Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-5019-2022
https://doi.org/10.5194/essd-14-5019-2022
Data description paper
 | 
15 Nov 2022
Data description paper |  | 15 Nov 2022

The PANDA automatic weather station network between the coast and Dome A, East Antarctica

Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao

Related authors

Concentration changes of atmospheric F-gases and analysis of their potential sources at Zhongshan Station, Antarctica, 2021
Ruiqi Nan, Biao Tian, Xingfeng Ling, Weijun Sun, Yixi Zhao, Dongqi Zhang, Chuanjin Li, Xin Wang, Jie Tang, Bo Yao, and Minghu Ding
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-282,https://doi.org/10.5194/essd-2025-282, 2025
Preprint under review for ESSD
Short summary
Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025,https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, Huizheng Che, and Minghu Ding
Atmos. Chem. Phys., 25, 727–739, https://doi.org/10.5194/acp-25-727-2025,https://doi.org/10.5194/acp-25-727-2025, 2025
Short summary
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024,https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
New gridded dataset of rainfall erosivity (1950–2020) on the Tibetan Plateau
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022,https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary

Cited articles

Allison, I.: Surface climate of the interior of the Lambert Glacier basin, Antarctica, from automatic weather station data, Ann. Glaciol., 27, 515–520, https://doi.org/10.3189/1998AoG27-1-515-520, 1998. 
Allison, I. and Morrissy, J. V.: Automatic weather stations in Antarctica, Austr. Meteorol. Mag., 31, 71–76, 1983. 
Allison, I., Wendler, G., and Radok, U.: Climatology of the East Antarctic ice sheet (100 E to 140 E) derived from automatic weather stations, J. Geophys. Res.-Atmos., 98, 8815–8823, https://doi.org/10.1029/93JD00104, 1993. 
Antarctic Meteorological Research and Data Center: Automatic Weather Station quality-controlled observational data, AMRDC Data Repository [data set], https://doi.org/10.48567/1hn2-nw60, 2022. 
Aristidi, E., Agabi, K., Azouit, M., Fossat, E., Vernin, J., Travouillon, T., Lawrence, J. S., Meyer, C., Storey, J. W. V., Halter, B., Roth, W. L., and Walden, V.: An analysis of temperatures and wind speeds above Dome C, Antarctica, Astron. Astrophys., 430, 739–746, https://doi.org/10.1051/0004-6361:20041876, 2005. 
Short summary
The PANDA automatic weather station (AWS) network consists of 11 stations deployed along a transect from the coast (Zhongshan Station) to the summit of the East Antarctic Ice Sheet (Dome A). It covers the different climatic and topographic units of East Antarctica. All stations record hourly air temperature, relative humidity, air pressure, wind speed and direction at two or three heights. The PANDA AWS dataset commences from 1989 and is planned to be publicly available into the future.
Share
Altmetrics
Final-revised paper
Preprint