Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-743-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-743-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques
Christian Brümmer
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig,
Germany
Jeremy J. Rüffer
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig,
Germany
Jean-Pierre Delorme
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig,
Germany
Pascal Wintjen
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig,
Germany
Frederik Schrader
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig,
Germany
Burkhard Beudert
Bavarian Forest National Park, 94481 Grafenau, Germany
Martijn Schaap
Department of Climate, Air and Sustainability, TNO, 3584 CB, Utrecht,
the Netherlands
Institute of Meteorology, Freie Universität Berlin, 12165 Berlin,
Germany
Christof Ammann
Climate and Agriculture Group, Agroscope, Reckenholzstrasse 191, 8046,
Zurich, Switzerland
Related authors
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Oksana Rybchak, Justin du Toit, Jean-Pierre Delorme, Jens-Kristian Jüdt, Kanisios Mukwashi, Christian Thau, Gregor Feig, Mari Bieri, and Christian Brümmer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-420, https://doi.org/10.5194/bg-2020-420, 2020
Revised manuscript not accepted
Short summary
Short summary
We studied the impacts of livestock grazing on carbon budgets in the semi-arid South African Karoo by comparing two sites under different grazing intensities. The previously overgrazed site, characterised by unpalatable grasses and thus poorly suited as pasture, sequestered more carbon over the four-year measurement period, compared to the lenient-grazed site. The studied ecosystems act as either carbon sinks or sources depending on precipitation.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frédérik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilaria D'Elia, Massimo D'Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
Geosci. Model Dev., 18, 6835–6883, https://doi.org/10.5194/gmd-18-6835-2025, https://doi.org/10.5194/gmd-18-6835-2025, 2025
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The service relies on a distributed modelling production by 11 leading European modelling teams following stringent requirements with an operational design that has no equivalent in the world. All the products are free, open, and quality-assured and disseminated with a high level of reliability.
Leon Geers, Ruud Janssen, Gudrun Thorkelsdottir, Jordi Vilà-Guerau de Arellano, and Martijn Schaap
Geosci. Model Dev., 18, 6647–6669, https://doi.org/10.5194/gmd-18-6647-2025, https://doi.org/10.5194/gmd-18-6647-2025, 2025
Short summary
Short summary
High-resolution data on reactive nitrogen deposition are needed to inform cost-effective policies. Here, we describe the implementation of a dry deposition module in a large eddy simulation code. With this model, we are able to represent the turbulent exchange of tracers at the hectometer resolution. The model calculates the dispersion and deposition of NOx and NH3 in great spatial detail, clearly showing the influence of local land use patterns.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Marcel Bühler, Christoph Häni, Albrecht Neftel, Patrice Bühler, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 17, 4649–4658, https://doi.org/10.5194/amt-17-4649-2024, https://doi.org/10.5194/amt-17-4649-2024, 2024
Short summary
Short summary
Methane was released from an artificial source inside a barn to test the applicability of the inverse dispersion method (IDM). Multiple open-path concentration devices and ultrasonic anemometers were used at the site. It is concluded that, for the present study case, the effect of a building and a tree in the main wind axis led to a systematic underestimation of the IDM-derived emission rate probably due to deviations in the wind field and turbulent dispersion from the ideal assumptions.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, Margreet van Zanten, and Thomas van Goethem
Atmos. Meas. Tech., 16, 529–546, https://doi.org/10.5194/amt-16-529-2023, https://doi.org/10.5194/amt-16-529-2023, 2023
Short summary
Short summary
During a 5-week comparison campaign, we tested two set-ups to measure half hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication and acidificationin natural areas.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark W. Shephard, and Jan Willem Erisman
Atmos. Chem. Phys., 22, 951–972, https://doi.org/10.5194/acp-22-951-2022, https://doi.org/10.5194/acp-22-951-2022, 2022
Short summary
Short summary
CrIS NH3 satellite observations are assimilated into the LOTOS-EUROS model using two different methods. In the first method the data are used to fit spatially varying NH3 emission time factors. In the second method a local ensemble transform Kalman filter is used. Compared to in situ observations, combining both methods led to the most significant improvements in the modeled concentrations and deposition, illustrating the usefulness of CrIS NH3 to improve the spatiotemporal distribution of NH3.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Christoph Häni, Marcel Bühler, Albrecht Neftel, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 14, 1733–1741, https://doi.org/10.5194/amt-14-1733-2021, https://doi.org/10.5194/amt-14-1733-2021, 2021
Xinrui Ge, Martijn Schaap, Richard Kranenburg, Arjo Segers, Gert Jan Reinds, Hans Kros, and Wim de Vries
Atmos. Chem. Phys., 20, 16055–16087, https://doi.org/10.5194/acp-20-16055-2020, https://doi.org/10.5194/acp-20-16055-2020, 2020
Short summary
Short summary
This article is about improving the modeling of agricultural ammonia emissions. By considering land use, meteorology and agricultural practices, ammonia emission totals officially reported by countries are distributed in space and time. We illustrated the first step for a better understanding of the variability of ammonia emission, with the possibility of being applied at a European scale, which is of great significance for ammonia budget research and future policy-making.
