCI-
derived SSS map on 21 July 2017 at 02:00 UTC, i.e., the date
with the least masking (10.25 %) due to cloud cover over
the entire study period (610 d). However, we were unable to
confirm the movement patterns of the continuous CDW on
a daily basis because of cloud masking in most SSS maps
within the study period. Figure 3c shows the spatial mask-
ing ratio of the GOCI-derived SSS maps with pixel units; the
masking ratio was more than 95 % around the Changjiang
River estuary. The minimum masking ratio was 72 %, and we
estimated that all pixels in the study area could not provide
SSS information for at least 439 of the 610 d. Figure 3d–f
show the spatial distributions of the SMAP, CMEMS, and
HYCOM SSS, respectively, acquired on the day the GOCI-
derived SSS map in Fig. 3b was acquired. In addition, we
compared the distributions of the SSS data more clearly
through scatter plots between the GOCI-derived SSS and the

three SSS products (Fig. 3g–i). Consistent with the results in
the scatter plot (R2

= 0.58; RMSE = 1.97 psu), the SMAP
SSS map showed the most similar distribution to that of the
GOCI-derived SSS map; however, it is an 8 d average prod-
uct, not a daily product. The CDW pattern in the SMAP SSS
was roughly consistent with that of the GOCI-derived SSS;
however, in the western waters of Jeju, the CDW pattern
in the SMAP SSS did not appear like it did in the GOCI-
derived SSS, thereby confirming that the SMAP SSS was
slightly overestimated compared with the GOCI-derived SSS
in the scatter plot (Fig. 3g). In the case of the CMEMS SSS,
the CDW pattern in front of the Changjiang River estuary
was similar to that of the GOCI-derived SSS, but the CDW
was distributed along the northern coast, and the high SSS
area was expanded in the southern waters (Fig. 3e), result-
ing in a form that deviated significantly from the 1 : 1 line
(R2
= 0.27; RMSE= 3.34 psu; MSE = 10.91), as shown in

Fig. 2h. In contrast, the distribution of the HYCOM SSS
had a large expansion of the high SSS area from south to
north, and there was no CDW pattern except in the front part
of the Changjiang River, which had an extremely low SSS.
In line with this, we confirmed that the HYCOM SSS data
were considerably overestimated compared to the GOCI-
derived SSS data, i.e., R2

= 0.18 and RMSE= 3.68 psu, es-
pecially for the < 31 psu case (Fig. 3i). Through the scat-
ter plots, we confirmed that the degree of agreement dif-
fered based on the 31 psu criterion. Table 3 shows the re-
sults of calculating the consistency with the corresponding
SSS products by dividing the GOCI SSS data based on the
31 psu criterion. Even in the < 31 psu case, the SMAP SSS
still showed the best agreement with the GOCI-derived SSS
(R2
= 0.46; RMSE= 2.41 psu), whereas the HYCOM SSS

showed the worst agreement (R2
= 0.05; RMSE= 4.86 psu).

However, in the > 31 psu case, the CMEMS and HYCOM
SSS products, with RMSE= 1.59 psu for the former and
RMSE= 1.33 psu for the latter, showed as much agreement
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as that of the SMAP SSS with RMSE= 1.20 psu. This was
different from the results in the < 31 psu case.

