Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
Hui Zheng
Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Wenli Fei
Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Geological Sciences, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78705, USA
Jiangfeng Wei
Department of Geological Sciences, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78705, USA
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China
Long Zhao
Department of Geological Sciences, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78705, USA
School of Geographical Sciences, Southwest University, Chongqing 400715, China
Lingcheng Li
Department of Geological Sciences, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78705, USA
Pacific Northwest National Laboratory, Richland, Washington 99354, USA
State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute, Beijing 100192, China
Related authors
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025, https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
Short summary
NMH-CS 3.0 is a C#-based ecohydrological model reconstructed from the WRF-Hydro/Noah-MP model by translating the Fortran code of WRF-Hydro 3.0 and integrating a parallel river routing module. It enables efficient execution on multi-core personal computers. Simulations in the Yellow River basin demonstrate its consistency with WRF-Hydro outputs, providing a reliable alternative to the original Noah-MP model.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Cited articles
Abolafia-Rosenzweig, R., He, C., Burns, S. P., and Chen, F.: Implementation
and Evaluation of a Unified Turbulence Parameterization throughout the Canopy
and Roughness Sublayer in Noah-MP Snow Simulations, J. Adv.
Model. Earth Sy., 13, e2021MS002665, https://doi.org/10.1029/2021MS002665,
2021. a, b
Ajami, N. K., Duan, Q., and Sorooshian, S.: An Integrated Hydrologic
Bayesian Multimodel Combination Framework: Confronting Input,
Parameter, and Model Structural Uncertainty in Hydrologic Prediction, Water
Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007. a
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017. a, b
Brutsaert, W.: Evaporation into the Atmosphere: Theory, History,
and Applications, Springer, Dordrecht,
https://doi.org/10.1007/978-94-017-1497-6, 1982. a
Burnash, R. J. C., Ferral, R. L., and McGuire, R. A.: A Generalized Streamflow
Simulation System: Conceptual Modeling for Digital Computers, Technical
Report, Joint Federal-State River Forecast Center, U.S. National Weather
Service and California Department of Water Resources, Sacramento,
California, USA, https://searchworks.stanford.edu/view/753303 (last access: 6 February 2016), 1973. a
Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y., and Rodell, M.: Hydrological
Evaluation of the Noah-MP Land Surface Model for the Mississippi River
Basin, J. Geophys. Res.-Atmos., 119, 23–38,
https://doi.org/10.1002/2013JD020792, 2014a. a, b, c
Carrera, M. L., Bélair, S., and Bilodeau, B.: The Canadian Land Data
Assimilation System (CaLDAS): Description and Synthetic Evaluation
Study, J. Hydrometeorol., 16, 1293–1314,
https://doi.org/10.1175/JHM-D-14-0089.1, 2015. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface– Hydrology
Model with the Penn State–NCAR MM5 Modeling System. Part
I: Model Implementation and Sensitivity, Mon. Weather Rev., 129,
569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2,
2001a. a, b, c
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface– Hydrology
Model with the Penn State–NCAR MM5 Modeling System. Part
II: Preliminary Model Validation, Mon. Weather Rev., 129,
587–604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2,
2001b. a
Chen, F., Mitchell, K. E., Schaake, J., Xue, Y., Pan, H. L., Koren, V., Duan,
Q., Ek, M., and Betts, A. K.: Modeling of Land Surface Evaporation by Four
Schemes and Comparison with FIFE Observations, J. Geophys.