Oksana Rybchak, Justin du Toit, Jean-Pierre Delorme, Jens-Kristian Jüdt, Kanisios Mukwashi, Christian Thau, Gregor Feig, Mari Bieri, and Christian Brümmer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-420, https://doi.org/10.5194/bg-2020-420, 2020
Revised manuscript not accepted
Short summary
Short summary
We studied the impacts of livestock grazing on carbon budgets in the semi-arid South African Karoo by comparing two sites under different grazing intensities. The previously overgrazed site, characterised by unpalatable grasses and thus poorly suited as pasture, sequestered more carbon over the four-year measurement period, compared to the lenient-grazed site. The studied ecosystems act as either carbon sinks or sources depending on precipitation.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Alekandrov, Y. I.: Uncertainty of measurement: twenty years afterwards,
Fresenius', J. Anal. Chem., 370, 690–693, 2001.
Ammann, C., Brunner, A., Spirig, C., and Neftel, A.: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643–4651, https://doi.org/10.5194/acp-6-4643-2006, 2006.
Ammann, C., Wolff, V., Marx, O., Brümmer, C., and Neftel, A.: Measuring the biosphere-atmosphere exchange of total reactive nitrogen by eddy covariance, Biogeosciences, 9, 4247–4261, https://doi.org/10.5194/bg-9-4247-2012, 2012.
Aubinet, M., Vesala, T., and Papale, D., eds.: Eddy Covariance: A Practical
Guide to Measurement and Data Analysis, Springer Science+Business Media
B.V. 2012, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012.
Bala, G., Devaraju, N., Chaturvedi, R. K., Caldeira, K., and Nemani, R.: Nitrogen deposition: how important is it for global terrestrial carbon uptake?, Biogeosciences, 10, 7147–7160, https://doi.org/10.5194/bg-10-7147-2013, 2013.
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere – the state and future of the eddy covariance method,
Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014.
Beudert, B., Bässler, C., Thorn, S., Noss, R., Schröder, B.,
Dieffenbach-Fries, H., Foullois, N., and Müller, J.: Bark beetles increase
biodiversity while maintaining drinking water quality, Conserv. Lett., 8,
272–281, 2014.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore,
M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B.A.,
Erisman, J. W., Fenn, M., Gilliam, F.S., Nordin, A., Pardo, L., and de
Vries, W.: Global assessment of nitrogen deposition effects on terrestrial
plant diversity: a synthesis, Ecol. Appl. 20, 30–59, 2010.
Brümmer, C., Marx, O., Kutsch, W., Ammann, C., Wolff, V., Flechard, C.
R., and Freibauer, A.: Fluxes of total reactive atmospheric nitrogen
(ΣNr) using eddy covariance above arable land, Tellus B, 65,
19770, https://doi.org/10.3402/tellusb.v65i0.19770, 2013.
Brümmer, C., Schrader, F., and Wintjen, P.: A novel approach to
investigate effects of atmospheric nitrogen deposition on ecosystem
productivity and greenhouse gas exchange, Final Report of the NITROSPHERE
Junior Research Group, in German, BMBF support code 01LN1308A, TIB Leibniz
Information Centre for Science and Technology, University Library, Hanover,
2019.
Brümmer, C., Schrader, F., Wintjen, P., Zöll, U., and Schaap, M.:
FORESTFLUX – Improvement of assessment tools for policy advice through
local validation of atmospheric pollution modelling, in German, UBA Texte
40/2020, Umweltbundesamt, Dessau-Roßlau, 2020.
Brümmer, C., Rüffer, J. J., Delorme, J.-P., Wintjen, P., Schrader, F., Beudert, B., Schaap, M., and Ammann, C.: Reactive nitrogen fluxes over peatland (Bourtanger Moor) and forest (Bavarian Forest National Park) using micrometeorological measurement techniques (1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.5841074, 2022.