These results may be attributed to the following causes.
The characteristics of the reanalysis data may affect the SSS
estimation error in the ECS. Jang et al. (2022) compared the
SMAP and HYCOM SSS products with in situ data from
the global ocean, including the Pacific, tropical, and Arctic
oceans, and the Amazon River plume. They reported that the
HYCOM SSS in low-salinity regions (< 32 psu), particularly
in coastal river-dominated areas, exhibited high uncertainty.
This may be because the HYCOM SSS data were assimi-
lated into the ARGO data, which are relatively limited in
low-salinity regions. The ARGO database involves few data
from our study area – the ECS. The HYCOM model uses SSS
climatology and monthly mean river discharge data and does
not use satellite-derived SSS products capable of real-time
observations. However, these data are too coarse to repro-
duce the observed rapid changes in low-salinity water in nar-
row areas (Wallcraft et al., 2009; Cummings and Smedstad,
2014; Wilson and Riser, 2016). Since the CMEMS data are
assimilated similarly to HYCOM, it is judged that they have
similar limitations of HYCOM data. Therefore, although re-
analysis SSS data are gap-free and have a spatial resolution
of about 8 km, they are unsuitable for catching daily SSS spa-
tial fluctuations in the waters because it has relatively low
accuracy in waters with a low SSS range. Currently, SMAP
is the only satellite datum that can provide a continuous spa-
tial SSS distribution in the ECS, although it is an 8 d average
dataset and has a rough spatial resolution of 25 km. Hence,
the SMAP data have been frequently used as output for SSS
estimations using ocean color sensor data. Kim et al. (2021)
used the SMAP SSS data as output in an SSS estimation
model. The estimated SSS was reasonable, with R2

= 0.61
and RMSE= 1.08 psu concerning in situ SSS. Because we
considered the SSS data produced in Kim’s model as output,
the SMAP SSS may – naturally – be the most consistent one
with the GOCI-derived SSS. Intrinsically, L-band microwave
sensor-retrieved SSS has some limitations, such as errors due
to anthropogenic RFI and LSC (Olmedo et al., 2019). In ad-
dition, the SMAP SSS has significant uncertainty in the polar
regions owing to the relatively low SST (Jang et al., 2022).
This is because the sensitivity of emissivity to salinity de-
creases as SST decreases, thereby increasing the error in the
SMAP SSS (Dinnat et al., 2019; Reul et al., 2012). In the
high-salinity regions, the reanalysis SSS shows a higher as-
sociation with in situ data than the SMAP SSS. Nevertheless,
in the ECS, which has the characteristic of low SSS during
summer, the SMAP SSS data are relatively more consistent
with the GOCI-derived SSS than the HYCOM and CMEMS
data, so they are more suitable for gap-filling of the GOCI
SSS data.

4.2 Performance of the SSS models

4.2.1 Quantitative evaluation with the test dataset

Table 4 summarizes the R2, RMSE, MSE, and MAE val-
ues of the estimated SSS with respect to the GOCI-derived
SSS for the model using the test dataset. Based on the sta-
tistical indices, the bagged trees model showed the best re-
sults (mean R2

= 0.977 and RMSE= 1.315 psu), while the
boosted trees model had the lowest accuracy (mean R2

=

0.944 and RMSE= 2.139 psu). The MSE and MAE values
suggested the same. The mean MSE and MAE of the boosted
trees model were 2.63 and 2.23 times higher than those of the
bagged trees model, respectively. The fine trees model per-
formed well, with a mean RMSE of 1.57 psu. Model 1 with
the bagged trees model and only the SMAP SSS as input had
the highest level (R2

= 0.98 and RMSE= 1.164 psu). Mod-
els 4, 5, and 7 with the bagged trees models and the SMAP
SSS as input also had statistical results similar to that of
Model 1, with RMSE values of 1.17–1.19 psu. Model 2 with
the boosted trees model and only the CMEMS SSS as in-
put showed the worst results (R2

= 0.93, RMSE= 2.412 psu,
MSE= 5.816, and MAE= 1.782). However, the RMSE val-
ues were reasonable for the models with the boosted trees
model and the SMAP SSS as input (Models 1, 4, 5, and
7). Notably, the RMSE values of Models 2, 3, and 6 with
the bagged trees model and without the SMAP SSS as input
showed relatively reasonable levels compared to the mod-
els that used the SMAP SSS as input. This indicates that
the bagged trees model overcomes the inconsistencies of the
CMEMS and HYCOM SSS concerning the GOCI-derived
SSS compared to the fine trees and boosted trees models.