Res.-Atmos., 101, 7251–7268, https://doi.org/10.1029/95JD02165, 1996. a, b
Chen, F., Janjić, Z., and Mitchell, K.: Impact of Atmospheric Surface-Layer
Parameterizations in the New Land-Surface Scheme of the NCEP Mesoscale
Eta Model, Bound.-Lay. Meteorol., 85, 391–421,
https://doi.org/10.1023/A:1000531001463, 1997. a, b
Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D. P.,
Livneh, B., Lin, C., Miguez-Macho, G., Niu, G.-Y., Wen, L., and Yang,
Z.-L.: Modeling Seasonal Snowpack Evolution in the Complex Terrain and
Forested Colorado Headwaters Region: A Model Intercomparison Study,
J. Geophys. Res.-Atmos., 119, 2014JD022167,
https://doi.org/10.1002/2014JD022167, 2014. a
Clapp, R. B. and Hornberger, G. M.: Empirical Equations for Some Soil Hydraulic
Properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/WR014i004p00601, 1978. a, b
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the Method of Multiple
Working Hypotheses for Hydrological Modeling, Water Resour. Res., 47,
1–16, https://doi.org/10.1029/2010WR009827, 2011. a
Cloke, H. and Pappenberger, F.: Ensemble Flood Forecasting: A Review,
J. Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005,
2009. a
Clow, D. W., Nanus, L., Verdin, K. L., and Schmidt, J.: Evaluation of
SNODAS Snow Depth and Snow Water Equivalent Estimates for the Colorado
Rocky Mountains, USA, Hydrol. Process., 26, 2583–2591,
https://doi.org/10.1002/hyp.9385, 2012. a
Dai, A.: Increasing Drought under Global Warming in Observations and Models,
Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013. a
Dang, C., Zender, C. S., and Flanner, M. G.: Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces, The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, 2019. a, b
Decker, M., Or, D., Pitman, A. J., and Ukkola, A.: New Turbulent Resistance
Parameterization for Soil Evaporation Based on a Pore-Scale Model: Impact
on Surface Fluxes in CABLE, J. Adv. Model. Earth
Sy., 9, 220–238, https://doi.org/10.1002/2016MS000832, 2017. a
Dickinson, R. E., Wang, G., Zeng, X., and Zeng, Q.: How Does the Partitioning
of Evapotranspiration and Runoff between Different Processes Affect the
Variability and Predictability of Soil Moisture and Precipitation?, Adv.
Atmos. Sci., 20, 475–478, https://doi.org/10.1007/BF02690805, 2003. a
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel Analysis and Implications for Our Perception of the
Land Surface, B. Am. Meteorol. Soc., 87,
1381–1398, https://doi.org/10.1175/BAMS-87-10-1381, 2006. a, b, c, d
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah Land Surface Model
Advances in the National Centers for Environmental Prediction
Operational Mesoscale Eta Model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003. a
Emerton, R. E., Cloke, H. L., Stephens, E. M., Zsoter, E., Woolnough, S. J.,
and Pappenberger, F.: Complex Picture for Likelihood of ENSO-driven Flood
Hazard, Nat. Commun., 8, 14796, https://doi.org/10.1038/ncomms14796, 2017. a
Fang, B., Lei, H., Zhang, Y., Quan, Q., and Yang, D.: Spatio-Temporal Patterns
of Evapotranspiration Based on Upscaling Eddy Covariance Measurements in the
Dryland of the North China Plain, Agr. Forest Meteorol.,
281, 107844, https://doi.org/10.1016/j.agrformet.2019.107844, 2020. a
Fei, W., Zheng, H., Xu, Z., Wu, W.-Y., Lin, P., Tian, Y., Guo, M., She, D., Li,
L., Li, K., and Yang, Z.-L.: Ensemble Skill Gains Obtained from the
Multi-Physics versus Multi-Model Approaches for Continental-Scale
Hydrological Simulations, Water Resour. Res., 57, e2020WR028846,
https://doi.org/10.1029/2020wr028846, 2021. a, b, c, d, e, f, g, h, i, j, k
Gan, Y., Liang, X.-Z., Duan, Q., Chen, F., Li, J., and Zhang, Y.: Assessment
and Reduction of the Physical Parameterization Uncertainty for
Noah-MP Land Surface Model, Water Resour. Res., 55, 5518–5538,
https://doi.org/10.1029/2019WR024814, 2019. a
Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F., and Lettenmaier, D. P.:
Estimating the Water Budget of Major US River Basins via Remote Sensing,
Int. J. Remote Sens., 31, 3955–3978,
https://doi.org/10.1080/01431161.2010.483488, 2010. a
Guo, Z., Dirmeyer, P. A., Gao, X., and Zhao, M.: Improving the Quality of
Simulated Soil Moisture with a Multi-Model Ensemble Approach, Q.
