Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3549-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-3549-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)
Wei Wan
CORRESPONDING AUTHOR
Institute of Remote Sensing and GIS, School of Earth and Space
Sciences, Peking University, Beijing 100871, China
Jie Zhang
College of Oceanography and Space Informatics, China University of
Petroleum (East China), Qingdao 266580, China
Liyun Dai
Key Laboratory of Remote Sensing of Gansu Province, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Meteorological Observation Center, China Meteorological
Administration, Beijing 100081, China
Ting Yang
Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing, China
Baojian Liu
Institute of Remote Sensing and GIS, School of Earth and Space
Sciences, Peking University, Beijing 100871, China
Zhizhou Guo
Institute of Remote Sensing and GIS, School of Earth and Space
Sciences, Peking University, Beijing 100871, China
Heng Hu
Meteorological Observation Center, China Meteorological
Administration, Beijing 100081, China
Limin Zhao
Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100101, China
Related authors
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Qixiang Sun, Dabin Ji, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-365, https://doi.org/10.5194/essd-2025-365, 2025
Preprint under review for ESSD
Short summary
Short summary
The Tibetan Plateau plays a vital role in Asia’s water cycle, but tracking water vapor in this mountainous region is difficult, especially under cloudy conditions. We developed a new satellite-based method to generate hourly water vapor data at 0.02-degree resolution from 2016 to 2022, now available at https://data.tpdc.ac.cn/en/data/4bb3c256-3cdb-4373-9924-f7ac16ddc717, which improves accuracy and reveals fine-scale moisture transport critical for understanding rainfall and extreme weather.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022, https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
Short summary
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect ground-based passive microwave and optical remote-sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in continuously providing electromagnetic and physical features of snowpack and environment. The dataset is expected to serve the evaluation and development of microwave radiative transfer models and snow process models, along with land surface process models.
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Cited articles
Armstrong, R. L. and Brodzik, M. J.: Recent northern hemisphere snow
extent: A comparison of data derived from visible and microwave satellite
sensors, Geophys. Res. Lett., 28, 3673–3676,
https://doi.org/10.1029/2000GL012556, 2001.
Che, T. and Dai, L.: Long-term series of daily snow depth dataset in China
(1979–2020), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geogra.tpdc.270194, 2015.
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T. J.: Snow depth
derived from passive microwave remote-sensing data in China, Ann.
Glaciol., 49, 145–154, https://doi.org/10.3189/172756408787814690, 2008.
Che, T., Dai, L., Zheng, X., Li, X., and Zhao, K.: Estimation of snow depth
from passive microwave brightness temperature data in forest regions of
northeast China, Remote Sens. Environ., 183, 334–349,
https://doi.org/10.1016/j.rse.2016.06.005, 2016.
Chen, Q., Won, D., and Akos, D. M.: Snow depth sensing using the GPS L2C
signal with a dipole antenna, EURASIP J. Adv. Signal Process., 2014, 1–10,
https://doi.org/10.1186/1687-6180-2014-106, 2014.
Dai, L., Che, T., Wang, J., and Zhang, P.: Snow depth and snow water
equivalent estimation from AMSR-E data based on a priori snow
characteristics in Xinjiang, China, Remote Sens. Environ., 127,
14–29, https://doi.org/10.1016/j.rse.2011.08.029, 2012.
Dai, L., Che, T., and Ding, Y.: Inter-calibrating SMMR, SSM/I and SSMI/S
data to improve the consistency of snow-depth products in China, Remote
Sensing, 7, 7212–7230, https://doi.org/10.3390/rs70607212, 2015.
Dai, L., Che, T., Ding, Y., and Hao, X.: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing, The Cryosphere, 11, 1933–1948, https://doi.org/10.5194/tc-11-1933-2017, 2017.
Didan, K.: MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid
(V061), NASA EOSDIS Land Processes Distributed Active Archive Center (LP
DAAC) [data set], https://doi.org/10.5067/MODIS/MOD13A2.061, 2021.
Frei, A. and Robinson, D. A.: Northern Hemisphere snow extent: regional
variability 1972–1994, Int. J. Climatol., 19, 1535–1560,
https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1535::AID-JOC438>3.0.CO;2-J, 1999.
Guerreiro, K., Fleury, S., Zakharova, E., Rémy, F., and Kouraev, A.:
Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and
SARAL/AltiKa missions, Remote Sens. Environ., 186, 339–349,
https://doi.org/10.1016/j.rse.2016.07.013, 2016.
Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., El-Rayes, M. A., and
Lil-Kun, W.: Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical
Models and Experimental Observations, IEEE T. Geosci.
Remote, GE-23, 25–34, https://doi.org/10.1109/TGRS.1985.289497, 1985.
Hao, X., Huang, G., Che, T., Ji, W., Sun, X., Zhao, Q., Zhao, H., Wang, J., Li, H., and Yang, Q.: The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research, Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, 2021.
Henderson, G. R., Peings, Y., Furtado, J. C., and Kushner, P. J.:
Snow–atmosphere coupling in the Northern Hemisphere, Nat. Clim. Change,
8, 954–963, https://doi.org/10.1038/s41558-018-0295-6, 2018.
Kinar, N. J. and Pomeroy, J. W.: Measurement of the physical properties of
the snowpack, Rev. Geophys., 53, 481–544,
https://doi.org/10.1002/2015RG000481, 2015.
