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Abstract. Terrestrial water budget (TWB) data over large domains are of high interest for various hydrological
applications. Spatiotemporally continuous and physically consistent estimations of TWB rely on land surface
models (LSMs). As an augmentation of the operational North American Land Data Assimilation System Phase
2 (NLDAS-2) four-LSM ensemble, this paper describes a dataset simulated from an ensemble of 48 physics
configurations of the Noah LSM with multi-physics options (Noah-MP). The 48 Noah-MP physics configu-
rations are selected to give a representative cross-section of commonly used LSMs for parameterizing runoff,
atmospheric surface layer turbulence, soil moisture limitation on photosynthesis, and stomatal conductance.

The dataset spans from 1980 to 2015 over the conterminous United States (CONUS) at a monthly temporal res-
olution and a 1/8◦ spatial resolution. The dataset variables include total evapotranspiration and its constituents
(canopy evaporation, soil evaporation, and transpiration), runoff (the surface and subsurface components), as
well as terrestrial water storage (snow water equivalent, four-layer soil water content from the surface down to
2 m, and the groundwater storage anomaly). The dataset is available at https://doi.org/10.5281/zenodo.7109816
(Zheng et al., 2022). Evaluations carried out in this study and previous investigations show that the ensemble per-
forms well in reproducing the observed terrestrial water storage, snow water equivalent, soil moisture, and runoff.
Noah-MP complements the NLDAS models well, and adding Noah-MP consistently improves the NLDAS es-
timations of the above variables in most areas of CONUS. Besides, the perturbed-physics ensemble facilitates
the identification of model deficiencies. The parameterizations of shallow snow, spatially varying groundwater
dynamics, and near-surface atmospheric turbulence should be improved in future model versions.
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1 Introduction

Estimates of the terrestrial water budgets (TWBs) – evapo-
transpiration, runoff, terrestrial water storage, and their con-
stituents – over continental domains are of high interest for a
broad range of hydrological applications. Publicly available
data have been applied to investigate the state of the terres-
trial water cycle (Trenberth and Fasullo, 2013a; Rodell et al.,
2015; Scanlon et al., 2018; Yin and Roderick, 2020); to un-
derstand the interactions among hydrological processes, veg-
etation, climate, and human activities (Trenberth and Fasullo,
2013b; LaFontaine et al., 2015; Ward et al., 2014; Levia
et al., 2020); to examine the availability and variability of
water resources and use (Wu et al., 2021; Hejazi et al., 2014;
Scanlon et al., 2012; Voss et al., 2013; Lv et al., 2019; Le
et al., 2011; Rodell et al., 2009); and to assess the risk of
extreme events such as droughts (Peters-Lidard et al., 2021;
Prudhomme et al., 2014; Dai, 2013; Su et al., 2021) and
floods (Emerton et al., 2017; Lin et al., 2018).

As the applications have expanded, the availability of
TWB estimates has increased rapidly (Peters-Lidard et al.,
2018; Saxe et al., 2021; Zhang et al., 2018). Commonly
used estimation methods include remote sensing, in situ ob-
servations, and model simulations (Saxe et al., 2021; Mc-
Cabe et al., 2017; Pan et al., 2012; Gao et al., 2010; Tren-
berth et al., 2007). Among these methods, land surface mod-
els (LSMs) are apt for continuously producing physically
consistent TWBs over a large domain and long period, and
their characteristics are particularly favorable for certain cir-
cumstances. For instance, LSMs can estimate various TWB
components simultaneously; whereas, for some components,
such as runoff (Lin et al., 2019; Beck et al., 2017), root-
zone soil moisture (Xia et al., 2015b, a), and transpiration
(Lian et al., 2018), direct remote sensing is either unavail-
able or highly uncertain. Additionally, LSMs are valuable in
remote or topographically complex regions because of the
sparseness of in situ observations (Kim et al., 2021). Estima-
tions based on remote sensing and in situ observations are
often impeded by scale mismatches and observation gaps,
whereas these issues are rarely an impairment for LSM sim-
ulations. Besides, LSM simulations can complement remote
sensing and in situ observations well. Combinations of es-
timates from different techniques can improve the estima-
tion accuracy (Zhang et al., 2018; Pan et al., 2012; Zhao and
Yang, 2018), while comparisons between model-simulated
estimates and observations can reveal the impacts of hu-
man activities (Zaussinger et al., 2019) and underground pro-
cesses (Zheng et al., 2020).

Several operational LSM simulation systems have been set
up over different regions of the globe (Xia et al., 2019; Shi
et al., 2011; Carrera et al., 2015; Rodell et al., 2004). The
systems combine an ensemble of LSMs to utilize the com-
petitive strengths of different LSMs and eliminate the weak-
ness associated with individual ones. Among them, the North
American Land Data Assimilation System (NLDAS) (Xia

et al., 2012a, b; Mitchell et al., 2004) stands as a pioneering
and successful one. The NLDAS Phase 2 (NLDAS-2) op-
erates over the conterminous United States (CONUS) from
1979 to near real time at a spatial resolution of 1/8◦. The
system generates a set of multi-source synthesized data of
surface meteorology, vegetation, and soils and uses them to
drive an ensemble of four different LSMs. The four LSMs
– namely Noah version 2.8 (Ek et al., 2003; Chen and Dud-
hia, 2001a, b; Chen et al., 1997), Variable Infiltration Capac-
ity (VIC) version 4.0.3 (Liang et al., 1994), Mosaic (Koster
and Suarez, 1992), and Sacramento Soil Moisture Account-
ing (SAC) model (Burnash et al., 1973), were selected to give
a good cross-section of the diverse range of LSMs (Mitchell
et al., 2004). The models have varying strengths and weak-
nesses in process parameterizations and modeling skills (Ku-
mar et al., 2017). A combination of multiple models can pro-
duce an aggregated estimate that outperforms most of the in-
dividual constituents (Fei et al., 2021; Beck et al., 2017; Guo
et al., 2007; Ajami et al., 2007). An ensemble can also quan-
tify the estimation uncertainty resulting from different model
formulations (Troin et al., 2021; Cloke and Pappenberger,
2009). Evaluations of the NLDAS-2 four-LSM ensemble es-
timates have shown satisfactory performance in matching the
observed evapotranspiration (ET) (Zhang et al., 2020; Xia
et al., 2012b; Kumar et al., 2018), runoff (Xia et al., 2012a),
and soil moisture (Xia et al., 2015b, a).

We have enriched the NLDAS-2 four-model ensemble
with 48 perturbed-physics configurations of the Noah LSM
with multi-physics options (Noah-MP) (Fei et al., 2021;
Zheng et al., 2020, 2019). Noah-MP has more physically
realistic representations of vertical stratification than the
NLDAS-2 models have. A column of land in Noah-MP con-
sists of a vegetation canopy layer, three snowpack layers,
four soil layers, and a groundwater component (Niu et al.,
2011; Yang et al., 2011). Conceptual (e.g., the five water
tanks of SAC) and lumped (e.g., the combined vegetation–
soil surface layer of Noah) representations of the stratifica-
tion of vegetation and soil, as used in the NLDAS-2 mod-
els, are minimized. Moreover, Noah-MP has a more com-
prehensive representation of various land surface processes
that are evident at different depths. The modeled processes
include snow accumulation and ablation, infiltration, perco-
lation, retention, freeze–thaw of snow or soil water, ground-
water recharge/discharge, and energy constraints (Niu et al.,
2011). These improvements in vertical stratification and pro-
cess parameterizations are expected to better estimate TWBs.
Indeed, previous comparisons between Noah-MP and the
four NLDAS-2 LSMs have shown that Noah-MP is compa-
rable or better when it comes to estimating soil moisture (Cai
et al., 2014b), runoff (Cai et al., 2014a; Fei et al., 2021), and
ET (Zhang et al., 2020).

Our enrichment also features a single-model perturbed-
physics ensemble, which is different from the widely used
multi-model ensemble approach. The Noah-MP ensemble is
constructed by shuffling the available parameterization op-
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tions of several selected processes. The ensemble size grows
exponentially as a multiplication of the available parame-
terization options of different processes (Yang et al., 2011;
Zhang et al., 2016; Gan et al., 2019). A large ensemble
should give a broad cross-section of feasible model formu-
lations to account for the model uncertainty in TWB estima-
tion (Telteu et al., 2021; Mitchell et al., 2004) and is critical
for a statistically reliable estimation of the probability of hy-
drological events such as floods and droughts (Troin et al.,
2021). The single-model perturbed-physics ensemble also fa-
cilitates uncertainty attribution and reduction. The ensemble
consists of pairs that are different in the parameterization of
one process and the same for another. Variance analysis of
the ensemble can quantify the contribution of the parame-
terization of a process and compare the relative importance
of two processes (Zheng et al., 2019; Clark et al., 2011).
Such quantification could inform further model development
to reduce the model uncertainty. However, there are also pit-
falls unique to the single-model perturbed-physics ensemble.
Fei et al. (2021) found that the ensemble members gener-
ated by naive perturbation of the Noah-MP physics are not
independent enough from each other. The low independence
hinders the skill gained from the ensemble method. The find-
ing suggests that advanced techniques of physics perturba-
tions should be developed to maximize the ensemble skill
and minimize the ensemble size. An open-accessible dataset
should facilitate the research that leverages the advantages
and addresses the issues of the perturbed-physics ensemble.