J. Roy. Meteor. Soc., 133, 731–747,
https://doi.org/10.1002/qj.48, 2007. a
He, C., Chen, F., Barlage, M., Liu, C., Newman, A., Tang, W., Ikeda, K., and
Rasmussen, R.: Can Convection-Permitting Modeling Provide Decent
Precipitation for Offline High-Resolution Snowpack Simulations over
Mountains?, J. Geophys. Res.-Atmos., 124,
12631–12654, https://doi.org/10.1029/2019JD030823, 2019. a, b, c
Hejazi, M. I., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., and Calvin, K.: Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies, Hydrol. Earth Syst. Sci., 18, 2859–2883, https://doi.org/10.5194/hess-18-2859-2014, 2014. a
Jacquemin, B. and Noilhan, J.: Sensitivity Study and Validation of a Land
Surface Parameterization Using the HAPEX-MOBILHY Data Set, Bound.-Lay.
Meteorol., 52, 93–134, https://doi.org/10.1007/BF00123180, 1990. a, b
Jarvis, P. G.: The Interpretation of the Variations in Leaf Water Potential and
Stomatal Conductance Found in Canopies in the Field, Philos.
T. Roy. Soc. Lond. B, 273,
593–610, https://doi.org/10.1098/rstb.1976.0035, 1976. a
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009. a, b
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
Ensemble of Global Land-Atmosphere Energy Fluxes, Sci. Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019. a
Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., Barros, A., Kim, E. J., Forman, B. A., Gutmann, E. D., Wrzesien, M. L., Garnaud, C., Sandells, M., Marshall, H.-P., Cristea, N., Pflug, J. M., Johnston, J., Cao, Y., Mocko, D., and Wang, S.: Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling, The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, 2021. a
Koster, R. D.: “Efficiency Space”: A Framework for Evaluating Joint
Evaporation and Runoff Behavior, B. Am. Meteorol.
Soc., 96, 393–396, https://doi.org/10.1175/BAMS-D-14-00056.1, 2015. a
Koster, R. D. and Suarez, M. J.: Modeling the Land Surface Boundary in Climate
Models as a Composite of Independent Vegetation Stands, J.
Geophys. Res.-Atmos., 97, 2697–2715, https://doi.org/10.1029/91JD01696,
1992. a, b
Kumar, S., Holmes, T., Mocko, M. D., Wang, S., and Peters-Lidard, C.:
Attribution of Flux Partitioning Variations between Land Surface Models over
the Continental U.S., Remote Sensing, 10, 751,
https://doi.org/10.3390/rs10050751, 2018. a
Kumar, S. V., Wang, S., Mocko, D. M., Peters-Lidard, C. D., and Xia, Y.:
Similarity Assessment of Land Surface Model Outputs in the North American
Land Data Assimilation System, Water Resour. Res., 53, 8941–8965,
https://doi.org/10.1002/2017WR020635, 2017. a
LaFontaine, J. H., Hay, L. E., Viger, R. J., Regan, R. S., and Markstrom,
S. L.: Effects of Climate and Land Cover on Hydrology in the Southeastern
U.S.: Potential Impacts on Watershed Planning, J.
Am. Water Resour. Assoc., 51, 1235–1261,
https://doi.org/10.1111/1752-1688.12304, 2015. a
Le, P. V. V., Kumar, P., and Drewry, D. T.: Implications for the Hydrologic
Cycle under Climate Change Due to the Expansion of Bioenergy Crops in the
Midwestern United States, P. Natl. Acad. Sci. USA, 108, 15085–15090, https://doi.org/10.1073/pnas.1107177108, 2011. a
Levia, D. F., Creed, I. F., Hannah, D. M., Nanko, K., Boyer, E. W.,
Carlyle-Moses, D. E., van de Giesen, N., Grasso, D., Guswa, A. J.,
Hudson, J. E., Hudson, S. A., Iida, S., Jackson, R. B., Katul, G. G.,
Kumagai, T., Llorens, P., Ribeiro, F. L., Pataki, D. E., Peters, C. A.,
Carretero, D. S., Selker, J. S., Tetzlaff, D., Zalewski, M., and Bruen, M.:
Homogenization of the Terrestrial Water Cycle, Nat. Geosci., 13,
656–658, https://doi.org/10.1038/s41561-020-0641-y, 2020. a
Li, L., Yang, Z.-L., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence,
D. M., Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.:
Representation of Plant Hydraulics in the Noah-MP Land Surface Model:
Model Development and Multiscale Evaluation, J. Adv. Model. Earth Sy., 13, e2020MS002 214, https://doi.org/10.1029/2020ms002214,
2021. a, b
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P.,
McVicar, T. R., Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., and
Wang, T.: Partitioning Global Land Evapotranspiration Using CMIP5 Models
Constrained by Observations, Nat. Clim. Change, 8, 640–646,
https://doi.org/10.1038/s41558-018-0207-9, 2018. a
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A Simple
Hydrologically Based Model of Land Surface Water and Energy Fluxes for
General Circulation Models, J. Geophys. Res.-Atmos., 99,
14415–14428, https://doi.org/10.1029/94JD00483, 1994. a, b
Lin, P., Hopper, L. J., Yang, Z.-L., Lenz, M., and Zeitler, J. W.: Insights
into Hydrometeorological Factors Constraining Flood Prediction Skill during
the May and October 2015 Texas Hill Country Flood Events, J.
