Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4111-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4111-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new operational Mediterranean diurnal optimally interpolated sea surface temperature product within the Copernicus Marine Service
Andrea Pisano
CORRESPONDING AUTHOR
CNR-ISMAR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
Daniele Ciani
CNR-ISMAR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
Salvatore Marullo
CNR-ISMAR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
ENEA, Via Enrico Fermi, 45, 00044 Frascati, Italy
Rosalia Santoleri
CNR-ISMAR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
Bruno Buongiorno Nardelli
CNR-ISMAR, Calata Porta di Massa, 80133 Naples, Italy
Related authors
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024, https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is an essential variable to understanding the Earth's climate system, and its accurate monitoring from space is essential. Since satellite measurements are hindered by cloudy/rainy conditions, data gaps are present even in merged multi-sensor products. Since optimal interpolation techniques tend to smooth out small-scale features, we developed a deep learning model to enhance the effective resolution of gap-free SST images over the Mediterranean Sea to address this.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Ana Claudia Parracho, Patricia Zunino, Michela Sammartino, Jacqueline Boutin, Eric Greiner, Bruno Buongiorno Nardelli, and Nicolas Kolodziejczyk
State Planet Discuss., https://doi.org/10.5194/sp-2025-3, https://doi.org/10.5194/sp-2025-3, 2025
Preprint under review for SP
Short summary
Short summary
We compared six global sea surface salinity datasets and found consistent trends between them. Many regions follow the known pattern of fresh areas getting fresher and salty areas saltier, with a growing contrast between the North Atlantic and North Pacific. However, comparison with longer-term data shows that short-term trends are strongly shaped by natural climate variability, especially in the Pacific.
Lorenzo Della Cioppa and Bruno Buongiorno Nardelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1136, https://doi.org/10.5194/egusphere-2025-1136, 2025
Short summary
Short summary
Forecasting of particles trajectories transported by ocean currents is of great importance for research and operational tasks. Even with satellite observations data or numerical simulations, the problem challenging. In this paper a neural network approach is proposed which is capable of learning from observed trajectories and corresponding data observed from satellites to generate predictions. The network is trained and validated on synthetic data, but it is easily applicable in the real-world.
Daniele Ciani, Claudia Fanelli, and Bruno Buongiorno Nardelli
Ocean Sci., 21, 199–216, https://doi.org/10.5194/os-21-199-2025, https://doi.org/10.5194/os-21-199-2025, 2025
Short summary
Short summary
Ocean surface currents are routinely derived from satellite observations of the sea level, allowing regional- to global-scale synoptic monitoring. In order to overcome the theoretical and instrumental limits of this methodology, we exploit the synergy of multi-sensor satellite observations. We rely on deep learning, physics-informed algorithms to predict ocean currents from sea surface height and sea surface temperature observations. Results are validated by means of in situ measurements.
Anna Teruzzi, Ali Aydogdu, Carolina Amadio, Emanuela Clementi, Simone Colella, Valeria Di Biagio, Massimiliano Drudi, Claudia Fanelli, Laura Feudale, Alessandro Grandi, Pietro Miraglio, Andrea Pisano, Jenny Pistoia, Marco Reale, Stefano Salon, Gianluca Volpe, and Gianpiero Cossarini
State Planet, 4-osr8, 15, https://doi.org/10.5194/sp-4-osr8-15-2024, https://doi.org/10.5194/sp-4-osr8-15-2024, 2024
Short summary
Short summary
A noticeable cold spell occurred in Eastern Europe at the beginning of 2022 and was the main driver of intense deep-water formation and the associated transport of nutrients to the surface. Southeast of Crete, the availability of both light and nutrients in the surface layer stimulated an anomalous phytoplankton bloom. In the area, chlorophyll concentration (a proxy for bloom intensity) and primary production were considerably higher than usual, suggesting possible impacts on fishery catches.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024, https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
Short summary
Sea surface temperature (SST) is an essential variable to understanding the Earth's climate system, and its accurate monitoring from space is essential. Since satellite measurements are hindered by cloudy/rainy conditions, data gaps are present even in merged multi-sensor products. Since optimal interpolation techniques tend to smooth out small-scale features, we developed a deep learning model to enhance the effective resolution of gap-free SST images over the Mediterranean Sea to address this.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Jaime Pitarch, Marco Bellacicco, Salvatore Marullo, and Hendrik J. van der Woerd
Earth Syst. Sci. Data, 13, 481–490, https://doi.org/10.5194/essd-13-481-2021, https://doi.org/10.5194/essd-13-481-2021, 2021
Short summary
Short summary
Ocean monitoring is crucial to understand the regular seasonality and the drift induced by climate change. Satellites offer a possibility to monitor the complete surface of the Earth within a few days with a harmonized methodology, reaching resolutions of few kilometres. We revisit traditional ship survey optical parameters such as the
Secchi disk depthand the
Forel–Ule indexand derive them from satellite observations. Our time series is 21 years long and has global coverage.