We have previously evaluated the runoff and compared it
with NLDAS-2 (Fei et al., 2021). This paper describes the es-
timation of all the TWB variables, along with the description
of the spread among the ensemble members, the difference
with the NLDAS models, and the performance with reference
to various observations are presented. The paper is organized
as follows. Section 2 presents the information necessary for
using the dataset, including the dataset variables, file organi-
zation, and the source data and models used for data genera-
tion. Section 3 describes the intercomparison methods, eval-
uation metrics, and reference datasets. Section 4 presents the
results and discussion. Finally, after stating the data availabil-
ity in Sect. 5, Sect. 6 draws conclusions.

2 Data description

The dataset contains gridded water budget variables over
CONUS. Section 2.1 describes the dataset variables and their
physical relationships. The 48 Noah-MP physics configura-
tions used to create the dataset are detailed in Sect. 2.2. Sec-
tion 2.3 briefly covers the atmospheric forcing, the static pa-
rameters of vegetation and soil, and the simulation settings.

2.1 Dataset variables

Table 1 lists the dataset variables. The variables are available
at each 1/8◦ grid point in NLDAS-2, indicated by a land–

Table 1. The dataset variables.

Symbol Units Description

Surface water budget

E kgm−2 s−1 total evapotranspiration
Ecan kgm−2 s−1 evaporation of canopy interception
Egnd kgm−2 s−1 direct evaporation from the ground
Etran kgm−2 s−1 transpiration
R kgm−2 s−1 total runoff
Rsrf kgm−2 s−1 surface runoff
Rund kgm−2 s−1 subsurface runoff
W kgm−2 terrestrial water storage
Wsnow kgm−2 snow water equivalent
Wgw kgm−2 groundwater storage
wsoil,i m3 m−3 volumetric soil water content
zsnow m snow depth

Auxiliary variables

X – land–water mask

water mask (X). The surface water budgets of each grid cell
are represented as follows.

Neglecting horizontal water exchange between adjacent
grids, the water budget closure can be obtained among the
precipitation (P ; kgm−2 s−1), ET (E), runoff (R), and ter-
restrial water storage change (W ′ = dW

dt , kgm−2 s−1) (Zheng
et al., 2020):

P = E+R+W ′, (1)

where precipitation (P ) is from NLDAS-2 (described in
Sect. 1) and used as the model input.

Noah-MP resolves the components of the water budget
closure Eq. (1). ET (E) consists of canopy evaporation
(Ecan), ground evaporation (Egnd), and transpiration (Etran):

E = Ecan+Egnd+Etran. (2)

Runoff (R) has a surface (Rsrf) and subsurface (Rsub) com-
ponent:

R = Rsrf+Rsub. (3)

Terrestrial water storage (TWS; W ) is the sum of snow wa-
ter equivalent (SWE; Wsnow), groundwater storage in uncon-
fined aquifers (Wgw), and soil water content in the four model
layers (Wsoil,i):

W =Wsnow+Wgw+

Nsoil∑
i=1

Wsoil,i, (4)

where Nsoil = 4 is the number of soil layers. Soil water stor-
age (Wsoil,i) is not included in the dataset but can be calcu-
lated from the volumetric water content (wsoil,i) as follows:

Wsoil,i = ρwatwsoil,i1zsoil,i for i = 1, · · ·,Nsoil, (5)
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where ρwat = 1000kgm−3 is the water density; and
1zsoil,1 = 0.1 m, 1zsoil,2 = 0.3 m, 1zsoil,3 = 0.6 m, and
1zsoil,4 = 1 m are the thicknesses of the four soil layers.

2.2 The 48 Noah-MP physics configurations

The Noah-MP LSM version 3.6 is used. We perturbed the pa-
rameterization of runoff, stomatal conductance, soil moisture
stress factor, and near-surface atmospheric turbulence. The
processes are selected, as they directly control runoff gen-
eration and evapotranspiration. Their importance has been
shown in global simulations (Yang et al., 2011). The per-
turbation creates an ensemble of 48 members (48 = 4
runoff× 2 stomatal conductance× 3 soil moisture stress× 2
turbulence). Limited by computational resources, we did not
perturb the parameterization of the cryosphere hydrological
processes such as snow albedo (Chen et al., 2014; He et al.,
2019) and rain–snow partitioning (Wang et al., 2019), which
may limit the usage of the dataset in cryosphere hydrology.
Appendix A details the formulation of and parameters in the
selected parameterization. The parameters use the Noah-MP
default values.

2.3 Domain, temporal span, atmospheric forcings, and
static parameters

The simulation domain covers the CONUS (25–53◦N, 125–
67◦W) at a spatial resolution of 0.125◦.

The hourly NLDAS-2 atmospheric forcings were used
to drive the 48 Noah-MP configurations. This study used
seven forcing variables: downward solar radiation, down-
ward longwave radiation, air temperature, surface pres-
sure, specific humidity, wind speed, and precipitation rate.
The static datasets, including topography (https://ldas.gsfc.
nasa.gov/nldas/elevation, last access: 6 February 2016), pre-
dominant vegetation class (https://ldas.gsfc.nasa.gov/nldas/
vegetation-class, last access: 6 February 2016), and soil tex-
ture type (https://ldas.gsfc.nasa.gov/nldas/soils, last access:
6 February 2016), are also the same as those in NLDAS-2.
We used the default Noah-MP lookup tables to convert the
input vegetation and soil types to parameter values.

The simulation spans 36 years from January 1980 to De-
cember 2015 at a time step of 15 min. The initial states on
1 January 1980 were obtained by cycling the year 1979 one
hundred times.

3 Intercomparison and evaluation methods

The evaluations and intercomparisons in this paper are
performed for 12 River Forecast Centers (RFCs): North-
east (NE), Mid-Atlantic (MA), Ohio (OH), Lower Missis-
sippi (LM), Southeast (SE), North Central (NC), Northwest
(NW), Arkansas (AB), Missouri (MB), West Gulf (WG),
California–Nevada (CN), and Colorado (CB). Figure S1 in
the Supplement displays the geographical delineation of the

RFCs. More details on the RFCs, such as their multi-year
average precipitation, potential evaporation, and topography,
can be found in Fei et al. (2021, Fig. 1).

The intercomparison and evaluations were conducted at
different timescales – the long-term climatological mean, an-
nual cycle, and interannual anomaly. Section 3.1 details how
the temporal variations and ensemble spread are derived for
the timescales. We utilized the Taylor diagram and Taylor
skill score (TSS) to measure the performance of Noah-MP
against various reference datasets. The evaluation methods
are shown in Sect. 3.2, and the reference datasets are de-
scribed in Sect. 3.4. In addition to the intercomparisons and
evaluations, Sect. 3.3 introduces the Sobol’ sensitivity index
for the process sensitivity analysis.

3.1 Temporal variability and ensemble spread

We calculated the total temporal variability (σtotal), the vari-
ability of the annual cycle (σancy), and the interannual vari-
ability (σanom) for each ensemble member and the ensemble
arithmetic mean following Dirmeyer et al. (2006):

σtotal =

√
1

12Y

∑
y,m

(xy,m− xclim)2, (6)

σancy =

√
1
12

∑
m

(xancy,m− xclim)2, (7)

σanom =

√
1

12Y

∑
y,m

(xy,m− xancy,m)2, (8)

where xclim, xancy, and xanom are the climatology, annual cy-
cle, and interannual anomaly of the monthly time series xy,m
(month m of the year y; m= 1, · · ·,12; y = 1, · · ·,Y ).

The ensemble spread for the total time series (σ̌total), an-
nual cycle (σ̌ancy), and interannual anomaly (σ̌anom) are de-
rived also following Dirmeyer et al. (2006):

σ̌total =
1
T

T∑
t=1

σ (xy,m), (9)

σ̌ancy =
1

12

12∑
m=1

σ (xancy), (10)

σ̌anom =
1

12Y

Y∑
y=1

12∑
m=1

σ (xanom), (11)

where σ (x)=
√[∑N

n=1(x− x̌)2
]
/N denotes the standard

deviation across the ensemble members at each time step.
x̌ denotes the arithmetic ensemble mean.

We calculated the ratio (r = σ̌/σ ) of ensemble spread σ̌ to
temporal variability σ for the total monthly time series (with
a subscript of “total”), annual cycle (“ancy”), and interannual
anomaly (“anom”). The ratio enables the intercomparison of
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the ensemble spread among the selected timescales. A grade
is assigned according to the ratio following Dirmeyer et al.
(2006): a grade “A” for r < 0.316; “B” for 0.316≤ r < 1;
“C” for 1≤ r < 3.16; “D” for 3.16≤ r < 10; and “E” for
r > 10. A lower (higher) r or a higher (lower) grade denotes
a lower (higher) ensemble spread.

3.2 Taylor diagram and skill score

The Taylor diagram (Taylor, 2001) is a graphical representa-
tion of how closely a model simulation matches observations
in terms of correlation coefficient (R), normalized unbiased
root mean square error (nuRMSE), and normalized standard
deviation (σ̂f). The TSS is an index that measures the dis-
tance between a model simulation and the observations in
the Taylor diagram. The TSS is defined as follows:

TSS=
4(1+R)

(σ̂f+
1
σ̂f

)2(1+R0)
, (12)

σ̂f =
σf

σo
, (13)

where σf and σo are the standard deviations of the model sim-
ulation and the observation, and R0 is the maximum correla-
tion coefficient attainable (in this study, R0 = 1). The value
range of TSS is from 0 to 1. A higher TSS indicates a higher
overall performance of model prediction with reference to
the observations.