Hydrometeorol., 19, 1339–1361, https://doi.org/10.1175/JHM-D-18-0038.1, 2018. a
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million
Reaches, Water Resour. Res., 55, 6499–6516,
https://doi.org/10.1029/2019WR025287, 2019. a
Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D. S.: Noah-MP-Crop:
Introducing Dynamic Crop Growth in the Noah-MP Land Surface Model,
J. Geophys. Res.-Atmos., 121, 13953–13972,
https://doi.org/10.1002/2016JD025597, 2016. a
Liu, X., Chen, F., Barlage, M., and Niyogi, D.: Implementing Dynamic Rooting
Depth for Improved Simulation of Soil Moisture and Land Surface Feedbacks in
Noah-MP-Crop, J. Adv. Model. Earth Sy., 12,
e2019MS001786, https://doi.org/10.1029/2019MS001786, 2020. a
Lv, M., Ma, Z., Li, M., and Zheng, Z.: Quantitative Analysis of Terrestrial
Water Storage Changes under the Grain for Green Program in the
Yellow River Basin, J. Geophys. Res.-Atmos., 124,
1336–1351, https://doi.org/10.1029/2018JD029113, 2019. a
Lv, M., Xu, Z., Yang, Z.-L., Lu, H., and Lv, M.: A Comprehensive Review of
Specific Yield in Land Surface and Groundwater Studies, J. Adv.
Model. Earth Sy., 13, e2020MS002270, https://doi.org/10.1029/2020MS002270,
2021. a
Ma, N., Niu, G.-Y., Xia, Y., Cai, X., Zhang, Y., Ma, Y., and Fang, Y.: A
Systematic Evaluation of Noah-MP in Simulating Land-Atmosphere Energy,
Water, and Carbon Exchanges over the Continental United States, J.
Geophys. Res.-Atmos., 122, 12245–12268,
https://doi.org/10.1002/2017JD027597, 2017. a, b, c
McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017. a
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C.,
Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins,
R. W., Pinker, R. T., Tarpley, J. D., Lettenmaier, D. P., Marshall, C. H.,
Entin, J. K., Pan, M., Shi, W., Koren, V., Meng, J., Ramsay, B. H., and
Bailey, A. A.: The Multi-Institution North American Land Data Assimilation
System (NLDAS): Utilizing Multiple GCIP Products and Partners
in a Continental Distributed Hydrological Modeling System, J.