Cited articles
Artale, V., Iudicone, D., Santoleri, R., Rupolo, V., Marullo, S., and D'Ortenzo,
F.: Role of surface fluxes in ocean general circulation models using
satellite sea surface temperature: validation of and sensitivity to the
forcing frequency of the Mediterranean thermohaline circulation,
J. Geophys. Res.-Oceans, 107, 29-1–29-24, https://doi.org/10.1029/2000JC000452, 2002.
Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J.,
and Cole, J.: Impact of resolving the diurnal cycle in an ocean–atmosphere
GCM. Part 2: A diurnally coupled CGCM, Clim. Dynam., 31, 909–925, https://doi.org/10.1007/s00382-008-0429-z, 2008.
Böhm, E., Marullo, S., and Santoleri, R.: AVHRR visible-IR detection of
diurnal warming events in the western Mediterranean Sea, Int. J. Remote
Sens., 12, 695–701,
https://doi.org/10.1080/01431169108929686, 1991.
Bowen, M. M., Emery, W. J., Wilkin, J. L., Tildesley, P. C., Barton, I. J.,
and Knewtson, R.: Extracting multiyear surface currents from sequential
thermal imagery using the maximum cross-correlation technique, J. Atmos.
Ocean. Tech., 19, 1665–1676, https://doi.org/10.1175/1520-0426(2002)019<1665:EMSCFS>2.0.CO;2,
2002.
Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for objective
analysis and design of oceanographic experiments applied to MODE-73, Deep-Sea Res., 23, 559–582,
https://doi.org/10.1016/0011-7471(76)90001-2, 1976.
Buongiorno Nardelli, B., Marullo, S., and Santoleri, R.: Diurnal Variations in
AVHRR SST Fields: A Strategy for Removing Warm Layer Effects from Daily
Images, Remote Sens. Environ., 95, 47–56,
https://doi.org/10.1016/j.rse.2004.12.005, 2005.
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., and Santoleri, R.: High
and Ultra-High resolution processing of satellite Sea Surface Temperature
data over Southern European Seas in the framework of MyOcean project, Remote
Sens. Environ., 129, 1–16,
https://doi.org/10.1016/j.rse.2012.10.012, 2013.
Chen, S. S. and Houze Jr., R. A.: Diurnal variation and life-cycle of deep
convective systems over the tropical Pacific warm pool, Q. J. Roy. Meteor.
Soc., 123, 357–388,
https://doi.org/10.1002/qj.49712353806, 1997.
Clayson, C. A. and Bogdanoff, A. S.: The effect of diurnal sea surface
temperature warming on climatological air–sea fluxes, J. Climate, 26,
2546–2556, https://doi.org/10.1175/JCLI-D-12-00062.1, 2013.
Clementi, E., Oddo, P., Drudi, M., Pinardi, N., Korres, G., and Grandi A.:
Coupling hydrodynamic and wave models: first step and sensitivity
experiments in the Mediterranean Sea, Ocean Dynam., 67, 1293–1312,
https://doi.org/10.1007/s10236-017-1087-7, 2017a.
