Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4057-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4057-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vectorized dataset of roadside noise barriers in China using street view imagery
Zhen Qian
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China
Yue Yang
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Teng Zhong
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Fan Zhang
Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Rui Zhu
Department of Land Surveying and Geo-Informatics, The Hong Kong
Polytechnic University, Kowloon, Hong Kong, China
Kai Zhang
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Zhixin Zhang
College of Geography & Marine, Nanjing University, Nanjing, P.O. Box 2100913, China
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
Zhuo Sun
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Peilong Ma
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Guonian Lü
Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210023, China
State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Yu Ye
Department of Architecture, College of Architecture and Urban Planning, Tongji University, China
Jinyue Yan
Future Energy Center, Malardalen University, 72123 Vasteras, Sweden
Department of Chemical Engineering, KTH Royal Institute of
Technology, Stockholm 10044, Sweden
Related authors
No articles found.
Yuqian Hu, Heng Li, Chunxiao Zhang, Dingtao Shen, Bingli Xu, Min Chen, Wenhao Chu, and Rongrong Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-1161, https://doi.org/10.5194/egusphere-2025-1161, 2025
Short summary
Short summary
Our study developed a preliminary dataset of catchment attributes and meteorological variables covering 544 basins in China, and evaluated the applicability of process-based models, the long short-term memory model, and hybrid modeling methods. Results highlight the critical role of meteorological data quality and the potential of hybrid approaches. Our findings support model selection and offer reference for regions with limited observational data.
Cited articles
Abdulkareem, M., Havukainen, J., Nuortila-Jokinen, J., and Horttanainen, M.:
Life cycle assessment of a low-height noise barrier for railway traffic
noise, J. Clean. Prod., 323, 129169,
https://doi.org/10.1016/j.jclepro.2021.129169, 2021.
Apparicio, P., Carrier, M., Gelb, J., Séguin, A.-M., and Kingham, S.:
Cyclists' exposure to air pollution and road traffic noise in central city
neighbourhoods of Montreal, J. Transp. Geogr., 57, 63–69,
https://doi.org/10.1016/j.jtrangeo.2016.09.014, 2016.
Arenas, J. P.: Potential problems with environmental sound barriers when
used in mitigating surface transportation noise, Sci. Total
Environ., 405, 173–179, https://doi.org/10.1016/j.scitotenv.2008.06.049,
2008.
Au, C.-C. and Henderson, J. V.: Are Chinese cities too small?, Rev.
Econ. Stud., 73, 549–576,
https://doi.org/10.1111/j.1467-937X.2006.00387.x, 2006.
Baidu Maps: Baidu Street View, https://api.map.baidu.com/panorama/v2?key=parameters,
last access: 13 June 2022.
Begou, P., Kassomenos, P., and Kelessis, A.: Effects of road traffic noise
on the prevalence of cardiovascular diseases: The case of Thessaloniki,
Greece, Sci. Total Environ., 703, 134477,
https://doi.org/10.1016/j.scitotenv.2019.134477, 2020.
Bhattacharyya, A., Chatterjee, S., Sen, S., Sinitca, A., Kaplun, D., and Sarkar, R.: A deep learning model for classifying human facial expressions from infrared thermal images, Scientific Reports, 11, 20696, https://doi.org/10.1038/s41598-021-99998-z, 2021.
Den Boer, L. and Schroten, A.: Traffic noise reduction in Europe, CE Delft, 14, 2057–2068, https://inquinamentoacustico.it/_dowload/traffic_noise_reduction-CE-Delft.pdf (last access: 12 December 2021), 2007.
Cao, Y., Geddes, T. A., Yang, J. Y. H., and Yang, P.: Ensemble deep learning
in bioinformatics, Nature Machine Intelligence, 2, 500–508,
https://doi.org/10.1038/s42256-020-0217-y, 2020.