Our results are similar to those of previous studies. Jang
et al. (2022) improved the accuracy of the SMAP SSS for
the global ocean using environmental data, the SMAP and
HYCOM SSS, and various machine learning approaches.
They reported that, among the models, ensemble tree-based
machine learning methods such as random forest (RF), ex-
treme gradient boosting (XGBoost), a light gradient boost-
ing (LGB) model, and gradient-boosted regression trees
(GBRTs) showed quantitatively good performances. Shin et
al. (2022) evaluated machine learning models with various
types of ensemble methods, such as bagged trees, boosted
trees, subspace discriminant, subspace k-nearest neighbor
(KNN), and random undersampling boosting (RUSBoost), to
estimate the Sargassum distribution through environmental
variables. They found that model accuracy varied depending
on the learner type and that the bagged trees model showed
the best performance, especially when the learner type was a
decision tree. To recognize the impact of geographic factors
on model performance, we trained the bagged trees model
while excluding the latitude and longitude from the input
data of Model 1. As a result, the RMSE, MSE, and MAE
values increased by 12.55 %, 26.68 %, and 12.99 %, respec-
tively, compared to those of Model 1 with geographic fac-
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Figure 3. (a) Histogram of the GOCI-derived, SMAP, CMEMS, and HYCOM SSS products in the study area. Spatial distributions of the
(b) GOCI-derived, (d) SMAP, (e) CMEMS, and (f) HYCOM SSS data in the study area. (c) Spatial masking ratio of the GOCI-derived SSS
maps based on the pixel unit. Scatter plots showing the consistency patterns between the GOCI-derived SSS and (g) SMAP, (h) CMEMS,
and (i) HYCOM SSS data using the entire SSS range. Statistical indices: coefficient of determination (R2), root mean squared error (RMSE),
mean squared error (MSE), and mean absolute error (MAE).

Table 3. The R2, RMSE, MSE, and MAE for the SMAP, CMEMS, and HYCOM SSS products with respect to the GOCI-derived SSS data
according to the SSS range. The SSS data were divided into above and below 31 psu, which is the standard for defining CDW.

SSS range Paired number Salinity product R2 RMSE (psu) MSE MAE

< 31 psu 225 203 SMAP 0.41 2.46 6.05 1.68
CMEMS 0.12 4.29 18.37 3.42
HYCOM 0.05 4.86 23.61 3.95

> 31 psu 200 616 SMAP 0.34 1.20 1.45 0.82
CMEMS 0.23 1.59 2.54 1.04
HYCOM 0.20 1.33 1.77 1.07

tors. Spatially, the CDW pattern estimated from the model
was more dispersed; therefore, the tendency of the movement
pattern was not clear. The results of some previous studies
are consistent with these results. Shin et al. (2022) reported
that the model trained with geographic factors as input vari-
ables was more accurate than the model without geographic

factors and that the Sargassum distribution in the ECS esti-
mated from the model was less spread and more reasonable
than those from the other models. S. H. Kim et al. (2023)
selected physically related variables and geographic factors
as inputs to estimate the subsurface salinity using a convo-
lutional neural network (CNN) model. They found that the
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model without geographic information was less accurate than
the model with geographic information. Geographic infor-
mation is important for the movement of the CDW in the
ECS. The Changjiang River, located in the southwestern part
of the study area, is a major source of freshwater, and the
CDW produced from this location gradually moves north-
east. Therefore, a model with a good performance model
is possible only when both geographical and environmental
factors that can affect the SSS variations are considered.

4.2.2 Validation with independent observations

We validated the estimated SSS from the models and the
existing SSS products using in situ NIFS and I-ORS SSS
(Table 5). Among the models, in the case of in situ NIFS
data, Model 1 with the bagged trees model had the best
performance with R2