Clementi E., Pistoia, J., Delrosso, D., Mattia, G., Fratianni, C., Storto, A.,
Ciliberti, S., Lemieux, B., Fenu, E., Simoncelli, S., Drudi, M., Grandi, A.,
Padeletti, D., Di Pietro, P., and Pinardi, N.: A degree resolution Mediterranean
analysis and forecast modeling system for the Copernicus Marine Environment
Monitoring Service, Extended abstract to the 8th EuroGOOS Conference,
Bergen, http://hdl.handle.net/2122/12345 (last access: 30 August 2022), 2017b.
Clementi, E., Aydogdu, A., Goglio, A. C., Pistoia, J., Escudier, R., Drudi, M.,
Grandi, A., Mariani, A., Lyubartsev, V., Lecci, R., Cretí, S., Coppini, G.,
Masina, S., and Pinardi, N.: Mediterranean Sea Physical Analysis and Forecast
(CMEMS MED-Currents, EAS6 system) (Version 1) [Data set], Copernicus
Monitoring Environment Marine Service (CMEMS),
https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS6, 2021.
CNR: Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis, MOi for Copernicus Marine Service [data set], https://doi.org/10.48670/MOI-00172, 2015.
CNR: Mediterranean Sea – High Resolution Diurnal Subskin Sea Surface
Temperature Analysis, MOi for Copernicus Marine Service [data set],
https://doi.org/10.48670/moi-00170, 2021.
Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S.: Sea surface temperature variability: Patterns and mechanisms, Annu. Rev. Mar. Sci, 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational
data assimilation scheme, Ocean Model., 22, 89–105,
https://doi.org/10.1016/j.ocemod.2008.01.004, 2008.
Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap, CRC Press,
Boca Raton, FL, USA, ISBN 0-412-04231-2, 1994.
Fiedler, E. K., McLaren, A., Banzon, V., Brasnett, B., Ishizaki, S., Kennedy, J., Rayner, N., Roberts-Jones, J., Corlett, G., Merchant, C.J., and Donlon, C.: Intercomparison of long-term sea surface temperature analyses using the GHRSST Multi-Product Ensemble (GMPE) system, Remote Sens. Environ., 222, 18–33, https://doi.org/10.1016/j.rse.2018.12.015, 2019.
Gentemann, C. L., and Minnett, P. J.: Radiometric measurements of ocean surface thermal variability, J. Geophys. Res.-Oceans, 113, https://doi.org/10.1029/2007JC004540, 2008.
Gentemann, C. L., Minnett, P. J., Le Borgne, P., and Merchant, C. J.:
Multi-satellite measurements of large diurnal warming events, Geophys.
Res. Lett., 35, L22602, https://doi.org/10.1029/2008GL035730, 2008.
Good, S., Fiedler, E., Mao, C., Martin, M.J., Maycock, A., Reid, R.,
Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The
Current Configuration of the OSTIA System for Operational Production of
Foundation Sea Surface Temperature and Ice Concentration Analyses, Remote
Sens.-Basel, 12, 720, https://doi.org/10.3390/rs12040720, 2020.
Good, S. A., Corlett, G. K., Remedios, J. J., Noyes, E. J., and
Llewellyn-Jones, D. T.: The global trend in sea surface temperature from 20
years of advanced very high resolution radiometer data, J. Climate, 20,
1255–1264, https://doi.org/10.1175/JCLI4049.1, 2007.
Huang, B., Liu, C., Freeman, E., Graham, G., Smith, T., and Zhang, H. M.:
Assessment and Intercomparison of NOAA Daily Optimum Interpolation Sea
Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 7421–7441, 2021.
Kotsias, G. and Lolis, C. J.: A study on the total cloud cover variability
over the Mediterranean region during the period 1979–2014 with the use of
the ERA-Interim database, Theor. Appl. Climatol., 134, 325–336,
https://doi.org/10.1175/JCLI-D-21-0001.1, 2018.