Geophys. Res.-Atmos., 109, D07S90, https://doi.org/10.1029/2003JD003823,
2004. a, b, c
Niu, G.-Y. and Yang, Z.-L.: Effects of Frozen Soil on Snowmelt Runoff and Soil
Water Storage at a Continental Scale, J. Hydrometeorol., 7,
937–952, https://doi.org/10.1175/JHM538.1, 2006. a
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E.: A Simple
TOPMODEL-based Runoff Parameterization (SIMTOP) for Use in Global
Climate Models, J. Geophys. Res.-Atmos., 110, D21106,
https://doi.org/10.1029/2005JD006111, 2005. a
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.:
Development of a Simple Groundwater Model for Use in Climate Models and
Evaluation with Gravity Recovery and Climate Experiment Data, J. Geophys Res., 112, D07103, https://doi.org/10.1029/2006JD007522, 2007. a, b, c, d
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
Community Noah Land Surface Model with Multiparameterization Options
(Noah-MP): 1. Model Description and Evaluation with Local-Scale
Measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011. a, b, c, d, e
Oleson, K. W., Dai, Y., Bonan, G. B., Bosilovich, M., Dirmeyer, P. A., Hoffman,
F. M., Houser, P. R., Levis, S., Niu, G.-Y., Thornton, P. E., Vertenstein,
M., Yang, Z.-L., and Zeng, X.: Technical Description of the Community
Land Model (CLM), Tech. rep., National Center for Atmospheric
Research, Boulder, Colorado, https://doi.org/10.5065/D6N877R0, 2004. a
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood,
E. F.: Multisource Estimation of Long-Term Terrestrial Water Budget for Major
Global River Basins, J. Climate, 25, 3191–3206,
https://doi.org/10.1175/JCLI-D-11-00300.1, 2012. a, b
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020. a
Peters-Lidard, C. D., Hossain, F., Leung, L. R., McDowell, N., Rodell, M.,
Tapiador, F. J., Turk, F. J., and Wood, A.: 100 Years of Progress in
Hydrology, Meteorol. Monogr., 59, 25.1–25.51,
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1, 2018. a
Peters-Lidard, C. D., Mocko, D. M., Su, L., Lettenmaier, D. P., Gentine, P.,
and Barlage, M.: Advances in Land Surface Models and Indicators for Drought
Monitoring and Prediction, B. Am. Meteorol. Soc.,
102, E1099–E1122, https://doi.org/10.1175/BAMS-D-20-0087.1, 2021. a
Philip, J. R.: Theory of Infiltration, in: Advances in Hydroscience, Elsevier,
vol. 5, 215–296, https://doi.org/10.1016/B978-1-4831-9936-8.50010-6,
1969. a
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W.,
Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N.,
Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T.,
Wada, Y., and Wisser, D.: Hydrological Droughts in the 21st Century, Hotspots
and Uncertainties from a Global Multimodel Ensemble Experiment, P.
Natl. Acad. Sci. USA, 111, 3262–3267,
https://doi.org/10.1073/pnas.1222473110, 2014. a
Quiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harris, E., Lindgren, T.,
Goldberg, D. W., and Li, Z.: The North American Soil Moisture Database:
Development and Applications, B. Am. Meteorol.
Soc., 97, 1441–1459, https://doi.org/10.1175/BAMS-D-13-00263.1, 2016. a
Rateb, A., Scanlon, B. R., Pool, D. R., Sun, A., Zhang, Z., Chen, J., Clark,
B., Faunt, C. C., Haugh, C. J., Hill, M., Hobza, C., McGuire, V. L., Reitz,
M., Schmied, H. M., Sutanudjaja, E. H., Swenson, S., Wiese, D., Xia, Y., and
Zell, W.: Comparison of Groundwater Storage Changes from GRACE Satellites
with Monitoring and Modeling of Major U.S. Aquifers, Water Resour.
Res., 56, e2020WR027556, https://doi.org/10.1029/2020wr027556, 2020. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85,
381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-Based Estimates of
Groundwater Depletion in India, Nature, 460, 999–1002,
https://doi.org/10.1038/nature08238, 2009. a
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti,
J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers,
D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J.,
Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A.,
Sheffield, J., and Wood, E. F.: The Observed State of the Water Cycle in the
Early Twenty-First Century, J. Climate, 28, 8289–8318,
https://doi.org/10.1175/JCLI-D-14-00555.1, 2015. a
Sakumura, C., Bettadpur, S., and Bruinsma, S.: Ensemble Prediction and
Intercomparison Analysis of GRACE Time-Variable Gravity Field Models,
Geophys. Res. Lett., 41, 1389–1397, https://doi.org/10.1002/2013GL058632,
2014. a
Save, H., Bettadpur, S., and Tapley, B. D.: High-Resolution CSR GRACE RL05
Mascons, J. Geophys. Res.-Sol. Ea., 121, 7547–7569,
https://doi.org/10.1002/2016JB013007, 2016. a
Saxe, S., Farmer, W., Driscoll, J., and Hogue, T. S.: Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates, Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021, 2021. a, b
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M.,
McGuire, V. L., and McMahon, P. B.: Groundwater Depletion and Sustainability
of Irrigation in the US High Plains and Central Valley, P.