= 0.65 and RMSE= 1.434 psu, while
Model 3 had the worst performance with R2

= 0.59 and
RMSE= 1.560 psu. Consistent with the test dataset results,
the models with the SMAP SSS as input (RMSE= 1.434–
1.488 psu) performed slightly better than those without the
SMAP SSS (RMSE= 1.525–1.560 psu). Among the exist-
ing SSS products, the RMSE level of the SMAP was the
lowest (0.781 psu), and the CMEMS and HYCOM showed
a RMSE of 1.931–2.154 psu. The performance of the mod-
els was evaluated using in situ I-ORS data from 2016 when
the expansion scale of the CDW was quite large and fast.
From June to September 2016, 16 out of 122 d were miss-
ing, and 106 matching data points were used to evaluate
the performance of the models. Within this period, the mini-
mum SSS was 26.62 psu, and data in the < 31 psu range ac-
counted for 89 % of the total data, with a maximum SSS of
32.02 psu. The RMSE range of all the models was 0.911–
1.021 psu, with good performance in a low salinity range.
When confirming the consistency between the in situ I-ORS
dataset and the three SSS products, the RMSE values of
the SMAP, CMEMS, and HYCOM SSS were 1.459, 3.062,
and 3.251 psu, respectively. These results were quite differ-
ent from those when validated using the in situ NIFS data.

We evaluated model performance by dividing the data
based on the 31 psu criterion using in situ NIFS SSS data (Ta-
ble 6). As shown in Fig. 1, in situ NIFS data were acquired
from within the area of the CDW, with a minimum SSS of
21.97 psu. Quite a few data were acquired from the north-
ern location, unaffected by the CDW; therefore, the maxi-
mum SSS was 34.04 psu. However, of the 861 in situ data,
the ones in the > 31 psu range accounted for 73.17 % of the
total, unlike the in situ I-ORS data. When using in situ data in
the > 31 psu range, the mean RMSE (1.573 psu) was 5.36 %
higher than the mean RMSE of the entire dataset (1.493 psu),
and the performances of all the models were slightly worse.
However, when in situ data in the < 31 psu range were used,
the mean RMSE (1.308 psu) decreased by 12.32 % compared
to the mean RMSE of the entire dataset. In particular, the
RMSE (1.301 psu) of Model 2 (with only the CMEMS SSS

as input) decreased by 14.68 % compared with when all the
data were used (1.525 psu). The model performance with
data in the < 31 psu range was similarly reasonable in all
seven models (RMSE= 1.250–1.347 psu). Our models suc-
cessfully solved the nonlinear relationships between the in-
put dataset and the GOCI-derived SSS data. This indicates
that, in a water environment with a low salinity range, the
SSS data estimated by our models have a higher accuracy
than the existing SSS products, approximately the accuracy
level of RMSE= 1 psu.

4.2.3 Time series and spatial distribution of the SSS
map

We compared the spatial distributions of the SSS maps to
qualitatively evaluate the models. Figure 4 shows the time se-
ries variations of the model-based SSS, GOCI-derived SSS,
and in situ I-ORS SSS during the summer period, i.e., from
1 June to 30 September 2016. Out of a total of 122 d, GOCI-
derived SSS data were obtained at the I-ORS location in 48 d,
while 60.66 % of the SSS data over 4 months were not ob-
servable due to cloud cover. The in situ I-ORS data were
missing 13.11 % during the same period. However, the SSS
data estimated by the models spanned over the entire period
and did not include missing data, and the simulated daily
variation of the in situ data was better than that of the GOCI-
derived SSS. Figure 5a shows the GOCI-derived SSS map
on 27 July 2016, in which the in situ I-ORS SSS value is
the lowest, as shown in Fig. 4. SSS data at the location of
the I-ORS (red triangle) existed in the GOCI-derived SSS
map; however, most parts of the study area were masked by
clouds, making it difficult to recognize the CDW pattern. In
contrast, Fig. 5b–h show the SSS maps estimated by Mod-
els 1–7, respectively, for the same date as that of the GOCI-
derived SSS map. Unlike the GOCI-derived SSS map, all
the SSS maps estimated by the models provided gap-free
SSS distributions and clearly showed that the CDW extended
from the Changjiang River estuary to the coast of Jeju during
summer. However, we confirmed that Models 1, 4, 5, and 7
(Fig. 5b, e, f, and h, respectively), which included the SMAP
SSS as input, are masked in coastal areas, and some of the
spatial patterns of the CDW appear in steps because of the
spatial resolution of the SMAP (25 km). In contrast, Models
2, 3, and 6 (Fig. 5c, d, and g, respectively), which included
the CMEMS and HYCOM SSS as inputs, did not mask the
coastal area and provided coastal SSS information regarding
the CDW spreading from the front of the Changjiang River
estuary. Overall, the CDW patterns in the SSS maps esti-
mated by Models 3 and 6 (Fig. 5d and g) using the HYCOM
SSS as input data were similar to those of the other models;
however, the CDW distribution tended to be divided around
124° E. Model 2, which only included the CMEMS SSS as
input, showed the appropriate CDW distributions and pat-
terns. Through quantitative and qualitative evaluation of the
models, we selected Model 1 (only the SMAP SSS as input)
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Table 4. Statistical results of the R2, RMSE, MSE, and MAE values between the SSS products estimated from the seven models and the
GOCI-derived SSS using the test dataset. The models were divided according to the SSS data used in input, and each training dataset was
trained with the three machine learning models, i.e., the fine trees, boosted trees, and bagged trees models.

