Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4171-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4171-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi,
India
Alagappan Ramanathan
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi,
India
Anshuman Bhardwaj
School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
Millie Coleman
School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
School of Natural and Built Environment, Queen's University Belfast, Belfast,
United Kingdom
Brice R. Rea
School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
Matteo Spagnolo
School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
Shaktiman Singh
School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
Lydia Sam
School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom
Related authors
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere, 16, 3775–3799, https://doi.org/10.5194/tc-16-3775-2022, https://doi.org/10.5194/tc-16-3775-2022, 2022
Short summary
Short summary
Snow sublimation is an important component of glacier surface mass balance; however, it is seldom studied in detail in the Himalayan region owing to data scarcity. We present an 11-year record of wintertime snow-surface energy balance and sublimation characteristics at the Chhota Shigri Glacier moraine site at 4863 m a.s.l. The estimated winter sublimation is 16 %–42 % of the winter snowfall at the study site, which signifies how sublimation is important in the Himalayan region.
Mohd Farooq Azam, Christian Vincent, Smriti Srivastava, Etienne Berthier, Patrick Wagnon, Himanshu Kaushik, Md. Arif Hussain, Manoj Kumar Munda, Arindan Mandal, and Alagappan Ramanathan
The Cryosphere, 18, 5653–5672, https://doi.org/10.5194/tc-18-5653-2024, https://doi.org/10.5194/tc-18-5653-2024, 2024
Short summary
Short summary
Mass balance series on Chhota Shigri Glacier has been reanalysed by combining the traditional mass balance reanalysis framework and a nonlinear model. The nonlinear model is preferred over traditional glaciological methods to compute the mass balances, as the former can capture the spatiotemporal variability in point mass balances from a heterogeneous in situ point mass balance network. The nonlinear model outperforms the traditional method and agrees better with the geodetic estimates.
An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, and Iestyn Barr
EGUsphere, https://doi.org/10.5194/egusphere-2023-2568, https://doi.org/10.5194/egusphere-2023-2568, 2024
Short summary
Short summary
On Earth, glacial cirques are a type of landform eroded by wet-based glaciers, which are glaciers with liquid water at the base of a glacier. While select alcoves have been interpreted as glacial cirques on Mars, we map and assess a large-scale population of ~2000 alcoves as potential cirques in the northern mid-latitudes of Mars. From physical measurements and characteristics, we find 386 cirque-like alcoves. This extends our knowledge of the extent and type of glaciation in the region.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Sarvagya Vatsal, Anshuman Bhardwaj, Mohd Farooq Azam, Arindan Mandal, Alagappan Ramanathan, Ishmohan Bahuguna, N. Janardhana Raju, and Sangita Singh Tomar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-311, https://doi.org/10.5194/essd-2022-311, 2022
Manuscript not accepted for further review
Short summary
Short summary
Glaciers in Chandra-Bhaga Basin, western Himalaya, India have huge socio-economic importance as a large population is dependent on these glaciers for drinking and irrigation water purposes. To quantify Spatio-temporal changes in the glaciers of this basin, our study provides three major datasets. These include multidecadal glacier inventory, debris cover, and ice thickness estimates. These datasets will benefit future glacier as well as policy based studies at both local and regional scales.
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere, 16, 3775–3799, https://doi.org/10.5194/tc-16-3775-2022, https://doi.org/10.5194/tc-16-3775-2022, 2022
Short summary
Short summary
Snow sublimation is an important component of glacier surface mass balance; however, it is seldom studied in detail in the Himalayan region owing to data scarcity. We present an 11-year record of wintertime snow-surface energy balance and sublimation characteristics at the Chhota Shigri Glacier moraine site at 4863 m a.s.l. The estimated winter sublimation is 16 %–42 % of the winter snowfall at the study site, which signifies how sublimation is important in the Himalayan region.