Chen, M.: Vectorized dataset of roadside noise barriers in China, National
Tibetan Plateau/Third Pole Environment Data Center [data set],
https://doi.org/10.11888/Others.tpdc.271914, 2021.
Deng, M., Yang, W., Chen, C., Wu, Z., Liu, Y., and Xiang, C.: Street-level
solar radiation mapping and patterns profiling using Baidu Street View
images, Sustain. Cities Soc., 75, 103289,
https://doi.org/10.1016/j.scs.2021.103289, 2021.
Du, K., Ning, J., and Yan, L.: How long is the sun duration in a street
canyon? – Analysis of the view factors of street canyons, Build.
Environ., 172, 106680, https://doi.org/10.1016/j.buildenv.2020.106680,
2020.
Goodchild, M. F. and Li, W.: Replication across space and time must be weak in the social and environmental sciences, P. Natl. Acad. of Sci. USA, 118, e2015759118, https://doi.org/10.1073/pnas.2015759118, 2021.
Griffiths, D. and Boehm, J.: Improving public data for building segmentation
from Convolutional Neural Networks (CNNs) for fused airborne lidar and image
data using active contours, ISPRS J. Photogramm., 154, 70–83, https://doi.org/10.1016/j.isprsjprs.2019.05.013, 2019.
Gu, M., Liu, Y., Yang, J., Peng, L., Zhao, C., Yang, Z., Yang, J., Fang, W.,
Fang, J., and Zhao, Z.: Estimation of environmental effect of PVNB installed
along a metro line in China, Renew. Energ., 45, 237–244,
https://doi.org/10.1016/j.renene.2012.02.021, 2012.
Guan, C. and Rowe, P. G.: In pursuit of a well-balanced network of cities
and towns: A case study of the Changjiang Delta Region in China, Environ.
Plann. B, 45, 548–566,
https://doi.org/10.1177/2399808317696073, 2018.
Guan, X., Wei, H., Lu, S., Dai, Q., and Su, H.: Assessment on the
urbanization strategy in China: Achievements, challenges and reflections,
Habitat Int., 71, 97–109,
https://doi.org/10.1016/j.habitatint.2017.11.009, 2018.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016.
Hu, K., Zhang, Z., Niu, X., Zhang, Y., Cao, C., Xiao, F., and Gao, X.:
Retinal vessel segmentation of color fundus images using multiscale
convolutional neural network with an improved cross-entropy loss function,
Neurocomputing, 309, 179–191, https://doi.org/10.1016/j.neucom.2018.05.011,
2018.
Huang, Y., Lei, C., Liu, C. H., Perez, P., Forehead, H., Kong, S., and Zhou,
J. L.: A review of strategies for mitigating roadside air pollution in urban
street canyons, Environ. Pollut., 280, 116971,
https://doi.org/10.1016/j.envpol.2021.116971, 2021.
Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri, B.: GeoAI:
spatially explicit artificial intelligence techniques for geographic
knowledge discovery and beyond, Int. J. Geogr.
Inf. Sci., 34, 625–636,
https://doi.org/10.1080/13658816.2019.1684500, 2019.
Jia, M., Liu, Y., Lieske, S. N., and Chen, T.: Public policy change and its
impact on urban expansion: An evaluation of 265 cities in China, Land Use
Policy, 97, 104754, https://doi.org/10.1016/j.landusepol.2020.104754, 2020.
Kang, Y., Zhang, F., Gao, S., Lin, H., and Liu, Y.: A review of urban
physical environment sensing using street view imagery in public health
studies, Annals of GIS, 26, 261–275,
https://doi.org/10.1080/19475683.2020.1791954, 2020.
Lafia, S., Turner, A., and Kuhn, W.: Improving Discovery of Open Civic Data, in: 10th International Conference on Geographic Information Science (GIScience 2018), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, UC Santa Barbara, https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.9, 2018.
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444,
https://doi.org/10.1038/nature14539, 2015.