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural
and Regulatory Applications: A Field Book on Measuring EcosystemGas Exchange
and Areal Emission Rates, LI-COR Biosciences, 2013.
Casparie, W. A.: The Bourtanger Moor – Endurance and vulnerability of a
raised bog system, Hydrobiologia, 265, 203–215, 1993.
Csavina, J., Roberti, J. A., Taylor, J. R., and Loescher, H. W.: Traceable
measurements and calibration: a primer on uncertainty analysis, Ecosphere,
8, e01683, https://doi.org/10.1002/ecs2.1683, 2017.
Dämmgen, U., Thöni, L., Lumpp, R., Gilke, K., Seitler, E., and
Bullinger, M.: Intercomparison of methods to assess ammonia and ammonium
concentrations in ambient air – results of a field experiment performed in
Braunschweig, Germany, 2005 to 2008, in German, Landbauforschung
Völkenrode, 337, 2010.
de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., Van
Oijen, M., Evans, C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds,
G. J., and Sutton, M. A.: The impact of nitrogen deposition on carbon
sequestration by European forests and heathlands, Forest Ecol.
Manag., 258, 1814–1823, 2009.
Ellis, R. A., Murphy, J. G., Pattey, E., van Haarlem, R., O'Brien, J. M., and Herndon, S. C.: Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia, Atmos. Meas. Tech., 3, 397–406, https://doi.org/10.5194/amt-3-397-2010, 2010.
Erisman, J. W., Van Pul, A., and Wyers, P.: Parametrization of surface
resistance for the quantification of atmospheric deposition of acidifying
pollutants and ozone, Atmos. Environ., 28, 2595–2607,
https://doi.org/10.1016/1352-2310(94)90433-2, 1994.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter,
W.: How a century of ammonia synthesis changed the world, Nat. Geosci.,
1, 636–639, https://doi.org/10.1038/ngeo325, 2008.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer,
C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross,
P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
Munger, J., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A.,
Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap
filling strategies for defensible annual sums of net ecosystem exchange,
Agr. Forest Meteorol., 107, 43–69,
https://doi.org/10.1016/S0168-1923(00)00225-2, 2001.
Farmer, D. K. and Cohen, R. C.: Observations of HNO3, ∑AN, ∑PN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy, Atmos. Chem. Phys., 8, 3899–3917, https://doi.org/10.5194/acp-8-3899-2008, 2008.
Ferm, M.: A sensitive diffusional sampler, Report L91-172, Gothenburg,
Swedish Environmental Research Institute, 1991.
Ferrara, R. M., Loubet, B., Di Tommasi, P., Bertolini, T., Magliulo, V.,
Cellier, P., Eugster, W., and Rana, G.: Eddy covariance measurement of
ammonia fluxes: Comparison of high frequency correction methodologies, Agr.
Forest Meteorol., 158–159, 30–42, 2012.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux measurements, J. Geophys. Res., 106, 3503–3509, 2001.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network, Atmos. Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Flechard, C. R., Massad, R.-S., Loubet, B., Personne, E., Simpson, D., Bash, J. O., Cooter, E. J., Nemitz, E., and Sutton, M. A.: Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange, Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, 2013.
Flechard, C. R., van Oijen, M., Cameron, D. R., de Vries, W., Ibrom, A., Buchmann, N., Dise, N. B., Janssens, I. A., Neirynck, J., Montagnani, L., Varlagin, A., Loustau, D., Legout, A., Ziemblińska, K., Aubinet, M., Aurela, M., Chojnicki, B. H., Drewer, J., Eugster, W., Francez, A.-J., Juszczak, R., Kitzler, B., Kutsch, W. L., Lohila, A., Longdoz, B., Matteucci, G., Moreaux, V., Neftel, A., Olejnik, J., Sanz, M. J., Siemens, J., Vesala, T., Vincke, C., Nemitz, E., Zechmeister-Boltenstern, S., Butterbach-Bahl, K., Skiba, U. M., and Sutton, M. A.: Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials, Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, 2020.
Fleischer, K., Rebel, K. T., van der Molen, M. K., Erisman, J. W., Wassen,
M. J., van Loon, E. E., Montagnani, L., Gough, C. M., Herbst, M., Janssens,
I. A., Gianelle, D., and Dolman, A. J.: The contribution of nitrogen
deposition to the photosynthetic capacity of forests, Glob. Biogeochem.
Cyc., 27, 187–199, https://doi.org/10.1002/gbc.20026, 2013.