Natl. Acad. Sci. USA, 109, 9320–9325,
https://doi.org/10.1073/pnas.1200311109, 2012. a
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., van Beek, L.
P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L.,
Döll, P., and Bierkens, M. F. P.: Global Models Underestimate Large
Decadal Declining and Rising Water Storage Trends Relative to GRACE
Satellite Data, P.
Natl. Acad. Sci. USA, 115,
E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018. a
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B.,
Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A Revised Land
Surface Parameterization (SiB2) for Atmospheric GCMs. Part I:
Model Formulation, J. Climate, 9, 676–705,
https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2, 1996. a
Shellito, P. J., Kumar, S. V., Santanello, J. A., Lawston-Parker, P., Bolten,
J. D., Cosh, M. H., Bosch, D. D., Holifield Collins, C. D., Livingston, S.,
Prueger, J., Seyfried, M., and Starks, P. J.: Assessing the Impact of Soil
Layer Depth Specification on the Observability of Modeled Soil Moisture and
Brightness Temperature, J. Hydrometeorol., 21, 2041–2060,
https://doi.org/10.1175/JHM-D-19-0280.1, 2020. a
Shi, C., Xie, Z., Qian, H., Liang, M., and Yang, X.: China Land Soil Moisture
EnKF Data Assimilation Based on Satellite Remote Sensing Data, Sci.
China Earth Sci., 54, 1430–1440, https://doi.org/10.1007/s11430-010-4160-3, 2011. a
Sobol', L. M.: Sensitivity Estimates for Nonlinear Mathematical Models,
Mathematical Modelling and Computational Experiment, 1, 407–414, 1993. a
Su, L., Cao, Q., Xiao, M., Mocko, D. M., Barlage, M., Li, D., Peters-Lidard,
C. D., and Lettenmaier, D. P.: Drought Variability over the Conterminous
United States for the Past Century, J. Hydrometeorol., 22,
1153–1168, https://doi.org/10.1175/JHM-D-20-0158.1, 2021. a
Taylor, K. E.: Summarizing Multiple Aspects of Model Performance in a Single
Diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, 2021. a
Trenberth, K. E. and Fasullo, J. T.: North American Water and Energy
Cycles, Geophys. Res. Lett., 40, 365–369, https://doi.org/10.1002/grl.50107,
2013a. a
Trenberth, K. E. and Fasullo, J. T.: Regional Energy and Water Cycles:
Transports from Ocean to Land, J. Climate, 26, 7837–7851,
https://doi.org/10.1175/JCLI-D-13-00008.1, 2013b. a
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of
the Global Water Budget and Its Annual Cycle Using Observational and Model
Data, J. Hydrometeorol., 8, 758–769, https://doi.org/10.1175/JHM600.1, 2007. a
Troin, M., Arsenault, R., Wood, A. W., Brissette, F., and Martel, J.-L.:
Generating Ensemble Streamflow Forecasts: A Review of Methods and
Approaches over the Past 40 Years, Water Resour. Res., 57,
e2020WR028392, https://doi.org/10.1029/2020WR028392, 2021. a, b
Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., and
Swenson, S. C.: Groundwater Depletion in the Middle East from GRACE
with Implications for Transboundary Water Management in the
Tigris-Euphrates-Western Iran Region, Water Resour. Res., 49,
904–914, https://doi.org/10.1002/wrcr.20078, 2013. a
Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A., Ding, B., Li,
X., Zhao, L., Li, H., Che, T., and Moore, J. C.: Characterizing Surface
Albedo of Shallow Fresh Snow and Its Importance for Snow Ablation on the
Interior of the Tibetan Plateau, J. Hydrometeorol., 21,
815–827, https://doi.org/10.1175/JHM-D-19-0193.1, 2020. a, b, c
Wang, Y.-H., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., and
Niu, G.-Y.: A Wet-Bulb Temperature-Based Rain-Snow Partitioning Scheme
Improves Snowpack Prediction over the Drier Western United States,
Geophys. Res. Lett., 46, 13825–13835,
https://doi.org/10.1029/2019gl085722, 2019. a, b, c
Ward, P. J., Jongman, B., Kummu, M., Dettinger, M. D., Sperna Weiland, F. C.,
and Winsemius, H. C.: Strong Influence of El Niño Southern Oscillation
on Flood Risk around the World, P. Natl. Acad.