SSS model R2 RMSE (psu) MSE MAE

Model 1 (SMAP) Fine trees 0.98 1.384 1.916 0.780
Boosted trees 0.95 1.950 3.804 1.546
Bagged trees 0.98 1.164 1.356 0.665

Model 2 (CMEMS) Fine trees 0.96 1.885 3.551 0.951
Boosted trees 0.93 2.412 5.816 1.782
Bagged trees 0.97 1.558 2.428 0.817

Model 3 (HYCOM) Fine trees 0.96 1.774 3.148 0.916
Boosted trees 0.94 2.370 5.617 1.763
Bagged trees 0.97 1.482 2.195 0.791

Model 4 (SMAP+CMEMS) Fine trees 0.98 1.406 1.976 0.783
Boosted trees 0.95 1.952 3.810 1.541
Bagged trees 0.98 1.186 1.407 0.668

Model 5 (SMAP+HYCOM) Fine trees 0.98 1.384 1.916 0.776
Boosted trees 0.95 1.954 3.817 1.544
Bagged trees 0.98 1.166 1.361 0.662

Model 6 (CMEMS+HYCOM) Fine trees 0.96 1.769 3.131 0.914
Boosted trees 0.94 2.379 5.661 1.764
Bagged trees 0.98 1.471 2.164 0.781

Model 7 (SMAP+CMEMS+HYCOM) Fine trees 0.98 1.385 1.957 0.774
Boosted trees 0.95 1.956 3.826 1.542
Bagged trees 0.98 1.175 1.382 0.664

and Model 2 (only the CMEMS SSS as input) for the CDW
front analysis in the ECS while considering the simplicity of
the input data. The prime SMAP mission was completed in
the summer of 2018, having acquired a wide range of scien-
tific data for 3 years. Since then, SMAP has been approved
for an extended phase of operation until 2023. However, the
SMAP operation will soon be terminated; therefore, an alter-
native to the SMAP SSS data is necessary. By quantitative
and qualitative model evaluation using a combination of SSS
products, we confirmed the usefulness of additional CMEMS
SSS data, combined with the SMAP SSS data, for generating
a gap-free GOCI-derived SSS map.

4.3 CDW front based on gap-free daily SSS

Figure 6a shows the SSS time series estimated from Models
1 (2015, 2016, 2017, and 2018) and 2 (2019) with bagged
trees at the I-ORS location during the summers of 2015–
2019. The estimated SSS data with Model 1 in 2019 were
not possible because the SMAP SSS was not provided due to
safe mode; therefore, Model 2 was used instead. We identi-
fied the three phases according to the CDW variations during
summer: (Phase I) beginning phase (early June), (Phase II)
development phase (end of July), and (Phase III) recovery
phase (end of August). The in situ I-ORS SSS generally be-