Franz, D., Acosta, M., Altimir, N., et al.: Towards long-term standardised
carbon and greenhouse gas observations for monitoring Europe's terrestrial
ecosystems: a review, Int. Agrophys., 32, 439–455,
https://doi.org/10.1515/intag-2017-0039, 2018.
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative
humidity effects on water vapour fluxes measured with closed-path
eddy-covariance systems with short sampling lines, Agr. Forest Meteorol.,
165, 53–63, https://doi.org/10.1016/j.agrformet.2012.05.018, 2012.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R.
W., Cowling, E. B., and Cosby, B. J.: The nitrogen cascade, BioScience,
53, 341–356, 2003.
Garland, J. A.: The Dry Deposition of Sulphur Dioxide to Land and Water
Surfaces, Proceedings of the Royal Society A: Mathematical, Phys.
Eng. Sci., 354, 245–268, https://doi.org/10.1098/rspa.1977.0066, 1977.
Geßler, A., Rienks, M., and Rennenberg, H.: Stomatal uptake and
cuticular adsorption contribute to dry deposition of NH3 and NO2
to needles of adult spruce (Picea abies) trees, New Phytol., 156,
179–194, 2002.
Gielen, B., op de Beeck, M., Loustau, D., Ceulemans, R., Jordan, A., and
Papale, D.: Integrated Carbon Observation System (ICOS): an infrastructure
to monitor the European greenhouse gas balance, in: Terrestrial Ecosystem
Research Infrastructures: challenges and opportunities, edited by: Chabbi, A. and
Loescher, H. W., 1st Edition, Boca Raton, Fla: CRC Press, ISBN
978-1-4987-5131-5, 978-1-4987-5133-9, 505–520, 2017.
Hales, J. M. and Drewes, D. R.: Solubility of ammonia in water at low
concentrations, Atmos. Environ., 13, 1133–1147, 1979.
Hansen, K., Sørensen, L. L., Hertel, O., Geels, C., Skjøth, C. A., Jensen, B., and Boegh, E.: Ammonia emissions from deciduous forest after leaf fall, Biogeosciences, 10, 4577–4589, https://doi.org/10.5194/bg-10-4577-2013, 2013.
Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H.,
Gielen, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens,
I. A., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B.,
Lankreijer, H., Levin, I., Linderson, M.-J., Loustau, D., Merbold, L., Lund
Myhre, C., Papale, D., Pavelka, M., Pilegaard, K., Ramonet, M., Rebmann, C.,
Rinne, J., Rivier, L., Saltikoff, E., Sanders, R., Steinbacher, M.,
Steinhoff, T., Watson, A., Vermeulen, A. T., Vesala, T., Vítková,
G., and Kutsch, W. L.: The Integrated Carbon Observation System in Europe, B. Am. Meteorol. Soc., https://doi.org/10.1175/BAMS-D-19-0364.1, 2022.
Hurkuck, M., Brümmer, C., Mohr, K., Grünhage, L., Flessa, H., and
Kutsch, W. L.: Determination of atmospheric nitrogen deposition to a
semi-natural peat bog site in an intensively managed agricultural landscape,
Atmos. Environ., 97, 296–309, https://doi.org/10.1016/j.atmosenv.2014.08.034, 2014.
Hurkuck, M., Brümmer, C., Mohr, K., Spott, O., Well, R., Flessa, H., and
Kutsch, W. L.: Effects of grass species and grass growth on atmospheric
nitrogen deposition to a bog ecosystem surrounded by intensive agricultural
land use, Ecol. Evol., 5, 2556–2571, https://doi.org/10.1002/ece3.1534, 2015.
Hurkuck, M., Brümmer, C., and Kutsch, W. L.: Near-neutral carbon dioxide
balance at a semi-natural, temperate bog ecosystem, J. Geophys. Res.-Biogeosci., 12, 370–384, https://doi.org/10.1002/2015JG003195, 2016.
Ibrom, A., Dellwick, E., Flyvbjerg, H., Jensen, N. O., and Pilegaard, K.:
Strong low-pass filtering effects on water vapour flux measurements with
closed-path eddy correlation systems, Agr. Forest Meteorol., 147, 140–156,
https://doi.org/10.1016/j.agrformet.2007.07.007, 2007.
Jensen, N. O. and Hummelshoj, P.: Derivation of canopy resistance for water
vapor fluxes over a spruce forest, using a new technique for the viscous
sublayer resistance, Agr. Forest Meteorol., 73, 339–352,
https://doi.org/10.1016/0168-1923(94)05083-I, 1995.