3.3 Sobol’s total sensitivity index

The sensitivity of the Noah-MP ensemble to a physical pro-
cess can be quantified by the Sobol’ total sensitivity index
(Sobol’, 1993; Zheng et al., 2019). The Sobol’ total sensitiv-
ity index measures the proportion of the variance of different
processes to the total variance, which is defined as follows:

S3 =
E∼3(Var3(Y | ∼3))

Var(Y )
, (14)

where S3 is the Sobol’ total sensitivity index for one process
3;∼3 represents the other processes except for3; Y repre-
sents the 48 Noah-MP ensemble members; Var(Y ) is the vari-
ance of Y ; Var3(Y | ∼3) denotes the variance among differ-
ent parameterization schemes of the process 3, and E(∼3)
denotes the arithmetic average across all combinations of the
other processes except for 3. Detailed calculations and ex-
amples can be found in Zheng et al. (2019, Appendix A).

3.4 Reference data

3.4.1 Terrestrial water storage

We used the 1◦× 1◦ monthly Gravity Recovery and Cli-
mate Experiment (GRACE) land water-equivalent thick-
ness surface-mass anomaly, level-3, Release 6.0, version
04, as the reference of TWS (W in Table 1). The GRACE

products from different processing centers are slightly
different. To reduce the noise of the estimates (Saku-
mura et al., 2014), we used the arithmetic average of
the products from three centers: (1) GeoForschungsZen-
trum Potsdam (or the German Research Center for
Geosciences) (https://podaac.jpl.nasa.gov/dataset/TELLUS_
GRAC_L3_GFZ_RL06_LND_v04, last access: 10 Febru-
ary 2022), (2) the Center for Space Research at the Uni-
versity of Texas, Austin (https://podaac.jpl.nasa.gov/dataset/
TELLUS_GRAC_L3_CSR_RL06_LND_v04, last access:
10 February 2022), and (3) NASA’s Jet Propulsion Labora-
tory (https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_
L3_JPL_RL06_LND_v04, last access: 10 February 2022).
The GRACE satellites began orbiting Earth on 17 March
2002. We selected the period from 2003 to 2015 for the eval-
uation. There are 14 missing values during the period, which
were filled with a simple linear interpolation.

The GRACE products experience signal leakages between
land and water (Save et al., 2016). Such signal leakage could
impact the estimation in the RFCs that are adjacent to the
Great Lakes (Ma et al., 2017) and oceans. To alleviate the
impacts of the Great Lakes, we corrected the GRACE TWS
estimates in the NC, OH, and NE RFCs using the water
level variations observed by the National Oceanic and At-
mospheric Administration (NOAA). Appendix B details the
algorithm.

3.4.2 Soil moisture

We used the daily North American Soil Moisture Database
(NASMD; http://nationalsoilmoisture.com, last access:
6 February 2016) (Quiring et al., 2016) as the reference for
the simulated soil moisture (Wsoil,i in Table 1), similar to
previous NLDAS evaluations (Xia et al., 2015b, a). NASMD
assembles the soil moisture time series at multiple depths of
more than 2200 stations of 24 networks with quality control.
The observation depth varies with the network. We interpo-
lated the observations to the centers of the Noah-MP soil
layers, which are 0.05, 0.25, 0.7, and 1.5 m, respectively. The
interpolation is performed only when a valid observation is
exactly at, or two valid observations exist above and below,
the given depth; otherwise, a missing value is given. We
excluded the soil layers with more than 50 % missing values
to minimize the impacts of missing values on the evaluation,
after which 264 wsoil,1, 214 wsoil,2, 95 wsoil,3, and 23 wsoil,4
valid time series remained. Daily data from 1996 to 2013
were then aggregated into monthly values. For any month, if
less than 10 d of valid data are available, a missing value is
assigned.

3.4.3 Snow water equivalent

We used the daily Snow Data Assimilation System
(SNODAS; https://nsidc.org/data/G02158/versions/1, last
access: 13 April 2021) as the reference of SWE (Wsnow
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in Table 1). SNODAS is a data assimilation system devel-
oped by the NOAA National Weather Service’s National Op-
erational Hydrologic Remote Sensing Center. This system
aims to provide a physically consistent framework to com-
bine snow modeling and observations from satellites, air-
borne platforms, and ground stations (National Operational
Hydrologic Remote Sensing Center, 2004). The original spa-
tial resolution is 1 km× 1 km, and we aggregated the data
to the 0.125◦ NLDAS grids. SNODAS began on 28 Septem-
ber 2003, and we selected the period from September 2004 to
August 2015 that spans 11 whole snow seasons. Clow et al.
(2012) showed that the SNODAS SWE performs well in the
forest areas of the Colorado Rocky Mountains but performs
poorly in the alpine areas.

3.4.4 Evapotranspiration

We used plot-scale AmeriFlux observations and two gridded
products as the reference ET (E in Table 1). The two gridded
products are derived from different methods, and a common
evaluation period from 1982 to 2015 is selected for this study.
The gridded products have different spatial resolutions. We
downscaled the data to the NLDAS grids and then aggregated
them to the 12 RFCs.

We selected 25 AmeriFlux sites (https://ameriflux.lbl.gov,
last access: 18 September 2021). The 25 selected sites were
selected because they have the longest observation periods
for seven major land cover types (i.e., evergreen forest, decid-
uous forest, mixed forest, shrubland, savanna, grassland, and
cropland). Figure S1 and Table S1 detail the selected sites.
The data have been widely used in LSM evaluations (Cai
et al., 2014a; Zhang et al., 2020). AmeriFlux provides hourly
or half-hourly latent heat measurements. We converted the
measurement to ET by dividing the latent heat of water va-
porization (2.5104× 106 J kg−1). The hourly or half-hourly
ET is then aggregated into monthly values. In the process of
aggregation, if there were less than 8 valid hours in a day, a
missing day was marked; if there were fewer than 10 valid
days in a month, a missing month was assigned; if there was
less than 50 % valid months, the time series was dropped. In
this study, the data serve as the ground truth for the gridded
ET products and model estimation.

The first gridded ET product is FLUXNET multi-tree en-
semble (MTE) (Jung et al., 2009) (https://www.bgc-jena.
mpg.de/geodb/projects/Home.php, last access: 3 May 2017).
FLUXNET MTE ET is a monthly dataset produced from the
FLUXNET eddy covariance measurements, remote sensing,
and meteorological data using the multi-tree ensemble statis-
tical method (Jung et al., 2009). The product is widely used in
LSM evaluations (Cai et al., 2014a; Ma et al., 2017; Xia et al.,
2016; Jung et al., 2019; Fang et al., 2020; Zhang et al., 2020;
Pan et al., 2020). FLUXNET MTE ET has a spatial resolu-
tion of 0.5◦× 0.5◦. We remap the data to the 0.125◦× 0.125◦

NLDAS grids with a first-order conservative method. We use
the FLUXNET ET as the reference for the annual cycle, since

it replicates the AmeriFlux observations best among the two
gridded products (Tables S2–S4 in the Supplement).

The second gridded ET product is the Global Land Evap-
oration Amsterdam Model (GLEAM), version 3.3a (https:
//www.gleam.eu, last access: 7 May 2019), which is an-
other widely used ET product (Xu et al., 2019). GLEAM es-
timates transpiration, canopy evaporation, soil evaporation,
open-water evaporation, and sublimation separately and then
sums them as ET. The method aims to maximize the utiliza-
tion of satellite information. The product estimates monthly
ET at a spatial resolution of 0.25◦× 0.25◦. We bilinearly in-
terpolated the data to the NLDAS grids. The GLEAM ET is
used as the reference for the interannual anomaly, as it better
replicates the AmeriFlux-observed anomaly than FLUXNET
(Tables S2–S4).

3.5 NLDAS ensemble

We used three NLDAS-2 models – namely Noah-2.8,
VIC-4.0.3, and Mosaic – as the benchmark of the Noah-
MP ensemble. Their outputs can be publicly downloaded
from the NASA Goddard Earth Sciences Data and Infor-
mation Services Center (https://disc.gsfc.nasa.gov/datasets?
keywords=NLDAS, last access: 6 February 2016). More in-
formation on the NLDAS-2 models, the forcing and static
datasets, and simulation settings can be found in Xia et al.
(2012b, a). The NLDAS-2 datasets have been proven to
perform soundly for regional hydrological simulations (Xia
et al., 2012b, a, 2016, 2015b, a) and are widely used as a
benchmark for LSM evaluations (Cai et al., 2014b; Fei et al.,
2021).

4 Results and discussions

In this section, we begin by intercomparing the ensemble
spread of the dataset variables (Sect. 4.1). Then, Sect. 4.2–4.5
examines the performance and ensemble spread of the TWS
anomaly (TWSA), SWE, soil moisture, and ET, in compar-
ison with the NLDAS ensemble. The performance of runoff
can be found in our previous papers Fei et al. (2021) and
Zheng et al. (2020).