gan to fall under the influence of the CDW in June (Phase I),
declined from July to August (Phase II), and then increased
in September (Phase III). This happened in 2015, 2016, and
2019, and the difference between the maximum and mini-
mum SSS was approximately 3 psu. However, 2016 and 2018
exhibited different trends. In 2016, the SSS change in Phase I
was similar to those in other years, whereas Phase II showed
a sharp SSS decline, in contrast to the cases in the other years.
At the end of August, Phase III showed a sharp SSS increase
and SSS recovered to a level similar to those in other years.
In contrast, in 2018, Phases I and III showed patterns simi-
lar to those in other years, whereas Phase II showed a slight
SSS increase, in contrast to the case in 2016. To determine
the direction and velocity of the CDW front movement in
the summers of 2015–2019, we plotted the time series in the
cross-sectional direction (A–A′ in Fig. 7a). In early June, the
CDW front was similarly located near 126° E in all the years,
and the 29 isohaline appeared near 124° E. In 2015 and 2019,
the CDW front expanded to 127° E and gradually moved east
until September. In 2017 and 2018, the CDW front did not
reach 127° E until September, repeating the trend of heading
east and retreating to the west. In an unusual case in 2016, we
confirmed that the CDW front extended to 128° E on 1 Au-
gust, 62 d after 1 June, moving approximately 3.04 km d−1
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Table 5. The R2, RMSE, MSE, and MAE values of the SSS values estimated from Models 1–7 for the bagged trees model, SMAP, CMEMS,
and HYCOM concerning in situ NIFS and I-ORS SSS data. N is the number of matches between the in situ SSS and estimated SSS maps.
As shown in Fig. 1, in situ data were acquired from close to the coast of the Korean Peninsula; therefore, the SMAP SSS does not provide
data around the coast. For this reason, the SSS map estimated from models using the SMAP SSS as input had fewer matched data than those
of other models. Since I-ORS is located in the center of the study area, in situ data that matched data on the SSS map estimated from models
were the same for all the models. Of the 122 d, 16 d were missing, and a total of 106 d were matched.

In situ observations Models and R2 RMSE MSE MAE Matched
observations products (psu) number

NIFS SSS data Model 1 0.65 1.434 2.055 1.187 478
Model 2 0.60 1.525 2.326 1.299 841
Model 3 0.59 1.560 2.432 1.339 795
Model 4 0.64 1.448 2.096 1.211 478
Model 5 0.63 1.488 2.213 1.228 457
Model 6 0.63 1.529 2.337 1.319 795
Model 7 0.64 1.467 2.152 1.213 457
SMAP 0.89 0.781 0.609 0.619 417
CMEMS 0.045 1.931 3.727 1.483 841
HYCOM 0.18 2.154 4.639 1.519 825

I-ORS data Model 1 0.71 0.947 0.896 0.798 106
Model 2 0.70 0.911 0.830 0.761
Model 3 0.66 0.994 0.988 0.822
Model 4 0.72 0.940 0.884 0.794
Model 5 0.66 1.021 1.042 0.881
Model 6 0.68 0.959 0.919 0.814
Model 7 0.70 0.943 0.889 0.809
SMAP 0.75 1.459 2.128 1.172
CMEMS 0.001 3.062 9.375 2.766
HYCOM 0.089 3.251 10.567 2.864

Table 6. The R2, RMSE, MSE, and MAE values between the SSS values estimated from Models 1–7 for the bagged trees model and in situ
NIFS SSS data. The data were evaluated by dividing according to a 31 psu criterion.

SSS Models R2 RMSE MSE MAE Matched
range (psu) number

< 31 psu Model 1 0.45 1.250 1.563 0.887 183
Model 2 0.41 1.301 1.693 0.925 229
Model 3 0.42 1.347 1.815 0.961 207
Model 4 0.41 1.296 1.679 0.944 183
Model 5 0.40 1.352 1.829 0.936 166
Model 6 0.46 1.292 1.669 0.940 207
Model 7 0.43 1.320 1.741 0.936 166

> 31 psu Model 1 0.28 1.536 2.361 1.374 295
Model 2 0.25 1.601 2.563 1.439 612
Model 3 0.25 1.628 2.649 1.472 588
Model 4 0.31 1.535 2.355 1.376 295
Model 5 0.26 1.559 2.432 1.395 291
Model 6 0.27 1.604 2.572 1.453 588
Model 7 0.26 1.545 2.387 1.371 291

Earth Syst. Sci. Data, 16, 3193–3211, 2024 https://doi.org/10.5194/essd-16-3193-2024



J. Shin et al.: Gap-filling techniques applied to the GOCI-derived daily sea surface salinity 3205

Figure 4. (a) SSS time series estimated from seven models with bagged trees and the GOCI-derived and in situ I-ORS SSS data over 122 d
from 1 June to 30 September 2016.