Cited articles
Azam, M. F., Kargel, J. S., Shea, J. M., Nepal, S., Haritashya, U. K.,
Srivastava, S., Maussion, F., Qazi, N., Chevallier, P., Dimri, A. P.,
Kulkarni, A. V., Cogley, J. G., and Bahuguna, I. M.: Glaciohydrology of the
Himalaya-Karakoram, Science 373, eabf3668,
https://doi.org/10.1126/science.abf3668, 2021.
Bajracharya, S. R. and Shrestha, B. R., International Centre for Integrated
Mountain Development, and Sweden (Eds.): The status of glaciers in the Hindu
Kush-Himalayan region, International Centre for Integrated Mountain
Development, Kathmandu, 127 pp., https://doi.org/10.53055/ICIMOD.551, 2011.
Bajracharya, S. R., Maharjan, S. B., and Shrestha, F.: Glaciers in the Indus
Basin, in: Indus River Basin, Elsevier, 123–144,
https://doi.org/10.1016/B978-0-12-812782-7.00006-0, 2019.
Barrett, K. and Bosak, K.: The Role of Place in Adapting to Climate Change:
A Case Study from Ladakh, Western Himalayas, Sustainability, 10, 898,
https://doi.org/10.3390/su10040898, 2018.
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier
changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote
sensing, J. Glaciol., 57, 543–556,
https://doi.org/10.3189/002214311796905604, 2011.
Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D. P., Srivastava, D., and Pratap, B.: Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram, The Cryosphere, 7, 1385–1398, https://doi.org/10.5194/tc-7-1385-2013, 2013.
Bhambri, R., Hewitt, K., Kawishwar, P., and Pratap, B.: Surge-type and
surge-modified glaciers in the Karakoram, Sci. Rep.-UK, 7, 15391,
https://doi.org/10.1038/s41598-017-15473-8, 2017.
Bhardwaj, A., Joshi, P., Snehmani., Sam, L., Singh, M. K., Singh, S., and
Kumar, R.: Applicability of Landsat 8 data for characterizing glacier facies
and supraglacial debris, Int. J. Appl. Earth Obs. Geoinformation, 38,
51–64, https://doi.org/10.1016/j.jag.2014.12.011, 2015.
Bolch, T.: Past and Future Glacier Changes in the Indus River Basin, in:
Indus River Basin, Elsevier, 85–97,
https://doi.org/10.1016/B978-0-12-812782-7.00004-7, 2019.
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers
in western Canada, 1985–2005, Remote Sens. Environ., 114, 127–137,
https://doi.org/10.1016/j.rse.2009.08.015, 2010.
Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, J. G.,
Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and
Stoffel, M.: The State and Fate of Himalayan Glaciers, Science, 336,
310–314, https://doi.org/10.1126/science.1215828, 2012.
Census of China: National Bureau of Statistics, Communiqué of the seventh National Population Census, http://www.stats.gov.cn/tjsj/ (last access: 30 September 2021), 2020.
Census of India: Jammu and Kashmir, Series 02 – Part XII A-B, District
Census Handbook, Leh
and Kargil, India - Census of India 2011 – Jammu & Kashmir – Series 02 –
Part XII A – District Census Handbook, Leh, http://censusindia.gov.in (last
assess: 30 September 2021), 2011.
Chudley, T. R., Miles, E. S., and Willis, I. C.: Glacier characteristics and
retreat between 1991 and 2014 in the Ladakh Range, Jammu and Kashmir, Remote
Sens. Lett., 8, 518–527, https://doi.org/10.1080/2150704X.2017.1295480,
2017.
Frey, H. and Paul, F.: On the suitability of the SRTM DEM and ASTER GDEM for
the compilation of topographic parameters in glacier inventories, Int. J.
Appl. Earth Obs. Geoinformation, 18, 480–490,
https://doi.org/10.1016/j.jag.2011.09.020, 2012.
Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., and Stoffel, M.: Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods, The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, 2014.