4.1 Comparison of the ensemble spread

We aggregated the dataset variables across CONUS. Ta-
ble 2 summarizes the ensemble spread and temporal vari-
ability of the ensemble mean for all the dataset variables.
Among the variables, runoff (including surface and subsur-
face components) shows the largest spread, accounting for
one-fifth to one-third of the climatological mean. The en-
semble spread is comparable to or larger than the tempo-
ral variability. The magnitude is similar to that estimated
in GSWP-2. The spread of ET and TWS is significantly
smaller than those observed in GSWP-2. The high consis-
tency among the Noah-MP configurations could be a sign
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Table 2. The climatological mean, ensemble spread, and temporal variability of different dataset variables. ¯̌x denotes the climatological
average of the ensemble mean. σ̌ancy, σ̌anom, and σ̌total denote the spread of the 48 Noah-MP configurations in simulating the multi-year
averaged annual cycle, interannual anomaly, and total 36-year monthly time series, respectively. σancy, σanom, and σtotal denote the temporal
variability of the annual cycle, interannual anomaly, and the total time series, respectively. The rating of the ratio σ̌/σ is defined in Sect. 3.1.
The units of the variables are presented in Table 1. W̃ (W̃gw) denotes the terrestrial water storage (groundwater) anomaly (kgm−2), whereas
W ′ (W ′gw) denotes the monthly terrestrial water storage (groundwater) change (kgm−2 s−1).

Variables σ̌ancy σ̌anom σ̌total ¯̌x
σ̌total
¯̌x

( %) σancy σanom σtotal r ∼
σ̌ancy
σancy

r ∼
σ̌anom
σanom

r ∼
σ̌total
σtotal

E (×10−6) 1.19 0.266 1.22 17.5 7.0 11.8 1.18 11.8 A∼ 0.102 A∼ 0.225 A∼ 0.103
Ecan (×10−6) 0.207 0.0417 0.207 1.52 14 1.11 0.308 1.15 A∼ 0.187 A∼ 0.136 A∼ 0.180
Egnd (×10−6) 0.733 0.143 0.743 7.96 9.3 3.64 0.778 3.72 A∼ 0.201 A∼ 0.185 A∼ 0.200
Etran (×10−6) 1.33 0.206 1.35 7.99 17 7.87 0.666 7.90 A∼ 0.170 A∼ 0.310 A∼ 0.171
R (×10−6) 1.22 0.369 1.26 6.73 19 3.13 0.369 1.26 B∼ 0.390 A∼ 0.206 B∼ 0.349
Rsrf (×10−6) 0.682 0.225 0.701 2.09 34 0.690 0.578 0.900 B∼ 0.988 B∼ 0.389 B∼ 0.778
Rsub (×10−6) 1.00 0.343 1.04 4.64 22 2.47 1.31 2.80 B∼ 0.406 A∼ 0.261 B∼ 0.371
W ′ (×10−6) 1.10 0.347 1.14 −0.0331 / 8.71 2.29 9.00 A∼ 0.126 A∼ 0.152 A∼ 0.127
W ′gw (×10−6) 0.144 0.116 0.186 −0.00571 / 1.59 0.630 1.71 A∼ 0.091 A∼ 0.184 A∼ 0.109
W̃ 5.57 3.43 6.48 0 / 45.0 18.1 48.4 A∼ 0.124 A∼ 0.190 A∼ 0.134
W̃gw 0.671 0.855 1.09 0 / 8.18 6.11 10.2 A∼ 0.082 A∼ 0.140 A∼ 0.106
Wsnow 0.125 0.127 0.173 6.84 2.5 7.56 3.80 8.47 A∼ 0.017 A∼ 0.033 A∼ 0.020
wsoil,1 (×10−3) 6.66 0.947 6.65 227 2.9 24.2 10.2 26.2 A∼ 0.273 A∼ 0.093 A∼ 0.254
wsoil,2 (×10−3) 8.40 1.24 8.48 239 3.5 19.4 8.14 21.0 B∼ 0.434 A∼ 0.152 B∼ 0.404
wsoil,3 (×10−3) 11.9 1.83 12.1 233 5.2 22.7 8.78 24.4 B∼ 0.525 A∼ 0.208 B∼ 0.496
wsoil,4 (×10−3) 14.6 1.84 14.7 250 5.9 16.0 7.09 17.5 B∼ 0.911 A∼ 0.259 B∼ 0.839

of the limited sampling of available process parameteriza-
tions but could also be a result of continuous model im-
provements. ET might be the former case, since the ensemble
does not perturb several important processes such as rough-
ness sublayer (Abolafia-Rosenzweig et al., 2021) and plant
hydraulics (Li et al., 2021). TWS is likely the latter case,
since the parameters of different groundwater schemes are
calibrated using GRACE (Niu et al., 2007). The spread of
snow water equivalent depicts the smallest spread, which is
2.5 % of the climatological mean. The small spread reflects a
limited sampling of the cryosphere processes as discussed in
Sect. 2.2. For soil moisture, the ensemble spread is marginal
at the surface and increases significantly in the deep layers.
The difference hints that the controlling processes vary with
depth. The surface soil moisture is tightly controlled by the
atmospheric forcings, whereas the spread of the subsurface
soil moisture hints at the complex interplay among various
land surface processes (e.g., root water uptake and subsur-
face runoff) (Koster, 2015).

Table 2 also shows the comparison between the annual
cycle and interannual anomaly for different variables. For
runoff and soil moisture, the ensemble spread in the annual
cycle is larger (i.e., σ̌ancy ≥ σanom). Whereas for transpira-
tion (Etran), groundwater storage (Ŵgw and W ′gw), and snow
water equivalent (Wsnow), the spread is larger for the inter-
annual anomaly (i.e., σ̌ancy ≤ σanom). The dynamics at dif-
ferent times are modulated by different processes (Dickinson
et al., 2003). Since the timescale of the interannual anomaly

is smaller than that of the annual cycle, the land surface mem-
ory and the associated land model parameterizations may
contribute a larger part to the annual cycle, whereas the in-
terannual anomaly is more tightly controlled by atmospheric
forcing. The smaller ensemble spread in the annual cycle
than in the interannual anomaly is a sign of insufficient rep-
resentation of the physics uncertainty.

4.2 Terrestrial water storage anomaly

Figure 1 shows the annual cycle of the TWSA estimated from
GRACE, Noah-MP, and NLDAS. Figure 2 presents the TSS.
In the 12 RFCs over CONUS, the TWSA peaks in spring,
declines rapidly in summer, reaches a minimum in autumn,
and recovers in winter. In terms of the timing of the peak
and trough, Noah-MP and the NLDAS models perform sim-
ilarly. In terms of the amplitude of variation, Noah-MP gen-
erally produces higher values in all RFCs. Previous studies
have attributed this difference to the inclusion of a bucket
groundwater component in Noah-MP (Cai et al., 2014b; Ma
et al., 2017). However, we found the Noah-MP configura-
tions without a groundwater component can still produce a
higher amplitude, especially considering the structural simi-
larity between Noah-MP and Noah. Further investigation of
the model difference is necessary.

Figure 2 shows the Taylor diagram for the annual cycle
of TWSA. The Noah-MP configurations generally outper-
form the NLDAS models in most of the RFCs, which results
in the superior performance of the ensemble mean (shown
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Figure 1. Annual cycle of TWSA from the model estimates and GRACE in the 12 RFCs for the period 2003–2015. The TWSA is calculated
from the monthly TWS by subtracting the 13-year average (2003 to 2015). Black dots denote the GRACE observations. Error bars show the
standard deviation of the year-to-year differences. The shaded areas denote the range between the maxima and minima of the 48 Noah-MP
estimates. The solid red line denotes the Noah-MP multi-physics ensemble mean. The three NLDAS models (Noah, Mosaic, VIC) and their
ensemble means are denoted by the blue, green, cyan, and dark golden lines, respectively. The 12 RFCs are sorted based on climatic aridity,
i.e., the most humid RFC in the top left and the driest RFC in the bottom right.

in Table S5). Detailed examination of the TSS reveals that
Noah-MP and NLDAS have similar correlation coefficients.
Their difference is manifested in the modeled standard de-
viation (i.e., the amplitude of variation). In NE, MA, NW,
and CN, Noah-MP underperforms compared with NLDAS,
mainly due to overestimating the standard deviation. How-
ever, the interpretation of the overestimation is multifaceted.
First, Noah-MP could overestimate the variability due to un-
suitable parameters. For instance, specific yield is an impor-
tant parameter for the simulation of groundwater storage and
water level (Lv et al., 2021). The parameter is calibrated as
0.2 by global simulations (Niu et al., 2007). The globally cal-
ibrated value may be overestimated in the RFCs, leading to
an overestimation in TWSA. Second, the GRACE data could
underestimate the temporal variability at these coastal RFCs
due to signal leakage from the ocean (Cai et al., 2014b). In
AB and MB, Noah-MP performs slightly better than the NL-
DAS models, but both underestimate the standard deviation.
The Ogallala Aquifer encompasses the two RFCs. Noah-MP
can better present the groundwater changes than the NLDAS
models due to an unconfined aquifer module. But Noah-MP
does not include the confined aquifers, leading to an under-
estimation of the groundwater storage variability.

Figure 3 shows the Taylor diagram for the interannual
anomaly of TWSA. Compared with the annual cycle (Fig. 2),
both the Noah-MP configurations and the NLDAS models
degrade significantly. Noah-MP still performs better than
NLDAS in most RFCs. However, the superiority is marginal.
In three RFCs – namely NE, MA, and OH – Noah-MP
notably underperforms NLDAS. The underperformance is
mainly due to higher variability than GRACE. Similar to the
annual cycle, possible reasons include: (1) Noah-MP over-
estimated the variability due to unsuitable parameter values,
and (2) GRACE underestimated the variability due to the sig-
nal leaked from oceans.