Figure 5. (a) GOCI-derived SSS map on 27 July 2016. (b–h) SSS maps estimated from seven models with bagged trees. The estimated SSS
maps were generated from input data on the same day as the GOCI-derived SSS map. The red triangle represents the I-ORS location.
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Figure 6. (a) SSS time series estimated by Model 1 (2015, 2016, 2017, and 2018) and Model 2 (2019) with bagged trees at the I-ORS
location during the summer of 2015–2019. (Phase I) Beginning phase, (Phase II) development phase, and (Phase III) recovery phase of the
CDW. In 2019, it was not possible to estimate the SSS with Model 1 because the SMAP SSS was not provided due to safe mode; therefore,
Model 2 was used instead. (b–f) Time series of the 122–128° E horizontal transect (A–A′ in Fig. 8a) during summer in each year. The plots
were applied for the 27, 29, and 31 psu isohalines. The cross section in A–A′ is located at 32.12° N.

(188.29 km/62 d). Regarding the 29 isohaline, in 2017 and
2018, similar to June, it rarely moved east; in particular, in
2018, the tendency to move east was low, resulting in the
lowest CDW expansion during the study period. In 2015
and 2019, the 29 isohaline developed at 125° E in August
and gradually retreated westward. In 2016, the 29 isohaline
extended to 127° E from early June to early August, mov-
ing at approximately 4.79 km d−1 (282.42 km/59 d). This was
faster than the CDW front, which lasted 1 month in August
and then gradually retreated in September. The 27 isohaline
stayed around 123° E from early June to the end of Septem-
ber in all the years except 2016. In 2016, a partial 27 isoha-
line extended to 126° E, confirming that a fairly low-salinity
environment persisted during the summer season of 2016.

Focusing on 2016 and 2018, which showed unusual SSS
fluctuations different from those in the other years, we con-
tinuously (i.e., on a daily basis) identified the CDW front
(< 31 psu) by phase (Fig. 7). The SSS spatial distributions
were estimated by Model 1 and were applied with the 29,
31, and 33 psu isohalines for the CDW front. Consistent with
the SSS time series in Fig. 6, the CDW front was close to
the I-ORS during Phase I in early June (5–8 June) in both
2016 and 2018 (Fig. 7a and d, respectively). This indicates
that, before June, the CDW front had already advanced con-
siderably eastward in the ECS and began to enter the CDW
boundary of the < 31 psu range in Phase I. However, the
CDW front variation patterns in Phases II and III differed. On
19–20 July 2016, during Phase I, the I-ORS location entered
the 29 psu boundary, and the CDW front gradually expanded
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Figure 7. SSS spatial distribution in the ECS with the 29, 31, and 33 psu isohalines in 2016 and 2018. (a–f) Maps corresponding to the
stages in panels (a), (b), and (c), respectively. Beginning phase (Phase I): panels (a) and (c); development phase (Phase II): panels (b) and
(d); recovery stage (Phase III): panels (c) and (f). The red triangle represents the I-ORS location (32.12° N, 125.18° E).
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southeast. Conversely, in 2018, Phase I stayed at the 29 psu
boundary simultaneously and escaped, and the CDW front
remained similar without significant changes. While Phase
III in 2016 remained at the 29 psu boundary and gradually
escaped, Phase III in 2018 exhibited a spatial CDW front pat-
tern similar to that of Phase I, and the SSS level had already
recovered.