Li, W.: GeoAI: Where machine learning and big data converge in GIScience,
Journal of Spatial Information Science, 20,
71–77,
https://doi.org/10.5311/josis.2020.20.658, 2020.
Lin, G. C.: The growth and structural change of Chinese cities: a contextual
and geographic analysis, Cities, 19, 299–316,
https://doi.org/10.1016/S0264-2751(02)00039-2, 2002.
Liu, X. and Long, Y.: Automated identification and characterization of
parcels with OpenStreetMap and points of interest, Environ. Plann.
B, 43, 341–360,
https://doi.org/10.1177/0265813515604767, 2015.
Liu, X., Chen, M., Claramunt, C., Batty, M., Kwan, M.-P., Senousi, A. M., Cheng, T., Strobl, J., Arzu, C., and Wilson, J.: Geographic information science in the era of geospatial big data: A cyberspace perspective, The Innovation, 3, 100279, https://doi.org/10.1016/j.xinn.2022.100279, 2022.
Liu, Y., Ma, X., Shu, L., Yang, Q., Zhang, Y., Huo, Z., and Zhou, Z.:
Internet of things for noise mapping in smart cities: state of the art and
future directions, IEEE Network, 34, 112–118,
https://doi.org/10.1109/MNET.011.1900634, 2020.
Loshchilov, I. and Hutter, F.: Decoupled weight decay regularization, arXiv
[preprint], https://doi.org/10.48550/arXiv.1711.05101, 14 November 2017.
Lü, G., Chen, M., Yuan, L., Zhou, L., Wen, Y., Wu, M., Hu, B., Yu, Z.,
Yue, S., and Sheng, Y.: Geographic scenario: a possible foundation for
further development of virtual geographic environments, Int.
J. Digit. Earth, 11, 356–368,
https://doi.org/10.1080/17538947.2017.1374477, 2018.
Ma, L. J.: Urban administrative restructuring, changing scale relations and
local economic development in China, Polit. Geogr., 24, 477–497,
https://doi.org/10.1016/j.polgeo.2004.10.005, 2005.
Map Technical Review Center, Ministry of Natural Resources, China:
Chinese administrative boundary, http://bzdt.ch.mnr.gov.cn/,
last access: 21 April 2021.
Ning, Z., Hudda, N., Daher, N., Kam, W., Herner, J., Kozawa, K., Mara, S.,
and Sioutas, C.: Impact of roadside noise barriers on particle size
distributions and pollutants concentrations near freeways, Atmos.
Environ., 44, 3118–3127, https://doi.org/10.1016/j.atmosenv.2010.05.033,
2010.
Oltean-Dumbrava, C. and Miah, A.: Assessment and relative sustainability of
common types of roadside noise barriers, J. Clean. Prod., 135,
919–931, https://doi.org/10.1016/j.jclepro.2016.06.107, 2016.
OpenStreetMap contributors: Data networks, OSM [data set], https://www.openstreetmap.org/, last access: 16 May 2021.
Perkins, R. M. and Xiang, W.-N.: Building a geographic info-structure for
sustainable development planning on a small island developing state,
Landscape Urban Plan., 78, 353–361,
https://doi.org/10.1016/j.landurbplan.2005.10.005, 2006.
Potvin, S., Apparicio, P., and Séguin, A.-M.: The spatial distribution
of noise barriers in Montreal: A barrier to achieve environmental equity,
Transportation Res. D-T. E., 72, 83–97,
https://doi.org/10.1016/j.trd.2019.04.011, 2019.
Qian, Z., Liu, X., Tao, F., and Zhou, T.: Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories, Remote Sensing, 12, 2449, https://doi.org/10.3390/rs12152449, 2020.