4.3 Soil moisture

Figure 4 presents the time series of the surface (0–0.1 m) and
root-zone (0–1.0 m) soil moisture in NC, NW, AB, WG, and
CB. These RFCs were selected as they have more than 10
valid sites. Table S6 presents the corresponding TSSs. The
Noah-MP configurations are consistent in estimating the sur-
face soil moisture, having a spread remarkably smaller than
that among the three NLDAS models. The NLDAS mod-
els have more diverse representations of soil moisture. Noah
is the same as Noah-MP. Both solve Richards’ equation to
present the soil moisture dynamics in four layers (Niu et al.,

Earth Syst. Sci. Data, 15, 2755–2780, 2023 https://doi.org/10.5194/essd-15-2755-2023



H. Zheng et al.: NLDAS–Noah-MP perturbed-physics ensemble hydrological data 2763

Figure 2. Taylor diagram of TWSA’s annual cycle for the 48 Noah-MP configurations (red dots) and three NLDAS models (blue dots for
Noah, green stars for VIC, and cyan square for Mosaic) at the 12 RFCs. Black stars denote the observations. The ensemble mean of Noah-MP
and NLDAS is presented by purple and dark golden diamonds, respectively. The distance between the model and observation presents the
nuRMSE. The radial lines show the correlation coefficient, while the distance to the origin along the line denotes the normalized variability.

Figure 3. As in Fig. 2, but for the interannual anomaly of TWSA.
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Figure 4. Monthly surface (0–0.1 m) and root-zone (0–1 m) soil moisture (left column) and the annual cycle (right column) from the Noah-
MP ensemble, the NLDAS models, and the NASMD observations for the period 1996–2013. Only the RFCs with more than 10 observational
sites are considered. Black dots denote the arithmetic average of the valid NASMD observations. Error bars in the right columns denote the
standard deviation of the year-to-year differences. The shaded areas denote the range between the maxima and minima of the 48 Noah-MP
estimates. The solid red line denotes the Noah-MP multi-physics ensemble mean. The three NLDAS models (Noah, Mosaic, VIC) and their
ensemble mean are denoted by the blue, green, cyan, and dark golden lines, respectively. The five RFCs are sorted based on climatic aridity.

2011). Mosaic also solves Richards’ equation but at three
soil layers. The top layer is further divided into tiles to bet-
ter represent spatial heterogeneity (Koster and Suarez, 1992).
VIC is different from them, utilizing a conceptual soil water
tank (Liang et al., 1994). It could be that Noah-MP under-
estimated the ensemble spread, especially when considering
its inability to represent the subgrid heterogeneity. The NL-
DAS models could also overestimate the spread when con-
sidering the conceptual representation of VIC. The spread
among the Noah-MP configurations increases significantly

from the surface (Fig. 4e) to the root zone (Fig. 4k). The
ensemble spread in the root-zone soil moisture reflects the
difference in modeling root-water uptake for plant transpira-
tion and soil-bottom drainage as described in Appendix A.
Further investigation (Figs. S2–S5) shows that, in the deep
layers (the third and fourth layers), Noah-MP has a compa-
rable or greater spread than NLDAS.

Comparison between Noah-MP and Noah shows that they
perform similarly in AB (Fig. 4e and f) and WG (Fig. 4g and
h) but are different in NC (Fig. 4a and b), NW (Fig. 4c and d),
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Figure 5. The first column shows the TSS of the NLDAS ensemble mean in simulating the annual cycle of soil moisture at different depths
(0–0.1, 0.1–0.4, 0.4–1, 1–2 m). The second column presents the difference in TSS between the Noah-MP ensemble mean and the NLDAS
ensemble mean. The third column depicts the TSS difference between the arithmetic average of the Noah-MP ensemble mean and the NLDAS
models to the NLDAS three-model mean. P is the percentage of sites at which a higher TSS appears relative to the NLDAS ensemble mean.
P 1 (P 2) is the percentage of sites at which a higher TSS appear given that the Noah-MP ensemble mean outperforms (underperforms) the
NLDAS ensemble mean. The evaluation period is 1996–2013.

and CB (Fig. 4i and j). The similarity in AB and WG is rea-
sonable, since the two models have similar soil layer struc-
tures and parameterizations. The dissimilarity in NC, NW,
and CB is most pronounced in winter. It could result from
the different snow parameterizations in Noah-MP and Noah,
which is investigated in Sect. 4.4.

In the RFCs and soil layers examined in Fig. 4, the Noah-
MP ensemble mean performs similarly or better than the NL-
DAS ensemble mean except in AB and CB. The superiority
of the Noah-MP in simulating soil moisture is also reported
in previous evaluations (Cai et al., 2014b). In AB and CB,
individual NLDAS models do not show a consistent superi-
ority over Noah-MP. In AB, the best NLDAS model is VIC
in winter and Noah in summer. The performance of VIC in
winter corresponds to the best-performing snow estimation
(Fig. 8h). In CB, the best NLDAS model is Noah in winter
and Mosaic in summer. Mosaic carefully considers the sub-
grid variability of soil moisture, which could lead to better
skill in RFCs with complex topography such as CB and NW.
The NLDAS ensemble mean takes the advantage of winter-

time soil moisture from VIC in AB and summertime soil
moisture from Mosaic in CB. Both the advantage of VIC and
Mosaic come from the representation of subgrid heterogene-
ity.

Figures 5 and 6 compare the TSS between the NLDAS and
Noah-MP ensemble mean at each NAMSD site for the an-
nual cycle and interannual anomaly, respectively. The com-
parison varies significantly with site and soil layer depth, re-
vealing two major patterns. First, similar to Fig. 4, NLDAS
tends to outperform Noah-MP in AB and CB. The high skill
of the NLDAS ensemble mean is likely a result of a high
ensemble skill gain (Fei et al., 2021) related to the diversity
among the NLDAS models. Noah-MP has both a low ensem-
ble spread and an inadequate representation of subgrid het-
erogeneity in the two RFCs. Second, Noah-MP outperforms
NLDAS in other RFCs. In NC, OH, and MA, the low per-
formance of NLDAS is related to the anomaly in wintertime
soil moisture (Fig. S2). The anomaly suggests that the NL-
DAS models generally have difficulty in modeling snow and
snow–soil moisture interactions (refer to Sect. 4.4 for more
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Figure 6. As in Fig. 5, but for interannual anomaly.

information). On the other hand, Noah-MP has a better snow
module, leading to a higher soil moisture estimation skill.

To maximize the utilization of the NLDAS model diver-
sity and Noah-MP physics improvements, we combine the
Noah-MP ensemble mean and the three NLDAS models. The
right-hand columns of Figs. 5 and 6 show that the four esti-
mates’ arithmetic average outperforms the three-model NL-
DAS ensemble mean at most NASMD sites. The outperfor-
mance suggests an added value of the Noah-MP data. If the
Noah-MP ensemble mean already outperforms the NLDAS
ensemble mean, the added value appears in almost every site.
If the Noah-MP ensemble mean underperforms the NLDAS
ensemble mean, the added value can still show up at approxi-
mately one-third (one-fourth) of the sites for the annual cycle
(interannual anomaly).

4.4 Snow water equivalent

Figure 7a presents the spatial patterns of the multi-year av-
eraged SWE (Wsnow) from SNODAS. Snow is mainly dis-
tributed in the northeast (NE, NC, OH, and MA) and in
the mountains of the west (the Cascade Mountains, Rocky
Mountains, and Sierra Nevada in NW, AB, MB, WG, CN,
and CB). Figure 7b (c) shows the geographical differ-
ence between the Noah-MP (NLDAS) ensemble mean and

SNODAS. Both Noah-MP and NLDAS exhibit a consider-
able underestimation in most areas of CONUS. However, the
underestimation of Noah-MP is generally smaller. Figure 7d
confirms that both Noah-MP and the NLDAS models tend
to underestimate SWE in most areas but exhibit an overesti-
mation when snow is extremely thick (SWE is greater than
400 mm). Noah-MP performs better than the NLDAS mod-
els in most cases. The superiority of Noah-MP is likely at-
tributable to the three-layer snowpack module, which can
represent snow dynamics better in a wide range of snow
depth than the single-layer Noah and Mosaic snow module
and the quasi-two-layer VIC snow module. A careful consid-
eration of the surface energy balance can also contribute to
Noah-MP’s superiority over VIC and Mosaic. Consequently,
Noah-MP captures the spatial patterns better than NLDAS,
with a spatial correlation of 0.87 versus 0.43. Further ex-
amination reveals that the superiority of Noah-MP appears
in all elevation bands and is the most significant between
1000 to 2000 m with a spatial correlation of 0.85 versus 0.38
(0.77 versus 0.76 below 1000 m, and 0.89 versus 0.75 above
2000 m).

Figure 8 compares the annual cycle estimated from
SNODAS, NLDAS, and Noah-MP. The annual cycle in the
12 RFCs exhibits a similar pattern: it accumulates in win-
ter, peaks in spring, and melts from late spring to summer.
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Figure 7. (a) Spatial distribution of the 11-year averaged (Septem-
ber 2004 to August 2015) SWE from SNODAS. (b) Difference be-
tween the NLDAS ensemble mean and SNODAS. (c) Difference
between the Noah-MP ensemble mean and SNODAS. The spatial
correlation coefficients between the NLDAS–Noah-MP ensemble
mean and SNODAS are also presented.