Jensen, N. O. and Hummelshoj, P.: Erratum to “Derivation of canopy
resistance for water vapor fluxes over a spruce forest, using a new
technique for the viscous sublayer resistance”, Agr. Forest Meteorol., 85,
289, https://doi.org/10.1016/S0168-1923(97)00024-5, 1997.
Kirchner, M., Bräutigam, S., Ferm, M., Haas, M., Hangartner, M.,
Hofschreuder, P., Kasper-Giebl, A., Römmelt, H., Striedner, J., Terzer,
W., Thöni, L., Werner, H., and Zimmerling, R.: Field intercomparison of
diffusive samplers for measuring ammonia, J. Environ. Monit., 1, 259–265,
1999.
Kolle, O. and Rebmann, C.: EddySoft Documentation of a Software Package to
Acquire and Process Eddy Covariance Data, techreport,MPI-BGC,
https://repository.publisso.de/resource/frl:4414276-1/data (last access: 14 February 2022), 2007.
Limpens, J., Granath, G., Gunnarsson, U., Aerts, R., Bayley, S., Bragazza,
L., Bubier, J., Buttler, A., van den Berg, L.J.L., Francez, A.-J., Gerdol,
R., Grosvernier, P., Heijmans, M.M.P.D., Hoosbeek, M. R., Hotes, S.,
Ilomets, M., Leith, I., Mitchell, E. A. D., Moore, T., Nilsson, M.B.,
Nordbakken, J.-F., Rochefort, L., Rydin, H., Sheppard, L. J., Thormann, M.,
Wiedermann, M. M., Williams, B. L., and Xu, B.: Climatic modifiers of the
response to nitrogen deposition in peat-forming Sphagnum mosses: a
meta-analysis, New Phytol., 191, 496–507,
https://doi.org/10.1111/j.1469-8137.2011.03680.x, 2011.
Lucas-Moffat, A. M., Huth, V., Augustin, J., Brümmer, C., Herbst, M.,
and Kutsch, W. L.: Towards pairing plot and field scale measurements in
managed ecosystems: Using eddy covariance to cross-validate CO2 fluxes
modeled from manual chamber campaigns, Agr. Forest Meteorol., 256–257,
362–378, https://doi.org/10.1016/j.agrformet.2018.01.023,
2018.
Ma, R., Zou, J., Han, Z., Yu, K., Wu, S., Li, Z., Liu, S., Niu, S., Horwath,
W. R., and Zhu-Barker, X.: Global soil-derived ammonia emissions from
agricultural nitrogen fertilizer application: A refinement based on regional
and crop-specific emission factors, Glob. Change Biol., 27, 855–867,
2020.
Mamadou, O., Gourlez de la Motte, L., De Ligne, A., Heinisch, B., and
Aubinet, M.: Sensitivity of the annual net ecosystem exchange to the
cospectral model used for high frequency loss corrections at a grazed
grassland site, Agr. Forest Meteorol., 228–229, 360–369,
https://doi.org/10.1016/j.agrformet.2016.06.008, 2016.
Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C., Hendriks, C., Jonkers, S., Kranenburg, R., Kuenen, J. J. P., Segers, A. J., Timmermans, R. M. A., Visschedijk, A. J. H., Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E., Swart, D. P. J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., Banzhaf, S., Mues, A. C., Stern, R., Fu, G., Lu, S., Heemink, A., van Velzen, N., and Schaap, M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model, Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, 2017.
Martins, M. R., Sant'Anna, S. A. C., Zaman, M., Santos, R. C., Monteiro, R.
C., Alves, B. J. R., Jantalia, C. P., Boddey, R. M., and Urquiaga, S.:
Strategies for the use of urease and nitrification inhibitors with urea:
Impact on N2O and NH3 emissions, fertilizer-15N recovery and
maize yield in a tropical soil, Agr. Ecosyst. Environ.,
247, 54–62, 2017.
Marx, O., Brümmer, C., Ammann, C., Wolff, V., and Freibauer, A.: TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen, Atmos. Meas. Tech., 5, 1045–1057, https://doi.org/10.5194/amt-5-1045-2012, 2012.
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010.
Mauder, M. and Foken, T.: Impact of post-field data processing on eddy
covariance flux estimates and energy balance closure, Meteorol.
Z., 15, 597–609, https://doi.org/10.1127/0941-2948/2006/0167,
2006.