Le Traon, P. Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A., Belmonte, M., Bentamy, A., Bertino, L., Brando, V. E., Kreiner, M. B., Benkiran, M., Carval, T., Ciliberti, S. A., Claustre, H., Clementi, E., Coppini, G., Cossarini, G., De Alfonso Alonso-Muñoyerro, M., Delamarche, A., Dibarboure, G., Dinessen, F., Drevillon, M., Drillet, Y., Faugere, Y., Fernández, V., Fleming, A., Garcia-Hermosa, M. I., Sotillo, M. G., Garric, G., Gasparin, F., Giordan, C., Gehlen, M., Gregoire, M. L., Guinehut, S., Hamon, M., Harris, C., Hernandez, F., Hinkler, J. B., Hoyer, J., Karvonen, J., Kay, S., King, R., Lavergne, T., Lemieux-Dudon, B., Lima, L., Mao, C., Martin, M. J., Masina, S., Melet, A., Buongiorno Nardelli, B., Nolan, G., Pascual, A., Pistoia, J., Palazov, A., Piolle, J. F., Pujol, M. I., Pequignet, A. C., Peneva, E., Pérez Gómez, B., Petit de la Villeon, L., Pinardi, N., Pisano, A., Pouliquen, S., Reid, R., Remy, E., Santoleri, R., Siddorn, J., She, J., Staneva, J., Stoffelen, A., Tonani, M., Vandenbulcke, L., von Schuckmann, K., Volpe, G., Wettre, C., and Zacharioudaki, A.: From Observation to Information and Users: The Copernicus Marine Service Perspective, Front. Mar. Sci., 6, 234, https://doi.org/10.3389/fmars.2019.00234,
2019.
Marullo, S., Santoleri, R., Ciani,
D., Le Borgne, P., Péré, S., Pinardi, N., Tonani, M., and Nardone,
G.: Combining model and geostationary satellite data to reconstruct hourly
SST field over the Mediterranean Sea, Remote Sens. Environ., 146, 11–23,
https://doi.org/10.1016/j.rse.2013.11.001, 2014.
Marullo, S., Minnett, P. J., Santoleri, R., and Tonani, M.: The diurnal cycle
of sea-surface temperature and estimation of the heat budget of the
Mediterranean Sea, J. Geophys. Res.-Oceans, 121, 8351–8367,
https://doi.org/10.1002/2016JC012192, 2016.
Mercator Ocean International: Mediterranean Sea- In-Situ Near Real Time Observations, Mercator Ocean International [data set], https://doi.org/10.48670/MOI-00044, 2015a.
Mercator Ocean International: Atlantic Iberian Biscay Irish Ocean- In-Situ Near Real Time Observations, Mercator Ocean International [data set], https://doi.org/10.48670/MOI-00043, 2015b.
Meteorological Office UK: Global Ocean OSTIA Diurnal Skin Sea Surface Temperature, MOi for Copernicus Marine Service [data set], https://doi.org/10.48670/MOI-00167, 2015a.
Meteorological Office UK: Global Ocean OSTIA Sea Surface Temperature and Sea Ice Analysis, MOi for Copernicus Marine Service [data set], https://doi.org/10.48670/MOI-00165, 2015b.
Merchant, C. J., Filipiak, M. J., Le Borgne, P., Roquet, H., Autret, E., Piollé, J.-F., and Lavender, S.: Diurnal warm-layer events in the western Mediterranean and European shelf seas, Geophys. Res. Lett., 35, L04601, https://doi.org/10.1029/2007GL033071, 2008.
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Scientific data, 6, 1–18, 2019.
Minnett, P. J., Alvera-Azcárate, A., Chin, T. M., Corlett, G. K., Gentemann, C. L., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J.: Half a century of satellite remote sensing of sea-surface temperature, Remote Sens. Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366, 2019.
Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., and Pettenuzzo, D.: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting, Ocean Sci., 5, 461–473, https://doi.org/10.5194/os-5-461-2009, 2009.
Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A.: Sensitivity of the Mediterranean sea level to atmospheric pressure and free surface elevation numerical formulation in NEMO, Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, 2014.