The snow season in the northeastern RFCs (i.e., NE, MA,
OH, and NC) spans from October to May, whereas the snow
season is longer in the mountainous RFCs of the west (i.e.,
NW, AB, MB, WG, CN, and CB), lasting to June. From the
comparison between Noah-MP and NLDAS, we make three
observations. First, consistent with Fig. 7, the NLDAS mod-
els underestimate the SWE in all RFCs. Among the three
NLDAS models, Noah performs the best in the northeast
(e.g., NE, MA, and OH), whereas VIC shows some advan-
tages in the western mountainous RFCs (e.g., NW, CN, and
CB). Possible reasons for the Noah superiority in the north-
east include the careful consideration of the surface energy
balance, whereas, in the western mountains, the elevation
bands of VIC can better capture the spatial heterogeneity.

Second, Noah-MP outperforms the NLDAS models in al-
most all RFCs, except for showing a marginal degradation in
AB and MB. In these two RFCs, VIC outperforms not only
the NLDAS models but also Noah-MP. The terrain is hilly,
and the elevation-banded parameterization enables a better
representation of subgrid snow variability. Another reason is
related to the shallow snow in these two RFCs. Noah-MP
has known been experiencing negative biases with shallow
snow (i.e., AB, MB, and WG). The bias is attributable to the
shallow snow albedo as discussed in Dang et al. (2019) and
Wang et al. (2020). Third, the ensemble spread among the
Noah-MP configurations is small. The estimates of SWE and
its uncertainty should be improved in the future by consid-
ering processes such as rain–snow partitioning Wang et al.
(2019), snow albedo (Wang et al., 2020; Dang et al., 2019),
and roughness length (He et al., 2019).

Figure 9 shows the TSS of the NLDAS and Noah-MP
ensembles in estimating the annual cycle and interannual
anomaly of SWE. Table S7 summarizes the skill scores for
the 12 RFCs. The annual cycle and interannual anomaly ex-
hibit similar spatial patterns. NLDAS performs well in most
parts of the CONUS, with TSSs higher than 0.75. In MB,
TSS reaches a minimum of 0.60. In comparison with NL-
DAS, Noah-MP performs notably better in the east and west
but marginally worse in parts of the central CONUS. The lo-
cation of Noah-MP’s underperformance coincides well with
shallow snow and relatively flat terrain. The coincidence
hints at the weakness of Noah-MP in simulating shallow
snow and the advantage of VIC in representing subgrid snow
variability as discussed previously.

We further averaged the 48 Noah-MP configurations and
added their average to the three-model NLDAS ensemble.
Figure 9e and f show that the four-estimate ensemble mean
outperforms the three-model NLDAS ensemble mean in
nearly all areas of CONUS, again proving the added value
of the data provided in this paper.

4.5 Evapotranspiration

Figure 10 compares the annual cycle estimated from
FLUXNET MTE, NLDAS, and Noah-MP in the 12 RFCs.
We choose FLUXNET MTE as the reference here, since its
performance is superior when compared to AmeriFlux (Ta-
bles S2–S4). In all the 12 RFCs, ET peaks during summer
and is lowest during winter. Noah-MP successfully captures
the timing of the peak in humid RFCs (i.e., NE, MA, OH,
LM, SE, NC, and NW) but shows a 1-month lead in a few
semi-arid and arid RFCs (i.e., MB, WG, and CN). The aver-
age of the three NLDAS models better reproduces the timing
of the peak, but the models differ from each other signifi-
cantly. Among the Noah-MP and NLDAS ensembles, VIC
and Mosaic are notably different. VIC exhibits a system-
atic underestimation, while Mosaic shows an overall over-
estimation. The 48 Noah-MP configurations and Noah per-
form closely during autumn and winter, whereas their dif-
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Figure 8. As in Fig. 1, but for SWE between September 2004 and August 2015.

Figure 9. TSS of the ensemble means in simulating the annual cycle (left column) and interannual anomaly (right column) of SWE. (a,
b) TSS of the NLDAS ensemble mean. (c, d) The difference in TSS between the Noah-MP ensemble mean and the NLDAS ensemble mean.
(e, f) The difference between the arithmetic average of the Noah-MP ensemble mean and three NLDAS models to the NLDAS ensemble
mean. The evaluation period is 2004–2015.
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Figure 10. As in Fig. 1, but for ET in the period of 1982–2011.

Figure 11. Differences between the Noah-MP ensemble mean and GLEAM in total ET (E), canopy evaporation (Ecan), ground evaporation
(Egnd), and transpiration (Etran). The units are millimeters per day (mmd−1).

ferences are pronounced during spring and summer. During
spring and summer, Noah is the closest to FLUXNET MTE
in most RFCs except NE and MA, whereas Noah-MP con-
stantly overestimates the ET in all RFCs.

The overestimation of Noah-MP was investigated by sep-
arately comparing the three components of ET (i.e., tran-
spiration, canopy evaporation, and ground evaporation) with
GLEAM (Fig. S6). Figure 11 shows the overestimation of to-

tal ET is closely linked to the overestimation of ground evap-
oration, which could be partially attributable to the overly
high roughness length for heat and water, as described in Ap-
pendix A8 and A9. Besides, the lack of a litter layer (Decker
et al., 2017) in Noah-MP could also play a part.

Figure 12 evaluates Noah-MP and NLDAS using the 25
AmeriFlux sites. The NLDAS ensemble mean outperforms
the Noah-MP ensemble mean for the annual cycle, and this
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Figure 12. Probability distribution of ET’s TSS for the annual cy-
cle (a, b) and interannual anomaly (c, d). The left column compares
the Noah-MP (orange) and NLDAS (cyan) ensemble means. The
right column reveals the Noah-MP (magenta) and NLDAS (dark
blue) ensembles. The upper, middle, and lower quantile lines of the
magenta boxes show the 75th, 50th, and 25th percentile values of
the Noah-MP ensemble. The upper, middle, and lower lines of the
dark blue boxes show the three NLDAS models. The blue, green,
and cyan dots denote Noah, VIC, and Mosaic, respectively. The
evaluation period can be found in Table S1.

outperformance results from two causes. First, an NLDAS
member, Noah, performs the closest to the observations, as
shown in Figs. 12b and 10. Second, the three NLDAS mod-
els are remarkably different from each other. The diversity of
the ensemble gives a higher skill gain by combining them,
as shown by the difference between the ensemble mean skill
(Fig. 12a) and the median TSS (Fig. 12b). On the other hand,
the Noah-MP configurations are too similar to each other,
and all have a positive bias (Fig. 10). However, for the inter-
annual anomaly, the Noah-MP ensemble mean slightly out-
performs the NLDAS ensemble mean (Fig. 12c). Figure 12d
shows that the Noah-MP configurations marginally outper-
form the NLDAS models. Among the NLDAS models, VIC
performs the best, and Noah does not exhibit the same supe-
riority shown in the annual cycle. The difference between the
NLDAS ensemble mean performance (Fig. 12c) and median
performance (Fig. 12d) is marginal, suggesting that the NL-
DAS ensemble skill gains are not notable for the interannual
anomaly.

Figure 13 examines the ensemble spread of Noah-MP and
NLDAS. The ensemble spread is normalized by the tempo-
ral variability calculated using the FLUXNET MTE ET. NL-
DAS has a significant spread in the southeast and west in

all seasons, while spring shows the largest value. As seen in
Fig. 10, the NLDAS ensemble spread mainly reflects the dif-
ferences between VIC and Mosaic. The Noah-MP ensemble
has a notably smaller spread than NLDAS. The Noah-MP
ensemble spread is manifested in spring and summer in the
southeastern (SE, LM, and WG) and western (CN, CB, and
NW) RFCs.

We can decompose the Noah-MP ensemble spread and
pinpoint the dominant process using Sobol’ sensitivity analy-
sis (Zheng et al., 2019). Figure 14 delineates the Sobol’ total
sensitivity index of total ET to the four processes described in
Appendix A. In spring and summer, for the regions where the
Noah-MP configurations show significant spread (SE, LM,
WG, CB, CN, and NW) (Fig. 13), ET is most sensitive to
the parameterization of stomatal conductance (Fig. 14e and
i) and then to the β factor (Fig. 14f and j). However, for re-
gions with positive biases (NC, OH, and LM, as shown in
Fig. 11b and c), the Noah-MP estimation is more sensitive
to the turbulence parameterizations (Fig. 14c and g). During
autumn and winter, the parameterizations of stomatal con-
ductance (Fig. 14m and q) and β factor (Fig. 14n and r) still
have significant impacts on the estimation of ET, and these
impacts could be a result of the “memory” of TWS (Zheng
et al., 2019). Besides these two processes, the runoff param-
eterization is dominant during autumn in the east (Fig. 14p),
and the turbulence parameterization is dominant during win-
ter (Fig. 14s).

5 Code and data availability

The dataset is freely available for download from the Zenodo
online repository at https://doi.org/10.5281/zenodo.7109816
(Zheng et al., 2022). The dataset (along with datasets on
which it is based) is subject to a Creative Commons BY (at-
tribution) license agreement (https://creativecommons.org/
licenses, last access: 16 August 2021).