Garg, S., Shukla, A., Garg, P. K., Yousuf, B., Shukla, U. K., and Lotus, S.: Revisiting the 24 year (1994-2018) record of glacier mass budget in the Suru sub-basin, western Himalaya: Overall response and controlling factors, Sci. Total Environ., 800, 149533, https://doi.org/10.1016/j.scitotenv.2021.149533, 2021.
Garg, P. K., Garg, S., Yousuf, B., Shukla, A., Kumar, V., and Mehta, M.:
Stagnation of the Pensilungpa glacier, western Himalaya, India: causes and
implications, J. Glaciol., 68, 221–235,
https://doi.org/10.1017/jog.2021.84, 2022a.
Garg, S., Shukla, A., Garg, P. K., Yousuf, B., and Shukla, U. K.: Surface
evolution and dynamics of the Kangriz glacier, western Himalaya in past 50
years, Cold Reg. Sci. Technol., 196, 103496,
https://doi.org/10.1016/j.coldregions.2022.103496, 2022b.
Granshaw, F. D. and Fountain, G. A.: Glacier change (1958–1998) in the
North Cascades National Park Complex, Washington, USA, J. Glaciol., 52,
251–256, https://doi.org/10.3189/172756506781828782, 2006.
Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W.,
Yu, P., Liu, Q., and Jiang, Z.: The second Chinese glacier inventory: data,
methods and results, J. Glaciol., 61, 357–372,
https://doi.org/10.3189/2015JoG14J209, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Ji, Q., Yang, T., He, Y., Qin, Y., Dong, J., and Hu, F.: A simple method to
extract glacier length based on Digital Elevation Model and glacier
boundaries for simple basin type glacier, J. Mt. Sci., 14, 1776–1790,
https://doi.org/10.1007/s11629-016-4243-5, 2017.
Kääb, A., Treichler, D., Nuth, C., and Berthier, E.: Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya, The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, 2015.
Khan, A., Richards, K. S., Parker, G. T., McRobie, A., and Mukhopadhyay, B.:
How large is the Upper Indus Basin? The pitfalls of auto-delineation using
DEMs, J. Hydrol., 509, 442–453,
https://doi.org/10.1016/j.jhydrol.2013.11.028, 2014.
Kulkarni, A. V.: Monitoring Himalayan cryosphere using remote sensing
techniques, J. India Inst. Sci. 90, 457–469, 2010.
Le Bris, R. and Paul, F.: An automatic method to create flow lines for
determination of glacier length: A pilot study with Alaskan glaciers,
Comput. Geosci., 52, 234–245, https://doi.org/10.1016/j.cageo.2012.10.014,
2013.
Liu, S., Ding, Y., Shangguan, D., Zhang, Y., Li, J., Han, H., Wang, J., and
Xie, C.: Glacier retreat as a result of climate warming and increased
precipitation in the Tarim river basin, northwest China, Ann. Glaciol., 43,
91–96, https://doi.org/10.3189/172756406781812168, 2006.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv., 5,
eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019.
Minora, U., Bocchiola, D., D'Agata, C., Maragno, D., Mayer, C., Lambrecht, A., Mosconi, B., Vuillermoz, E., Senese, A., Compostella, C., Smiraglia, C., and Diolaiuti, G.: 2001–2010 glacier changes in the Central Karakoram National Park: a contribution to evaluate the magnitude and rate of the “Karakoram anomaly”, The Cryosphere Discuss., 7, 2891–2941, https://doi.org/10.5194/tcd-7-2891-2013, 2013.
Mölg, N., Bolch, T., Rastner, P., Strozzi, T., and Paul, F.: A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges, Earth Syst. Sci. Data, 10, 1807–1827, https://doi.org/10.5194/essd-10-1807-2018, 2018.
Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D., and
Mukhopadhyay, A.: Evaluation of vertical accuracy of open source Digital
Elevation Model (DEM), Int. J. Appl. Earth Obs. Geoinformation, 21,
205–217, https://doi.org/10.1016/j.jag.2012.09.004, 2013.