Sci. USA, 111, 15659–15664, https://doi.org/10.1073/pnas.1409822111, 2014. a
Wu, W.-Y., Yang, Z.-L., and Barlage, M.: The Impact of Noah-MP Physical
Parameterizations on Modeling Water Availability during Droughts in the
Texas–Gulf Region, J. Hydrometeorol., 22,
1221–1233, https://doi.org/10.1175/JHM-D-20-0189.1, 2021. a
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B. A., Sheffield, J., Luo, L., Alonge,
C., Wei, H., Meng, J., Livneh, B., Duan, Q., and Lohmann, D.:
Continental-Scale Water and Energy Flux Analysis and Validation for North
American Land Data Assimilation System Project Phase 2 (NLDAS-2): 2.
Validation of Model-Simulated Streamflow, J. Geophys.
Res.-Atmos., 117, D03110, https://doi.org/10.1029/2011JD016051,
2012a. a, b, c, d
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B. A., Wood, E. F.,
Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D. P.,
Koren, V., Duan, Q., Mo, K. C., Fan, Y., and Mocko, D.: Continental-Scale
Water and Energy Flux Analysis and Validation for the North American Land
Data Assimilation System Project Phase 2 (NLDAS-2): 1.
Intercomparison and Application of Model Products, J. Geophys.
Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048,
2012b. a, b, c, d
Xia, Y., Ek, M. B., Wu, Y., Ford, T., and Quiring, S. M.: Comparison of
NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part
II: Impact of Soil Texture Classification and Vegetation Type Mismatches,
J. Hydrometeorol., 16, 1981–2000, https://doi.org/10.1175/JHM-D-14-0097.1,
2015a. a, b, c, d
Xia, Y., Ek, M. B., Wu, Y., Ford, T., and Quiring, S. M.: Comparison of
NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I:
Comparison and Analysis, J. Hydrometeorol., 16, 1962–1980,
https://doi.org/10.1175/JHM-D-14-0096.1, 2015b. a, b, c, d
Xia, Y., Cosgrove, B. A., Mitchell, K. E., Peters-Lidard, C. D., Ek, M. B.,
Brewer, M., Mocko, D., Kumar, S. V., Wei, H., Meng, J., and Luo, L.:
Basin-Scale Assessment of the Land Surface Water Budget in the National
Centers for Environmental Prediction Operational and Research
NLDAS-2 Systems, J. Geophys. Res-Atmos., 121,
2750–2779, https://doi.org/10.1002/2015JD023733, 2016. a, b
Xia, Y., Hao, Z., Shi, C., Li, Y., Meng, J., Xu, T., Wu, X., and Zhang, B.:
Regional and Global Land Data Assimilation Systems: Innovations,
Challenges, and Prospects, J. Meteorol. Res., 33, 159–189,
https://doi.org/10.1007/s13351-019-8172-4, 2019. a
Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Yao, Y., Zhang,
X., and Zhao, C.: Evaluation of Twelve Evapotranspiration Products from
Machine Learning, Remote Sensing and Land Surface Models over Conterminous
United States, J. Hydrol., 578, 124105,
https://doi.org/10.1016/j.jhydrol.2019.124105, 2019. a
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A Simplified
Biosphere Model for Global Climate Studies, J. Climate, 4,
345–364, https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2, 1991. a, b
Yang, Z.-L. and Dickinson, R. E.: Description of the Biosphere-Atmosphere
Transfer Scheme (BATS) for the Soil Moisture Workshop and Evaluation of
Its Performance, Global Planet. Change, 13, 117–134,
https://doi.org/10.1016/0921-8181(95)00041-0, 1996. a
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
Community Noah Land Surface Model with Multiparameterization Options
(Noah-MP): 2. Evaluation over Global River Basins, J.