6 Conclusions

This paper describes a 1/8◦ dataset of the TWB over the
CONUS from 1980 to 2015 simulated from an ensemble
of 48 perturbed-physics configurations of Noah-MP. This
Noah-MP multi-physics ensemble features an enrichment of
the NLDAS-2 four-model ensemble and brings convenience
for multi-model comparison. The dataset has already been
used in the monitoring of groundwater storage change (Rateb
et al., 2020), the analysis of LSM parameterization sensitiv-
ity (Zheng et al., 2019), the development of model evalua-
tion method (Zheng et al., 2020), and hydrological ensemble
simulations (Fei et al., 2021). This paper details the Noah-
MP parameterizations employed and evaluates the estimated
TWSA, soil moisture, SWE, and ET in comparison with the
NLDAS ensemble.
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Figure 13. Normalized ensemble spread of the multi-year averaged annual (first row) and seasonal (second–fifth rows) ET from NLDAS
(first column) and Noah-MP (second column). The ensemble spread is normalized by the temporal variability of the FLUXNET MTE ET
calculated using Eq. (6).

Figure 14. The Sobol’ total sensitivity of the multi-year averaged and seasonal (spring – MAM, summer – JJA, autumn – SON, winter
– DJF) ET to the four parameterizations: stomatal conductance, soil moisture limitation to transpiration (β factor), turbulence, and runoff.
Higher values indicate higher sensitivities.

The spread of the ensemble estimation is the largest for
the runoff. The spread in surface runoff accounts for 34 % of
its climatological mean. The spread is comparable to the pre-
vious estimates for multi-model ensembles (Dirmeyer et al.,
2006). The ensemble spread in snow water equivalent is the
smallest, 2.5 % of its climatological mean. The ensemble
has not included different parameterizations of several snow
processes such as rain–snow partitioning, snow albedo, and

roughness length, which could lead to an underestimation of
the ensemble spread. The underestimation of the ensemble
spread becomes more apparent when the Noah-MP ensemble
mean is biased (Fig. 8). The bias is more pronounced relative
to the NLDAS models in parts of AB and MB where snow
is shallow and the terrain is hilly (Fig. 9). VIC performs bet-
ter there, suggesting the importance of considering subgrid
variability.
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Evaluation against various reference data shows that
Noah-MP generally performs better than the NLDAS mod-
els. The augmented three-layer snow module of Noah-MP
significantly improves the estimation of snow and also win-
tertime soil moisture. On the other hand, the NLDAS models
outperform Noah-MP in AB and CB for surface soil moisture
(Figs. 4 to 6), in AB and MB for snow (Figs. 8 and 9), and in
OH, LM, and NC for the annual cycle of ET (Fig. 10). The
outperformance of NLDAS is likely attributable to the con-
sideration of subgrid variability in soil moisture with Mosaic
and in snow with VIC. The Noah-MP ensemble could be im-
proved by increasing the spatial resolution or developing pa-
rameterizations of subgrid heterogeneity. Noah-MP also un-
derestimates the temporal variability of TWS in coastal RFCs
(Figs. 2 and 3). Correction of the ocean signal leakage in
the GRACE data and representation of spatially varying un-
confined aquifers’ parameters should be beneficial. For the
annual cycle of ET, there is a systematic overestimation in
spring and summer. Sobol’ sensitivity analysis of the Noah-
MP ensemble reveals that the bias is mainly related to the
parameterization of turbulence. We have examined the code
and found that the implementation is inconsistent with the lit-
erature. The parameterization of the roughness length of heat
and water vapor likely contributes to the ET overestimation.

The Noah-MP ensemble shares the same atmospheric
forcing and static parameters with the NLDAS models. The
similarity enables the comparison between the multi-model
and perturbed-physics ensemble methods as shown in Fei
et al. (2021). Besides, Noah-MP complements the NLDAS
models well. Adding Noah-MP to the NLDAS ensemble can
consistently improve the TWB variables in most areas of
CONUS.

The Noah-MP model has been undergoing rapid develop-
ment. New components such as plant hydraulics (Li et al.,
2021), roughness sublayer (Abolafia-Rosenzweig et al.,
2021), crops (Liu et al., 2016), and dynamic rooting depth
(Liu et al., 2020) have been added. New schemes for the
processes such as rain–snow partitioning (Wang et al., 2019)
have been included. Parameterizations of surface roughness
length (He et al., 2019; Zhang et al., 2021), snow albedo
(Wang et al., 2020), and vertical soil layers (Zhao et al., 2022;
Shellito et al., 2020) have been refined. The dataset can be
improved by using the updated model and including more
perturbations.

Appendix A: Formulation of the used Noah-MP
parameterization schemes

A1 SIMGM runoff parameterization scheme

SIMGM is a TOPMODEL-based runoff model (Niu et al.,
2007). The scheme parameterizes runoff (Rsrf and Rsub) as
an exponential function of groundwater table depth (zwt, m,

positive down) as follows.

Rsrf =Qsoil,srf[(1− ffrz,1)fsat+ ffrz,1], (A1)
fsat = fsat,max exp[−0.5f (zwt− zbot)], (A2)

Rsub = [1− max
i=1,...,Nsoil

(ffrz,i)]Rsub,max

exp[−3− f (zwt− zbot)], (A3)

where Qsoil,srf is the water incident on the soil surface (the
sum of precipitation throughfall, snowmelt, and dewfall;
kgm−2 s−1); ffrz,i is the fractional frozen area of the ith soil
layer (m2 m−2), which is parameterized using the frozen wa-
ter content of the soil layer following Niu and Yang (2006);
fsat is the saturation fraction of the grid cell (m2 m−2); and
zbot is the depth of the soil column bottom (2 m in this study),
and zwt is the groundwater table depth (m), which is con-
verted from the groundwater storage by a specific-yield pa-
rameter. The groundwater storage is predicted using a dy-
namic groundwater model interacting with the soil column
bottom (Niu et al., 2007).

The scheme has four calibratable parameters: (1) fsat,max,
the maximum saturation area fraction (m2 m−2), which is
defined as the cumulative distribution function of the topo-
graphic index when the grid-cell-mean water table depth is
zero; (2) f , a runoff decay factor (unitless); (3) Rsub,max,
the maximum subsurface runoff when the grid-cell-mean wa-
ter table depth is zero (kgm−2 s−1); and (4) 3, the grid-
cell-mean topographic index (unitless). In this study, the pa-
rameters have the following values: fsat,max = 0.38 m2 m−2,
f = 6, Rsub,max = 5 kgm−2 s−1, and 3= 10.5.

A2 SIMTOP runoff parameterization scheme

SIMTOP is also a TOPMODEL-based runoff parameteriza-
tion scheme, the same as SIMGM (Eqs. A1–A3). The major
difference between SIMTOP and SIMGM is that SIMTOP
parameterizes the groundwater table depth (zwt) using the
soil liquid water content by assuming the water head is at
equilibrium throughout the soil column down to the water ta-
ble (Niu et al., 2005). Although SIMTOP and SIMGM share
the same conceptual model of runoff generation, implemen-
tation differences exist. First, in contrast to Eqs. (A2) and
(A3), SIMTOP does not use the soil column bottom depth
(zbot) in calculating the saturation area fraction (fsat) and
subsurface runoff:

fsat = fsat,max exp(−0.5f zwt), (A4)

Rsub = [1− max
i=1,···,Nsoil

(ffrz,i)]Rsub,max

exp(−3− f zwt). (A5)

Second, parameter values are slightly different for the runoff
decay factor and maximum subsurface runoff: f = 2, and
Rsub,max = 4 kgm−2 s−1.
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A3 NOAHR runoff parameterization scheme

The Noah runoff (NOAHR) scheme parameterizes surface
runoff (Rsrf) as infiltration excess:

Rsrf =Qsoil,srf−Qsoil,in, (A6)

where Qsoil,in is the infiltration into the soil (kgm−2 s−1).
The infiltration is derived from the approximate solution to
the Richards equation following Philip (1969) with addi-
tional considerations of the spatial variability of precipita-
tion and infiltration capacity. By assuming exponential and
independent distributions of precipitation and infiltration ca-
pacity within a model grid cell, NOAHR formulates the soil
infiltration as follows:

Qsoil,in =Qsoil,srf
Ic

Qsoil,srf1t + Ic
, (A7)

Ic = wd[1− exp(−K1t1t)], (A8)

wd =

Nsoil∑
i=1

ρwat(wsat,i −wsoil,i)1zsoil,i, (A9)

where Ic is the soil infiltration capacity of the model grid cell
(kgm−2), wd is the water deficit of the soil column (kgm−2),
and 1t is the model time step (s). Following Chen and Dud-
hia (2001a), the parameter is assumed as propositional to the
saturated hydraulic conductivity of the first soil layer (Ksat,1;
kgm−2 s−1):

K1t =
K1t,ref

kref
Ksat,1, (A10)

where K1t,ref and kref are two parameters. In Noah-MP (and
Noah), K1t,ref =

3
86 400 s−1, and kref = 2× 10−3 kg m−2 s−1.

Ksat,1 is assigned using a soil parameter lookup table accord-
ing to the soil texture type.

NOAHR assumes free drainage at the soil column bottom.
The subsurface runoff is calculated as

Rsub = αslopeKsoil,Nsoil , (A11)

where αslope is the terrain slope index, which is arbitrarily
given as 0.1 in the adopted version of Noah-MP. Ksoil,Nsoil is
the hydraulic conductivity of the bottom soil layer, which is
parameterized following Clapp and Hornberger (1978).