Oliver, E. C., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J., Schlegel, R. W., and Sen Gupta, A.: Marine heatwaves, Annu. Rev. Mar. Sci., 13, 313–342, https://doi.org/10.1146/annurev-marine-032720-095144, 2021.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean forecasting system: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Pisano, A.: CNR Mediterranean Sea High Resolution Diurnal
Subskin Sea Surface Temperature Analysis: Validation subset, Zenodo [data set],
https://doi.org/10.5281/zenodo.5807729, 2021.
Pisano, A., Marullo, S., Artale, V., Falcini, F., Yang, C., Leonelli, F. E., Santoleri, R., and Buongiorno Nardelli, B.: New evidence of mediterranean climate change and variability from sea surface temperature observations, Remote Sens. BASEL, 12, 132, https://doi.org/10.3390/rs12010132, 2020.
Reverdin, G., Boutin, J., Martin, N., Lourenco, A., Bouruet-Aubertot, P., Lavin, A., Mader, J., Blouch, P., Rolland, J., Gaillard, F., and Lazure, P.: Temperature Measurements from Surface Drifters, J. Atmos. Ocean. Tech., 27, 1403–1409, https://doi.org/10.1175/2010JTECHO741.1, 2010.
Rio, M. H. and Santoleri, R.: Improved global surface currents from the
merging of altimetry and sea surface temperature data, Remote Sens.
Environ., 216, 770–785, https://doi.org/10.1016/j.rse.2018.06.003, 2018.
Storto, A. and Oddo, P.: Optimal assimilation of daytime SST retrievals from
SEVIRI in a regional ocean prediction system, Remote Sens.-Basel, 11,
2776, https://doi.org/10.3390/rs11232776, 2019.
Takaya, Y., Bidlot, J.-R., Beljaars, A. C. M., and Janssen, P. A. E. M.: Refinements to a prognostic scheme of skin sea surface temperature, J. Geophys. Res., 115, C06009, https://doi.org/10.1029/2009JC005985, 2010.
Yang, C., Leonelli, F. E., Marullo, S., Artale, V., Beggs, H., Nardelli, B. B., Chin, T. M., De Toma, V., Good, S., Huang, B., Merchant, C. J., Sakurai, T., Santoleri, R., Vazquez-Cuervo, J., Zhang, H., and Pisano, A.: Sea Surface Temperature Intercomparison in the Framework of the Copernicus Climate Change Service (C3S), J. Climate, 34, 5257–5283, https://doi.org/10.1175/JCLI-D-20-0793.1, 2021.
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While,
J.: Implementing a variational data assimilation system in an operational 1/4
degree global ocean model, Q. J. Roy. Meteor. Soc., 141, 333–349,
https://doi.org/10.1002/qj.2388, 2015.
While, J., Mao, C., Martin, M. J., Roberts-Jones, J., Sykes, P. A., Good, S.
A., and McLaren, A. J.: An operational analysis system for the global diurnal
cycle of sea surface temperature: implementation and validation, Q. J. Roy.
Meteor. Soc., 143, 1787–1803, https://doi.org/10.1002/qj.3036, 2017.
Zeng, X., Zhao, M., Dickinson, R. E., and He, Y.: A multi-year hourly sea
surface skin temperature dataset derived from the TOGA TAO bulk temperature
and wind speed over the tropical Pacific, J. Geophys. Res.-Oceans, 104,
1525–1536, https://doi.org/10.1029/1998JC900060, 1999.
Short summary
A new operational diurnal sea surface temperature (SST) product has been developed within the Copernicus Marine Service, providing gap-free hourly mean SST fields from January 2019 to the present. This product is able to accurately reproduce the diurnal cycle, the typical day–night SST oscillation mainly driven by solar heating, including extreme diurnal warming events. This product can thus represent a valuable dataset to improve the study of those processes that require a subdaily frequency.
A new operational diurnal sea surface temperature (SST) product has been developed within the...
Altmetrics
Final-revised paper
Preprint