Müller, J., Dame, J., and Nüsser, M.: Urban Mountain Waterscapes:
The Transformation of Hydro-Social Relations in the Trans-Himalayan Town
Leh, Ladakh, India, Water, 12, 1698, https://doi.org/10.3390/w12061698,
2020.
Nagai, H., Fujita, K., Sakai, A., Nuimura, T., and Tadono, T.: Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya, The Cryosphere, 10, 65–85, https://doi.org/10.5194/tc-10-65-2016, 2016.
Negi, H. S., Kumar, A., Kanda, N., Thakur, N. K., and Singh, K. K.: Status
of glaciers and climate change of East Karakoram in early twenty-first
century, Sci. Total Environ., 753, 141914,
https://doi.org/10.1016/j.scitotenv.2020.141914, 2021.
Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., Tsunematsu, K., Tshering, P., and Fujita, K.: The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers, The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-9-849-2015, 2015.
Nüsser, M., Schmidt, S., and Dame, J.: Irrigation and Development in the
Upper Indus Basin: Characteristics and Recent Changes of a
Socio-hydrological System in Central Ladakh, India, Mt. Res. Dev., 32,
51–61, https://doi.org/10.1659/MRD-JOURNAL-D-11-00091.1, 2012.
Nüsser, M., Dame, J., Kraus, B., Baghel, R., and Schmidt, S.:
Socio-hydrology of “artificial glaciers” in Ladakh, India: assessing
adaptive strategies in a changing cryosphere, Reg. Environ. Change, 19,
1327–1337, https://doi.org/10.1007/s10113-018-1372-0, 2019a.
Nüsser, M., Dame, J., Parveen, S., Kraus, B., Baghel, R., and Schmidt,
S.: Cryosphere-Fed Irrigation Networks in the Northwestern Himalaya:
Precarious Livelihoods and Adaptation Strategies Under the Impact of Climate
Change, Mt. Res. Dev., 39, R1–R11, https://doi.org/10.1659/MRD-JOURNAL-D-18-00072.1,
2019b.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.: The new remote-sensing-derived Swiss glacier inventory: I. Methods, Ann. Glaciol., 34, 355361, https://doi.org/10.3189/172756402781817941, 2002.
Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A.,
Ommanney, C. S. L., Raup, B., Rivera, A., and Zemp, M.: Recommendations for
the compilation of glacier inventory data from digital sources, Ann.
Glaciol., 50, 119–126, https://doi.org/10.3189/172756410790595778, 2009.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K.,
Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko,
G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer,
K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines
derived from remote-sensing data, Ann. Glaciol., 54, 171–182,
https://doi.org/10.3189/2013AoG63A296, 2013.
Paul, F., Bolch, T., Kääb, A., Nagler, T., Nuth, C., Scharrer, K., Shepherd, A., Strozzi, T., Ticconi, F., Bhambri, R., Berthier, E., Bevan, S., Gourmelen, N., Heid, T., Jeong, S., Kunz, M., Lauknes, T. R., Luckman, A., Merryman Boncori, J. P., Moholdt, G., Muir, A., Neelmeijer, J., Rankl, M., VanLooy, J., and Van Niel, T.: The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products, Remote Sens. Environ., 162, 408426, https://doi.org/10.1016/j.rse.2013.07.043, 2015.
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R.,
Nagler, T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources
and guidelines for quality assessment of glacier area, elevation change, and
velocity products derived from satellite data in the Glaciers_cci project, Remote Sens. Environ., 203, 256–275,
https://doi.org/10.1016/j.rse.2017.08.038, 2017.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B.
H., Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph
Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol.,
60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Pritchard, H. D.: Asia's shrinking glaciers protect large populations from
drought stress, Nature, 569, 649–654,
https://doi.org/10.1038/s41586-019-1240-1, 2019.
