Articles | Volume 16, issue 5
https://doi.org/10.5194/essd-16-2281-2024
https://doi.org/10.5194/essd-16-2281-2024
Data description paper
 | 
06 May 2024
Data description paper |  | 06 May 2024

SDUST2020MGCR: a global marine gravity change rate model determined from multi-satellite altimeter data

Fengshun Zhu, Jinyun Guo, Huiying Zhang, Lingyong Huang, Heping Sun, and Xin Liu

Related authors

SDUST2023VGGA: A Global Ocean Vertical Gradient of Gravity Anomaly Model Determined from Multidirectional Data from Mean Sea Surface
Ruichen Zhou, Jinyun Guo, Shaoshuai Ya, Heping Sun, and Xin Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-544,https://doi.org/10.5194/essd-2024-544, 2024
Preprint under review for ESSD
Short summary
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data, 16, 4119–4135, https://doi.org/10.5194/essd-16-4119-2024,https://doi.org/10.5194/essd-16-4119-2024, 2024
Short summary
SDUST2023BCO: a global seafloor model determined from multi-layer perceptron neural network using multi-source differential marine geodetic data
Shuai Zhou, Jinyun Guo, Huiying Zhang, Yongjun Jia, Heping Sun, Xin Liu, and Dechao An
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-358,https://doi.org/10.5194/essd-2024-358, 2024
Revised manuscript accepted for ESSD
Short summary
High-precision 1′ × 1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024,https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
SDUST2020 MSS: a global 1′ × 1′ mean sea surface model determined from multi-satellite altimetry data
Jiajia Yuan, Jinyun Guo, Chengcheng Zhu, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 15, 155–169, https://doi.org/10.5194/essd-15-155-2023,https://doi.org/10.5194/essd-15-155-2023, 2023
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024,https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015
Han Zhang, Dake Chen, Tongya Liu, Di Tian, Min He, Qi Li, Guofei Wei, and Jian Liu
Earth Syst. Sci. Data, 16, 5665–5679, https://doi.org/10.5194/essd-16-5665-2024,https://doi.org/10.5194/essd-16-5665-2024, 2024
Short summary
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024,https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP): the CoASTS-BiOMaP dataset
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024,https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Spatio-temporal changes in China's mainland shorelines over 30 years using Landsat time series data (1990–2019)
Gang Yang, Ke Huang, Lin Zhu, Weiwei Sun, Chao Chen, Xiangchao Meng, Lihua Wang, and Yong Ge
Earth Syst. Sci. Data, 16, 5311–5331, https://doi.org/10.5194/essd-16-5311-2024,https://doi.org/10.5194/essd-16-5311-2024, 2024
Short summary

Cited articles

Andersen, O. B. and Knudsen, P.: The DTU17 Global Marine Gravity Field: First Validation Results, in: Fiducial Reference Measurements for Altimetry, Cham, 83–87, https://doi.org/10.1007/1345_2019_65, 2020. 
Andersen, O. B., Abulaitijiang, A., Zhang, S., and Rose, S. K.: A new high resolution Mean Sea Surface (DTU21MSS) for improved sea level monitoring, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16084, https://doi.org/10.5194/egusphere-egu21-16084, 2021. 
Andersen, O. B., Rose, S. K., Abulaitijiang, A., Zhang, S., and Fleury, S.: The DTU21 global mean sea surface and first evaluation, Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, 2023. 
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014. 
Cazenave, A., Dieng, H.-B., Meyssignac, B., Von Schuckmann, K., Decharme, B., and Berthier, E.: The rate of sea-level rise, Nat. Clim. Change, 4, 358–361, https://doi.org/10.1038/nclimate2159, 2014. 
Download
Short summary
We used multi-satellite altimeter data to construct a high-resolution marine gravity change rate (MGCR) model on 5′×5′ grids, named SDUST2020MGCR. The spatial distribution of SDUST2020MGCR and GRACE MGCR are similar, such as in the eastern seas of Japan (dipole), western seas of the Nicobar Islands (rising), and southern seas of Greenland (falling). The SDUST2020MGCR can provide a detailed view of long-term marine gravity change, which will help to study the seawater mass migration.
Altmetrics
Final-revised paper
Preprint