Our results are consistent with those of previous studies
on the CDW in the ECS. Moon et al. (2019) recognized that
ocean salinity in 2016 was exceptionally low and investigated
the contribution of low salinity to sea surface warming in
the ECS during the summer of 2016. Through observations,
they revealed that a large amount of freshwater in 2016 orig-
inated from the Changjiang River. Son and Choi (2022) pre-
sented maps that applied various SSS algorithms to GOCI
and noted that surface water in the summer of 2016 was
loaded with freshwater owing to increased CRD. In addi-
tion, cross- and along-shelf exports of the CDW from the
Changjiang River mouth manifested as patches, and salini-
ties below 25 psu were observed along the Changjiang River
estuary. S. H. Kim et al. (2023) estimated the CDW volume
in the ECS by combining a subsurface salinity map with the
SMAP SSS. The CDW volume was highest in 2016, whereas
in 2018 it reached a minimum during summer. They found
that the CDW volumes were relatively low from May to early
June and increased from June to August, showing a seasonal
trend. This may be because the conditions in 2016 and 2018
were different, owing to the amount of CRD, precipitation,
El Niño–Southern Oscillation (ENSO), typhoons, and wind.
The primary factor controlling the scale of the CDW is the
amount of CRD. S. H. Kim et al. (2023) reported that the
amount of CRD measured at the Datong station was high-
est in 2016 and lowest in 2018. They investigated the re-
lationship between CDW volume and CRD and found that
the CDW volume peak appeared with a time lag of about
34± 15 d after an increase in CRD, that 2016 had the largest
CDW, and that 2018 had the smallest CDW. In 2016, a strong
El Niño event led to a noticeable increase in CRD compared
to the other years (S. H. Kim et al., 2023). ENSO can increase
the CRD in the ECS through the increased precipitation dur-
ing El Niño events (Park et al., 2011; Wu et al., 2023). In
addition, no typhoons crossed the ECS in 2016, indicating
that no vertical mixing was caused by typhoons. Strong ver-
tical mixing caused by the passage of a typhoon hinders the
CDW expansion. In contrast, the La Niña event in 2018 led to
a low CRD and typhoons crossed the ECS. These differences
may change the CDW pattern annually.

5 Data availability

The gridded gap-free SSS dataset at 0.01°× 0.01° spatial res-
olution during the summer period (June–September) from
2015 to 2019 is stored at the Korea Institute of Ocean Science
and Technology – KOIST (https://doi.org/10.22808/DATA-

2023-2, Shin et al., 2023). When analyzing the CDW front,
Model 1 was used from 2015 to 2018 and Model 2 was used
for 2019 due to the safe mode of SMAP SSS data. We pro-
vided the SSS dataset of Models 1 and 2 from 2015 to 2019.

6 Summary

To date, the SMAP satellite data and CMEMS and HYCOM
reanalysis data are the gap-free gridded SSS products that
can be used in the ECS. The reanalysis data showed fair ac-
curacy with respect to the GOCI-derived SSS in the > 31 psu
range, while the worst agreement was found in the < 31 psu
range in the ECS during the summer seasons. Hence, the
reanalysis SSS data were unsuitable for gap-filling in the
GOCI-derived SSS. Because the SMAP SSS dataset is an
8 d average dataset, the accuracy of the daily analysis was
poor and had a fairly rough spatial resolution of 25 km; how-
ever, to date, it is the only dataset that can grasp the gap-
free daily spatial SSS distribution with fair accuracy in the
< 31 psu range. The spatial resolution of these data may be
too rough to capture the daily variations of the CDW moving
12–17 km d−1. In this study, we overcame the limitations of
these datasets and succeeded in producing a gap-free grid-
ded daily SSS product with reasonable accuracy and a spa-
tial resolution of 1 km using a machine learning approach
and the corresponding variable of SSS estimation. Eventu-
ally, the data produced from our study enabled the recogni-
tion of SSS distribution and movement patterns of the CDW
front in the ECS daily during summer, which were not previ-
ously attempted due to spatial and temporal resolution limi-
tations. These results will further advance our understanding
and monitoring of long-term SSS variations in the ECS.
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