McGinn, S. M., Janzen, H. H., Coates, T. W., Beauchemin, K. A., and Flesch,
T. K.: Ammonia emission from a beef cattle feedlot and its local dry
deposition and re-emission, J. Environ. Qual., 45,
1178–1185, 2016.
McManus, J. B., Shorter, J. H., Nelson, D. D., Zahniser, M. S., Glenn, D.
E., and McGovern, R. M.: Pulsed quantum cascade laser instrument with
compact design for rapid, high sensitivity measurements of trace gases in
air, Appl. Phys. B, 92, 387–392, 2008.
Meixner, F. X.: Surface exchange of odd nitrogen oxides, Nova Act. LC, 70,
299–348, 1994.
Metzger, S., Ayres, E., Durden, D., Florian, C., Lee, R., Lunch, C., Luo,
H., Pingintha-Durden, N., Roberti, J. A., SanClements, M., Sturtevant, C.,
Xu, K., and Zulueta, R. C.: From NEON Field Sites to Data Portal: A
Community Resource for Surface–Atmosphere Research Comes Online, B. Am. Meteorol. Soc., 100, 2305–2325, 2019.
Moravek, A., Singh, S., Pattey, E., Pelletier, L., and Murphy, J. G.: Measurements and quality control of ammonia eddy covariance fluxes: a new strategy for high-frequency attenuation correction, Atmos. Meas. Tech., 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, 2019.
Nemitz, E. and Sutton, M. A.: Gas-particle interactions above a Dutch heathland: III. Modelling the influence of the NH3-HNO3-NH4NO3 equilibrium on size-segregated particle fluxes, Atmos. Chem. Phys., 4, 1025–1045, https://doi.org/10.5194/acp-4-1025-2004, 2004.
Nemitz, E., Milford, C., and Sutton, M. A.: A two-layer canopy compensation
point model for describing bi-directional biosphere-atmosphere exchange of
ammonia, Q. J. Roy. Meteor. Soc., 127, 815–833, https://doi.org/10.1002/qj.49712757306,
2001.
Nemitz, E., Hargreaves, K. J., Neftel, A., Loubet, B., Cellier, P., Dorsey, J. R., Flynn, M., Hensen, A., Weidinger, T., Meszaros, R., Horvath, L., Dämmgen, U., Frühauf, C., Löpmeier, F. J., Gallagher, M. W., and Sutton, M. A.: Intercomparison and assessment of turbulent and physiological exchange parameters of grassland, Biogeosciences, 6, 1445–1466, https://doi.org/10.5194/bg-6-1445-2009, 2009.
Ollinger, S. V., Aber, J. D., Reich, P. B., and Freuder, R. J.: Interactive
effects of nitrogen deposition, tropospheric ozone, elevated CO2 and
land use history on the carbon dynamics of northern hardwood forests, Glob.
Change Biol., 8, 545–562, 2002.
Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015 dataset and
the ONEFlux processing pipeline for eddy covariance data, Sci. Data 7, 225,
https://doi.org/10.1038/s41597-020-0534-3, 2020.
Paulson, C. A.: The Mathematical Representation of Wind Speed and
Temperature Profiles in the Unstable Atmospheric Surface Layer, J. Appl.
Meteorol., 9, 857–861, https://doi.org/10.1175/10.1175/1520-0450(1970)009$<$0857:TMROWS$>$2.0.CO;2, 1970.
Rebmann, C., Aubinet, M., Schmid, H. P., Arriga, N., Aurela, M., Burba, G.,
Clement, R., De Ligne, A., Fratini, G., Gielen, B., Grace, J., Graf, A.,
Gross, P., Haapanala, S., Herbst, M., Hörtnagl, L., Ibrom, A., Joly, L.,
Kljun, N., Kolle, O., Kowalski, A., Lindroth, A., Loustau, D., Mammarella,
I., Mauder, M., Merbold, L., Metzger, S., Mölder, M., Montagnani, L.,
Papale, D., Pavelka, M., Peichl, M., Roland, M., Serrano-Ortiz, P.,
Siebicke, L., Steinbrecher, R., Tuovinen, J.-P., Vesala, T., Wohlfahrt, G.,
and Franz, D.: ICOS eddy covariance flux-station site setup: a review, Int.
Agrophys., 32, 471–494, https://doi.org/10.1515/intag-2017-0044, 2018.