Qian, Z., Chen, M., Zhong, T., Zhang, F., Zhu, R., Zhang, Z., Zhang, K.,
Sun, Z., and Lü, G.: Deep Roof Refiner: A detail-oriented deep learning
network for refined delineation of roof structure lines using satellite
imagery, Int. J. Appl. Earth Obs., 107, 102680, https://doi.org/10.1016/j.jag.2022.102680, 2022
Qin, K., Xu, Y., Kang, C., and Kwan, M. P.: A graph convolutional network
model for evaluating potential congestion spots based on local urban built
environments, Transactions in GIS, 24, 1382–1401,
https://doi.org/10.1111/tgis.12641, 2020.
Ranasinghe, D., Lee, E. S., Zhu, Y., Frausto-Vicencio, I., Choi, W., Sun,
W., Mara, S., Seibt, U., and Paulson, S. E.: Effectiveness of vegetation and
sound wall-vegetation combination barriers on pollution dispersion from
freeways under early morning conditions, Sci. Total Environ.,
658, 1549–1558, https://doi.org/10.1016/j.scitotenv.2018.12.159, 2019.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese,
S.: Generalized intersection over union: A metric and a loss for bounding
box regression, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA
15–20 June 2019, https://doi.org/10.1109/CVPR.2019.00075, 658–666, 2019.
Sainju, A. M. and Jiang, Z.: Mapping Road Safety Features from Streetview Imagery: A Deep Learning Approach, ACM/IMS Trans. Data Sci., 1, 15, https://doi.org/10.1145/3362069, 2020.
Song, Y. and Wu, P.: Earth Observation for Sustainable Infrastructure: A
Review, Remote Sensing, 13, 1528, https://doi.org/10.3390/rs13081528, 2021.
Song, Y., Thatcher, D., Li, Q., McHugh, T., and Wu, P.: Developing
sustainable road infrastructure performance indicators using a model-driven
fuzzy spatial multi-criteria decision making method, Renew.
Sust. Energ. Rev., 138, 110538,
https://doi.org/10.1016/j.rser.2020.110538, 2021.
Thomas, K. A., Kidziński, Ł., Halilaj, E., Fleming, S. L.,
Venkataraman, G. R., Oei, E. H., Gold, G. E., and Delp, S. L.: Automated
classification of radiographic knee osteoarthritis severity using deep
neural networks, Radiology: Artificial Intelligence, 2, e190065,
https://doi.org/10.1148/ryai.2020190065, 2020.
Tobler, W.: A computer movie simulating urban growth in the Detroit region,
Econ. Geogr., 46, 234–240, 1970.
Tobler, W.: On the first law of geography: A reply, Ann.
Assoc. Am. Geogr., 94, 304–310,
https://doi.org/10.1111/j.1467-8306.2004.09402009.x, 2004.
Touvron, H., Vedaldi, A., Douze, M., and Jégou, H.: Fixing the
train-test resolution discrepancy, arXiv [preprint], https://doi.org/10.48550/arXiv.1906.06423, 14
June 2019.
Wang, M., Deng, Y., Won, J., and Cheng, J. C.: An integrated underground
utility management and decision support based on BIM and GIS, Automat.
Constr., 107, 102931, https://doi.org/10.1016/j.autcon.2019.102931,
2019.
Wang, S. and Wang, X.: Modeling and analysis of highway emission dispersion
due to noise barrier and automobile wake effects, Atmos. Pollut.
Res., 12, 67–75, https://doi.org/10.1016/j.apr.2020.08.013, 2021.
Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., and
Yuan, Y.: A renewable low-frequency acoustic energy harvesting noise barrier
for high-speed railways using a Helmholtz resonator and a PVDF film, Appl.
Energ., 230, 52–61, https://doi.org/10.1016/j.apenergy.2018.08.080, 2018.
Wang, Y.-R. and Li, X.-M.: Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning, Earth Syst. Sci. Data, 13, 2723–2742, https://doi.org/10.5194/essd-13-2723-2021, 2021.