A4 BATS runoff parameterization scheme

The BATS scheme parameterizes surface runoff (Rsrf) as a
function of soil wetness (Yang and Dickinson, 1996):

Rsrf =Qsoil,srf
[
(1− ffrz,1)fsat+ ffrz,1

]
, (A12)

fsat = θ
4, (A13)

θ =

∑Nsoil
i=1

wsoil,i
wsat,i

1zsoil,i∑Nsoil
i=1 1zsoil,i

, (A14)

where θ is the averaged wetness throughout the soil column
(m3 m−3).

Similar to NOAHR, the BATS scheme also assumes a free
drainage boundary condition at the soil column bottom. Sub-
surface runoff (Rsub) is parameterized as follows:

Rsub =

(
1− max

i=1,···,Nsoil
(ffrz,i)

)
Ksoil,Nsoil . (A15)

A5 Ball–Berry scheme of stomatal resistance

Leaf stomata are the small pores typically found on the un-
derside of leaves. They control the gas exchange of CO2,
H2O, and O2 between the internal leaf structure and the ex-
ternal atmosphere. In LSMs, the opening and closing of the
stomata are characterized by stomatal conductance.

The Ball–Berry scheme for parameterizing the stomatal
conductance (gs) for H2O is as follows:

gs =m
A

cs

es

ei
Patm+ b, (A16)

where gs is the leaf stomatal conductance (µmolm−2 s−1), m
is a vegetation-type dependent parameter (unitless), A is the
leaf photosynthesis rate, cs is the CO2 partial pressure at the
leaf surface (Pa), es is the water vapor pressure at the leaf
surface (Pa), ei is the saturated water vapor at the stomata
(Pa), Patm is the ambient air pressure (Pa), and b is the stom-
atal conductance at zero photosynthesis (µmolm−2 s−1). The
parameters m and b are assigned from a lookup table using
the vegetation type.

A6 Jarvis scheme of stomatal resistance

The Jarvis scheme for parameterizing the canopy resistance
(Rc) based on the product of four stress factors (sm−1) is
calculated as follows (Chen et al., 1996; Sellers et al., 1996;
Jacquemin and Noilhan, 1990; Jarvis, 1976):

Rc =Rc,min
1

f1f2f3β
, (A17)

f1 =

Rc,min
Rc,max

+ f

1+ f
, (A18)

f =0.55
2Rg

Rgl
, (A19)

f2 =
1

1+hs[qsat(Tl)− qa]
, (A20)

f3 =1− 0.0016(Tref− Tl)2, (A21)

where f1, f2 and f3 are the stress factors of solar radia-
tion, vapor pressure deficit, and air temperature, respectively
(unitless), which are unitless and range from 0 to 1; β is the
soil moisture stress factor, which is detailed in Sect. A7;Rg is
the incoming solar radiation (Wm−2) for unit leaf area index;
Tl is leaf temperature (K). qsat(Tl) (kgkg−1) and qa (kgkg−1)
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are the saturated humidity at the temperature of Tl and am-
bient humidity, respectively. In literature (Chen et al., 1996;
Jacquemin and Noilhan, 1990), qsat(Tl) and qa are specific
humidity, whereas in Noah-MP v3.6, they are implemented
as mixing ratio.

The scheme has five parameters: Rc,min, the minimum
stomatal resistance (sm−1) per unit leaf area index; Rc,max,
the maximum resistance; Rgl, a radiation scaling factor (unit-
less); hs, a humidity scaling factor (unitless); Tref, the op-
timum temperature (K). Among these parameters, Rc,min,
Rgl, and hs are assigned using a vegetation-parameter lookup
table, while Rc,max and Tref are assumedly assigned to
5000 s m−1 and 298 K, respectively.

A7 Three soil moisture stress factor schemes

The Noah β-factor (NOAHB) scheme parameterizes the soil
moisture stress factor controlling transpiration (β factor) as a
function of soil moisture, which is calculated as follows:

β =

Nroot∑
i=1

1zsoil,i

zroot
min

(
1,
θi − θwilt

θref− θwilt

)
, (A22)

where Nroot is the total number of soil layers that contain
roots, zroot is the total depth of the root-zone layer (m),
and θi is the volumetric soil moisture of the ith soil layer
(m3 m−3). NOAHB has two parameters: θref, the field capac-
ity (m3 m−3); and θwilt, the wilting volumetric soil moisture
(m3 m−3).

The Community Land Model (CLM) scheme (Oleson
et al., 2004) parameterizes β as a function of soil matric po-
tential, which is calculated as follows:

β =

Nroot∑
i=1

1zsoil,i

zroot
min

(
1,
ψwilt−ψi

ψwilt−ψsat

)
, (A23)

where ψi is the water pressure head of the ith soil layer (m),
and ψi is converted from θi using the formula of Clapp and
Hornberger (1978). CLM has two parameters: ψsat, the satu-
rated water pressure head (m); and ψwilt, the wilting pressure
head (m).

The Simplified Simple Biosphere (SSiB) scheme (Xue
et al., 1991) also parameterizes the β factor as a function of
the soil pressure head, similar to CLM. However, the formula
is different, as follows:

β =

Nroot∑
i=1

1zsoil,i

zroot
min

[
1,1− exp

(
−c2 ln(

ψwilt

ψi
)
)]
. (A24)

SSiB has two parameters: ψwilt, the wilting pressure head
(m); and c2, a unitless coefficient.

In Noah-MP version 3.6, the parameters θsat, θwilt, andψsat
are assigned using a soil parameter lookup table (Table 2 of
Chen and Dudhia, 2001a); ψwilt is −10 m, independent of
vegetation and soil types (Niu et al., 2011); c2 is assumed
constant at 5.8, whereas in SSiB, this parameter varies with
vegetation type (Xue et al., 1991, Table 2).

A8 Chen97 near-surface turbulence scheme

The Chen97 scheme (Chen et al., 1997) parameterizes the
surface exchange coefficient for heat (Ch) as follows:

Ch = κ
2
[

ln
(
z

z0m

)
−9m

( z
L

)
+9m

(z0m

L

)]−1

[
ln
(
z

z0h

)
−9h

( z
L

)
+9h

(z0h

L

)]−1

, (A25)

where κ = 0.4 is the von Kármán constant; L is the Monin–
Obukhov (M–O) length (m); z is the reference height
(m); 9m and 9h are the similarity theory-based stabil-
ity functions for momentum and heat, respectively; z0m
is the roughness length for momentum (m) and depends
on the land cover/land-use type; and z0h is the roughness
length for heat (m). Niu et al. (2011) parameterized z0h =

z0m exp(−κC
√
Re∗), where C = 0.1 and Re∗ is the rough-

ness Reynolds number. However, in the code of Noah-MP
version 3.6, z0h = z0m.

A9 M–O near-surface turbulence scheme

The M–O scheme is based on the M–O similarity theory
(Brutsaert, 1982), which parameterizes Ch as follows:

Ch = κ
2
[

ln
(
z− d0

z0m

)
−9m

(
z− d0

L

)]−1

[
ln
(
z− d0

z0h

)
−9h

(
z− d0

L

)]−1

, (A26)

where z0h = z0m. d0 is the zero-displacement height (m),

d0 = 0.64zct, (A27)

where zct is the canopy top height (m).

Appendix B: Estimation of the terrestrial water
storage for the RFCs neighboring the Great Lakes

The TWS estimation for the NC, OH, and NE RFCs is per-
formed in two steps: (1) aggregate the GRACE TWS over
both the RFC land area and neighboring lakes (lakes Supe-
rior, Michigan, and Huron for NC; Erie for OH; and Ontario
for NE); and (2) subtract the lake water storage anomaly from
the aggregated TWS. The lake water storage in the second
step is calculated as the product of the observed water level
and the lake area.

The lake water level is an arithmetic average of selected
NOAA in situ observations (https://tidesandcurrents.noaa.
gov/stations.html?type=Water+Levels, last access: 15 Febru-
ary 2022). For Lake Superior, five observation stations were
selected: Point Iroquois, Marquette C.G., Ontonagon, Du-
luth, and Grand Marais. For Lake Michigan, seven stations
were selected: Ludington, Holland, Calumet Harbor, Mil-
waukee, Kewaunee, Sturgeon Bay Canal, and Port Inland.
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For Lake Huron, five stations were selected: Lakeport, Har-
bor Beach, Essexville, Mackinaw City, and De Tour Village.
For Lake Erie, eight stations were selected: Buffalo, Stur-
geon Point, Erie, Fairport, Cleveland, Marblehead, Toledo,
and Fermi Power Plant. And for Lake Ontario, four stations
were selected: Cape Vincent, Oswego, Rochester, and Olcott.

The lake area is estimated from the lake bound-
ary data provided by the United States Geological
Survey (https://www.sciencebase.gov/catalog/item/
530f8a0ee4b0e7e46bd300dd, last access: 15 February
2022). Only the area within the United States is considered,
which is within a 150 km radius from the studied RFCs. The
lake areas are calculated as follows: 52 441 km2 for Lake
Superior within the USA, 57 509 km2 for Lake Michigan,
23 185 km2 for Lake Huron within the USA, 25 494 km2

for Lake Erie, and 18 871 km2 for Lake Ontario. Month-to-
month variations in lake area are neglected in this study for
simplicity.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-2755-2023-supplement.
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