Richardson, A. D., Mahecha, M. D., Falge, E., Kattge, J., Moffat, A. M.,
Papale, D., Reichstein, M., Stauch, V. J., Braswell, B. H., Churkina, G.,
Kruijt, B., and Hollinger, D. Y.: Statistical properties of random CO2 flux
measurement uncertainty inferred from model residuals, Agr. Forest Meteorol., 148, 38–50, https://doi.org/10.1016/j.agrformet.2007.09.001, 2008.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F.,
Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance,
K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache,
R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.,
Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E.,
Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov,
V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova,
M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A.,
Vandaele, A. C., and Vander Auwera J.: The HITRAN 2008 molecular
spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572,
2009.
Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C., and Kolb,
C. E.: New Approaches to Measuring Sticky Molecules: Improvement of
Instrumental Response Times Using Active Passivation, J. Phys. Chem. A,
120, 1347–1357, https://doi.org/10.1021/acs.jpca.5b04395, 2016.
Schrader, F.: Challenges and perspectives in modelling biosphere-atmosphere
exchange of ammonia, PhD thesis, Vrije Universiteit Amsterdam, 2019.
Schrader, F., Brümmer, C., Flechard, C. R., Wichink Kruit, R. J., van Zanten, M. C., Zöll, U., Hensen, A., and Erisman, J. W.: Non-stomatal exchange in ammonia dry deposition models: comparison of two state-of-the-art approaches, Atmos. Chem. Phys., 16, 13417–13430, https://doi.org/10.5194/acp-16-13417-2016, 2016.
Schrader, F., Erisman, J. W., and Brümmer, C.: Towards a coupled
paradigm of NH3-CO2 biosphere-atmosphere exchange modelling,
Global Change Biol., 26, 4654–4663, https://doi.org/10.1111/gcb.15184, 2020.
Schulte, R. B., van Zanten, M. C., Rutledge-Jonker, S., Swart, D. P. J.,
Wichink Kruit, R. J., Krol, M. C., van Pul, W. A. J., and Vilà-Guerau de
Arellano, J.: Unraveling the diurnal atmospheric ammonia budget of a
prototypical convective boundary layer, Atmos. Environ., 249,
118153, https://doi.org/10.1016/j.atmosenv.2020.118153, 2021.
Simpson, D., Butterbach-Bahl, K., Fagerli, H., Kesik, M., Skiba, U., and
Tang, S.: Deposition and Emissions of Reactive Nitrogen over European
Forests: A Modelling Study, Atmos. Environ., 40, 5712–5726, 2006.
Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P.,
van Grinsven, H., and Grizzetti, B.: Assessing our nitrogen inheritance, in: The European Nitrogen Assessment: Sources, Effects and Policy
Perspectives, edited by:
Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., pp. 1–6, Cambridge: Cambridge University Press,
https://doi.org/10.1017/CBO9780511976988.004, 2011.
Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A new diffusion denuder
system for long-term, regional monitoring of atmospheric ammonia and
ammonium, Water Air Soil Pollut. Focus 1, 145–156, 2001.
Sutton, M. A., Nemitz, E., Milford, C., Campbell, C., Erisman, J. W., Hensen, A., Cellier, P., David, M., Loubet, B., Personne, E., Schjoerring, J. K., Mattsson, M., Dorsey, J. R., Gallagher, M. W., Horvath, L., Weidinger, T., Meszaros, R., Dämmgen, U., Neftel, A., Herrmann, B., Lehman, B. E., Flechard, C., and Burkhardt, J.: Dynamics of ammonia exchange with cut grassland: synthesis of results and conclusions of the GRAMINAE Integrated Experiment, Biogeosciences, 6, 2907–2934, https://doi.org/10.5194/bg-6-2907-2009, 2009.
Tang, Y. S., Simmons, I., van Dijk, N., Di Marco, C., Nemitz, E.,
Dämmgen, U., Gilke, K., Djuricic, V., Vidic, S., Gliha, Z., Borovecki,
D., Mitosinkova, M., Hanssen, J. E., Uggerud, T. H., Sanz, M. J., Sanz, P.,
Chorda, J. V., Flechard, C. R., Fauvel, Y., Ferm, M., Perrino, C., and
Sutton, M. A.: European scale application of atmospheric reactive nitrogen
measurements in a low-cost approach to infer dry deposition fluxes, Agric.
Ecosyst. Environ., 133, 183–195,
https://doi.org/10.1016/j.agee.2009.04.027, 2009.
Tomassen, H. B. M., Smolders, A. J. P., Lamers, J. P. A., and Roelofs, G.