Racoviteanu, A. E., Paul, F., Raup, B., Khalsa, S. J. S., and Armstrong, R.:
Challenges and recommendations in mapping of glacier parameters from space:
results of the 2008 Global Land Ice Measurements from Space (GLIMS)
workshop, Boulder, Colorado, USA, Ann. Glaciol., 50, 53–69,
https://doi.org/10.3189/172756410790595804, 2009.
Racoviteanu, A. E., Rittger, K., and Armstrong, R.: An Automated Approach
for Estimating Snowline Altitudes in the Karakoram and Eastern Himalaya From
Remote Sensing, Front. Earth Sci., 7, 220,
https://doi.org/10.3389/feart.2019.00220, 2019.
Sakai, A.: Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia, The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, 2019.
Schmidt, S. and Nüsser, M.: Changes of High Altitude Glaciers from 1969
to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India,
Arct. Antarct. Alp. Res., 44, 107–121,
https://doi.org/10.1657/1938-4246-44.1.107, 2012.
Schmidt, S. and Nüsser, M.: Changes of High Altitude Glaciers in the
Trans-Himalaya of Ladakh over the Past Five Decades (1969–2016),
Geosciences, 7, 27, https://doi.org/10.3390/geosciences7020027, 2017.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and
Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia
Glacier Mass Balance, Front. Earth Sci., 7, 363,
https://doi.org/10.3389/feart.2019.00363, 2020.
Shukla, A., Garg, S., Mehta, M., Kumar, V., and Shukla, U. K.: Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: impacts of regional climate variability, Earth Syst. Sci. Data, 12, 1245–1265, https://doi.org/10.5194/essd-12-1245-2020, 2020.
Singh, S., Kumar, R., Bhardwaj, A., Sam, L., Shekhar, M., Singh, A., Kumar,
R., and Gupta, A.: Changing climate and glacio-hydrology in Indian Himalayan
Region: a review, WIREs Clim. Change, 7, 393–410,
https://doi.org/10.1002/wcc.393, 2016.
Smith, T., Bookhagen, B., and Cannon, F.: Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia, The Cryosphere, 9, 1747–1759, https://doi.org/10.5194/tc-9-1747-2015, 2015.
Soheb, M., Ramanathan, A., Bhardwaj, A., Coleman, M., Spagnolo, M., Rea, B.
R., Singh, S., and Sam, L.: Landsat-based multitemporal glacier inventory data of
over four decades (1977–2019) for Ladakh region, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.940994, 2022.
Tielidze, L. G. and Wheate, R. D.: The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan), The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018, 2018.
Williams, M. W.: The Status of Glaciers in the Hindu Kush–Himalayan Region,
Mt. Res. Dev., 33, 114, https://doi.org/10.1659/mrd.mm113, 2013.
Winsvold, S. H., Andreassen, L. M., and Kienholz, C.: Glacier area and length changes in Norway from repeat inventories, The Cryosphere, 8, 1885–1903, https://doi.org/10.5194/tc-8-1885-2014, 2014.
Winsvold, S. H., Kaab, A., and Nuth, C.: Regional Glacier Mapping Using
Optical Satellite Data Time Series, IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens., 9, 3698–3711, https://doi.org/10.1109/JSTARS.2016.2527063,
2016.
Yao, J., Chao-lu, Y., and Ping, F.: Evaluation of the Accuracy of SRTM3 and
ASTER GDEM in the Tibetan Plateau Mountain Ranges, E3S Web Conf., 206,
01027, https://doi.org/10.1051/e3sconf/202020601027, 2020.
Zhang, M., Wang, X., Shi, C., and Yan, D.: Automated Glacier Extraction
Index by Optimization of Red/SWIR and NIR /SWIR Ratio Index for Glacier
Mapping Using Landsat Imagery, Water, 11, 1223,
https://doi.org/10.3390/w11061223, 2019.
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study...
Altmetrics
Final-revised paper
Preprint