Wolpert, D. H. and Macready, W. G.: No free lunch theorems for optimization,
IEEE T. Evolut. Comput., 1, 67–82,
https://doi.org/10.1109/4235.585893, 1997.
Zagoruyko, S. and Komodakis, N.: Wide residual networks, arXiv [preprint],
https://doi.org/10.48550/arXiv.1605.07146, 23 May 2016.
Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., and Ratti, C.:
Measuring human perceptions of a large-scale urban region using machine
learning, Landscape Urban Plan., 180, 148–160,
https://doi.org/10.1016/j.landurbplan.2018.08.020, 2018.
Zhang, F., Wu, L., Zhu, D., and Liu, Y.: Social sensing from street-level
imagery: A case study in learning spatio-temporal urban mobility patterns,
ISPRS J. Photogramm., 153, 48–58,
https://doi.org/10.1016/j.isprsjprs.2019.04.017, 2019.
Zhang, K., Qian, Z., Yang, Y., Chen, M., Zhong, T., Zhu, R., Lv, G., and Yan, J.: Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis, Sustain. Cities Soc., 78, 103598, https://doi.org/10.1016/j.scs.2021.103598, 2022.
Zhang, Z., Qian, Z., Zhong, T., Chen, M., Zhang, K., Yang, Y., Zhu, R., Zhang, F., Zhang, H., Zhou, F., Yu, J., Zhang, B., Lü, G., and Yan, J.: Vectorized rooftop area data for 90 cities in China, Scientific Data, 9, 66, https://doi.org/10.1038/s41597-022-01168-x, 2022.
Zhao, S. X., Chan, R. C., and Sit, K. T.: Globalization and the dominance of
large cities in contemporary China, Cities, 20, 265–278,
https://doi.org/10.1016/S0264-2751(03)00031-3, 2003.
Zhao, W.-J., Liu, E.-X., Poh, H. J., Wang, B., Gao, S.-P., Png, C. E., Li,
K. W., and Chong, S. H.: 3D traffic noise mapping using unstructured surface
mesh representation of buildings and roads, Appl. Acoust., 127, 297–304,
https://doi.org/10.1016/j.apacoust.2017.06.025, 2017.
Zhao, Y., Li, H., Kubilay, A., and Carmeliet, J.: Buoyancy effects on the
flows around flat and steep street canyons in simplified urban settings
subject to a neutral approaching boundary layer: Wind tunnel PIV
measurements, Sci. Total Environ., 797, 149067,
https://doi.org/10.1016/j.scitotenv.2021.149067, 2021.
Zhong, T., Zhang, K., Chen, M., Wang, Y., Zhu, R., Zhang, Z., Zhou, Z.,
Qian, Z., Lv, G., and Yan, J.: Assessment of solar photovoltaic potentials
on urban noise barriers using street-view imagery, Renew. Energ., 168,
181–194, https://doi.org/10.1016/j.renene.2020.12.044, 2021.
Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., and
Torralba, A.: Semantic understanding of scenes through the ade20k dataset,
Int. J. Comput. Vision, 127, 302–321,
https://doi.org/10.1007/s11263-018-1140-0, 2019.
Zhou, H., He, S., Cai, Y., Wang, M., and Su, S.: Social inequalities in
neighborhood visual walkability: Using street view imagery and deep learning
technologies to facilitate healthy city planning, Sustain. Cities
Soc., 50, 101605, https://doi.org/10.1016/j.scs.2019.101605, 2019.
Short summary
Roadside noise barriers (RNBs) are important urban infrastructures to ensure a city is liveable. This study provides the first reliable and nationwide vectorized RNB dataset with street view imagery in China. The generated RNB dataset is evaluated in terms of two aspects, i.e., the detection accuracy and the completeness and positional accuracy. The method is based on a developed geospatial artificial intelligence framework.
Roadside noise barriers (RNBs) are important urban infrastructures to ensure a city is liveable....
Altmetrics
Final-revised paper
Preprint