J.: Stimulated growth of Betula pubescens and Molinia caerulea on
ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition,
J. Ecol., 91, 357–370, 2003.
Van Zanten, M. C., Sauter, F. J., Wichink Kruit, R. J., Van Jaarsveld, J.
A., and Van Pul, W. A. J.: Description of the DEPAC module, Dry deposition
modeling with DEPAC_GCN2010, RIVM, Bilthoven, 2010.
Vickers, D. and Mahrt, L.: Quality Control and Flux Sampling Problems for
Tower and Aircraft Data, J. Atmos. Ocean. Tech., 14,
512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., Blom, M., Coe, H., Gallagher, M., Ghalaieny, M., McGillen, M. R., Percival, C. J., Whitehead, J. D., Ellis, R., Murphy, J., Mohacsi, A., Pogany, A., Junninen, H., Rantanen, S., Sutton, M. A., and Nemitz, E.: Field inter-comparison of eleven atmospheric ammonia measurement techniques, Atmos. Meas. Tech., 3, 91–112, https://doi.org/10.5194/amt-3-91-2010, 2010.
Webb, E. K.: Profile relationships: The log-linear range, and extension to
strong stability, Q. J. Roy. Meteor. Soc., 96, 67–90,
https://doi.org/10.1002/qj.49709640708, 1970.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van den Broek, M.,
Nemitz, E., Sutton, M. A., Krol, M., and Holtslag, A. A. M.: Modeling the
surface-atmosphere exchange of ammonia, Atmos. Environ., 44, 877–1004,
https://doi.org/10.1016/j.atmosenv.2009.11.049, 2010.
Wichink Kruit, R. J., Schaap, M., Segers, A., Heslinga, D., Builtjes P.,
Banzhaf, S., and Scheuschner, T.: Modelling and mapping of atmospheric nitrogen
and sulphur deposition and critical loads for ecosystem specific assessment
of threats to biodiversity in Germany – PINETI (Pollutant INput and
EcosysTem Impact), Substudy Report 1, UBA Texte 60/2014, Umweltbundesamt,
ISSN 1862-4804, Dessau-Roßlau, 2014.
Wichink Kruit, R. J., Aben, J., de Vries, W., Sauter, F., van der Swaluw,
E., van Zanten, M. C., and van Pul, W. A. J.: Modelling trends in ammonia in
the Netherlands over the period 1990–2014, Atmos. Environ., 154, 20–30,
https://doi.org/10.1016/j.atmosenv.2017.01.031, 2017.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic Anemometer Tilt
Correction Algorithms, Bound.-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465,
2001.
Wintjen, P., Ammann, C., Schrader, F., and Brümmer, C.: Correcting high-frequency losses of reactive nitrogen flux measurements, Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, 2020.
Wintjen, P., Schrader, F., Schaap, M., Beudert, B., and Brümmer, C.: Forest–atmosphere exchange of reactive nitrogen in a remote region – Part I: Measuring temporal dynamics, Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, 2022.
Wolff, V., Trebs, I., Ammann, C., and Meixner, F. X.: Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: an analysis of precision requirements and flux errors, Atmos. Meas. Tech., 3, 187–208, https://doi.org/10.5194/amt-3-187-2010, 2010.
Zhu, L., Henze, D., Bash, J., Jeong, G.-R., Cady-Pereira, K., Shephard, M., Luo, M., Paulot, F., and Capps, S.: Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes, Atmos. Chem. Phys., 15, 12823–12843, https://doi.org/10.5194/acp-15-12823-2015, 2015.
Zimmerling, R., Dämmgen, U., and Haenel, H.-D.: Methoden zur Bestimmung von
Konzentrationen und Flüssen luftgetragener Stoffe in Wald- und
Forstökosystemen in Nordost-Brandenburg, Landbauforschung
Völkenrode, Sonderheft 213, 17–42, 2000.
Zöll, U., Brümmer, C., Schrader, F., Ammann, C., Ibrom, A., Flechard, C. R., Nelson, D. D., Zahniser, M., and Kutsch, W. L.: Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling, Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, 2016.
Zöll, U., Lucas-Moffat, A. M., Wintjen, P., Schrader, F., Beudert, B.,
and Brümmer, C.: Is the biosphere-atmosphere exchange of total reactive
nitrogen above forest driven by the same factors as carbon dioxide? An
analysis using artificial neural networks, Atmos. Environ., 206, 108–118,
https://doi.org/10.1016/j.atmosenv.2019.02.042, 2019.
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected...
Altmetrics
Final-revised paper
Preprint