Geophys. Res.-Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140,
2011. a, b, c
Yin, D. and Roderick, M. L.: Inter-annual variability of the global terrestrial water cycle, Hydrol. Earth Syst. Sci., 24, 381–396, https://doi.org/10.5194/hess-24-381-2020, 2020. a
Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., and Brocca, L.: Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data, Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, 2019. a
Zhang, B., Xia, Y., Long, B., Hobbins, M., Zhao, X., Hain, C., Li, Y., and
Anderson, M. C.: Evaluation and Comparison of Multiple Evapotranspiration
Data Models over the Contiguous United States: Implications for the
next Phase of NLDAS (NLDAS-Testbed) Development, Agr.
Forest Meteorol., 280, 107810, https://doi.org/10.1016/j.agrformet.2019.107810,
2020. a, b, c, d
Zhang, G., Chen, F., and Gan, Y.: Assessing Uncertainties in the Noah-MP
Ensemble Simulations of a Cropland Site during the Tibet Joint
International Cooperation Program Field Campaign, J. Geophys.
Res.-Atmos., 121, 9576–9596, https://doi.org/10.1002/2016JD024928, 2016. a
Zhang, X., Chen, L., Ma, Z., and Gao, Y.: Assessment of Surface Exchange
Coefficients in the Noah-MP Land Surface Model for Different Land-Cover
Types in China, Int. J. Climatol., 41, 2638–2659,
https://doi.org/10.1002/joc.6981, 2021. a
Zhang, Y., Pan, M., Sheffield, J., Siemann, A. L., Fisher, C. K., Liang, M., Beck, H. E., Wanders, N., MacCracken, R. F., Houser, P. R., Zhou, T., Lettenmaier, D. P., Pinker, R. T., Bytheway, J., Kummerow, C. D., and Wood, E. F.: A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010, Hydrol. Earth Syst. Sci., 22, 241–263, https://doi.org/10.5194/hess-22-241-2018, 2018. a, b
Zhao, L. and Yang, Z.-L.: Multi-Sensor Land Data Assimilation: Toward a
Robust Global Soil Moisture and Snow Estimation, Remote Sens.
Environ., 216, 13–27, https://doi.org/10.1016/j.rse.2018.06.033, 2018.
a
Zhao, L., Yang, K., He, J., Zheng, H., and Zheng, D.: Potential of Mapping
Global Soil Texture Type from SMAP Soil Moisture Product: A Pilot Study,
IEEE T. Geosci. Remote, 60, 1–10,
https://doi.org/10.1109/TGRS.2021.3119667, 2022. a
Zheng, H., Yang, Z.-L., Lin, P., Wei, J., Wu, W.-Y., Li, L., Zhao, L., and
Wang, S.: On the Sensitivity of the Precipitation Partitioning into
Evapotranspiration and Runoff in Land Surface Parameterizations, Water
Resour. Res., 55, 95–111, https://doi.org/10.1029/2017WR022236, 2019. a, b, c, d, e, f, g
Zheng, H., Yang, Z.-L., Lin, P., Wu, W.-Y., Li, L., Xu, Z., Wei, J., Zhao, L.,
Bian, Q., and Wang, S.: Falsification-Oriented Signature-Based Evaluation for
Guiding the Development of Land Surface Models and the Enhancement of
Observations, J. Adv. Model.Earth Sy., 12,
e2020MS002132, https://doi.org/10.1029/2020MS002132, 2020. a, b, c, d, e
Zheng, H., Fei, W., Yang, Z.-L., Wei, J., Zhao, L., and Li, L.: An Ensemble of
48 Physically Perturbed Model Estimates of the 1/8∘ Terrestrial
Water Budget over the Conterminous United States, 1980–2015, Zenodo [data set],
https://doi.org/10.5281/zenodo.7109816, 2022. a
Short summary
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP land surface model by perturbing model parameterization schemes. The data could be beneficial for monitoring and understanding the variability of water resources. Model developers could also gain insights by intercomparing the ensemble members.
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP...
Altmetrics
Final-revised paper
Preprint