Larson, K. M. and Nievinski, F. G.: GPS snow sensing: results from the
EarthScope Plate Boundary Observatory, GPS Solutions, 17, 41–52, https://doi.org/10.1007/s10291-012-0259-7, 2013.
Larson, K. M., Gutmann, E. D., Zavorotny, V., Braun, A., Williams, M. W.,
and Nievinski, F. G.: Can we measure snow depth with GPS receivers,
Geograph. Res. Lett., 36, L17502,
https://doi.org/10.1029/2009GL039430, 2009.
Leinss, S., Parrella, G., and Hajnsek, I.: Snow Height Determination by
Polarimetric Phase Differences in X-Band SAR Data, IEEE J. Sel.
Top. Appl., 7, 3794–3810, https://doi.org/10.1109/JSTARS.2014.2323199, 2014.
Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang,
M., and Bao, Q.: CASEarth Poles: Big Data for the Three Poles, B.
Am. Meteorol. Soc., 101, E1475–E1491, https://doi.org/10.1175/BAMS-D-19-0280.1, 2020.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W.,
Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J.,
and De Lannoy, G. J. M.: Snow depth variability in the Northern Hemisphere
mountains observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019.
Liu, S., Zhang, J., Wan, W., Liang, H., Liu, B., and Guo, Z.: A
comprehensive evaluation of utilizing BeiDou data to estimate snow depth
from two ground-based stations, GPS Solutions, in press, 2022.
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343, 1976.
Nievinski, F. G. and Larson, K. M.: Inverse Modeling of GPS Multipath for
Snow Depth Estimation – Part II: Application and Validation, IEEE
T. Geosci. Remote., 52, 6564–6573, https://doi.org/10.1109/TGRS.2013.2297688, 2014a.
Nievinski, F. G. and Larson, K. M.: An open source GPS multipath simulator
in Matlab/Octave, GPS Solutions, 18, 473–481, https://doi.org/10.1007/s10291-014-0370-z,
2014b.
O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R., and
Chaubell, J.: SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture
(Version 6), NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], https://doi.org/10.5067/EVYDQ32FNWTH, 2019.
Ozeki, M. and Heki, K.: GPS snow depth meter with geometry-free linear
combinations of carrier phases, J. Geodesy, 86, 209–219, https://doi.org/10.1007/s00190-011-0511-x, 2012.
Pan, X., Guo, X., Li, X., Niu, X., Yang, X., Feng, M., Che, T., Jin, R.,
Ran, Y., Guo, J., Hu, X., and Wu, A.: National Tibetan Plateau Data Center:
Promoting Earth System Science on the Third Pole, B. Am.
Meteorol. Soc., 102, E2062–E2078, https://doi.org/10.1175/BAMS-D-21-0004.1, 2021.
Peng, X., Wan, W., and Chen, X.: Using GPS SNR data to estimate Soil
Moisture variations: Proposing a new interference model, 2016 IEEE
Int. Geosci. Remote, 4819–4822, https://doi.org/10.1109/IGARSS.2016.7730257, 10–15 July
2016,
Robinson, D. A., Dewey, K. F., and Heim, R. R.: Global Snow Cover
Monitoring: An Update, B. Am. Meteorol. Soc., 74,
1689–1696, https://doi.org/10.1175/1520-0477, 1993.
Shao, D., Li, H., Wang, J., Hao, X., Che, T., and Ji, W.: Reconstruction of a daily gridded snow water equivalent product for the land region above 45° N based on a ridge regression machine learning approach, Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, 2022.
Shi, J. and Dozier, J.: Estimation of snow water equivalence using
SIR-C/X-SAR. II. Inferring snow depth and particle size, IEEE T.
Geosci. Remote, 38, 2475–2488, https://doi.org/10.1109/36.885196, 2000.
Tabibi, S., Geremia-Nievinski, F., and Dam, T. v.: Statistical Comparison
and Combination of GPS, GLONASS, and Multi-GNSS Multipath Reflectometry
Applied to Snow Depth Retrieval, IEEE T. Geosci. Remote, 55, 3773–3785, https://doi.org/10.1109/TGRS.2017.2679899, 2017a.
Tabibi, S., Nievinski, F., and Van Dam, T.: Statistical Comparison and
Combination of GPS, GLONASS, and Multi-GNSS Multipath Reflectometry Applied
to Snow Depth Retrieval, IEEE T. Geosci. Remote, 55, 3773–3785, https://doi.org/10.1109/TGRS.2017.2679899, 2017b.
Vey, S., Güntner, A., Wickert, J., Blume, T., Thoss, H., and Ramatschi,
M.: Monitoring Snow Depth by GNSS Reflectometry in Built-up Areas: A Case
Study for Wettzell, Germany, IEEE J. Sel. Top. Appl., 9, 4809–4816, https://doi.org/10.1109/JSTARS.2016.2516041, 2016.
Wan, W., Larson, K. M., Small, E. E., Chew, C. C., and Braun, J. J.: Using
geodetic GPS receivers to measure vegetation water content, GPS Solutions,
19, 237–248, https://doi.org/10.1007/s10291-014-0383-7, 2015.
Wan, W., Zhang, J., Dai, L., Liang, H., Liu, B., Guo, Z., Hu, H., Yang, T.,
Zhao, L.: A GNSS-based snow depth data set over northern China (GSnow-CHINA
v1.0, 12h/24h, 2013–2022), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Cryos.tpdc.271839, 2021.
Wang, X., Zhang, S., Wang, L., He, X., and Zhang, Q.: Analysis and
combination of multi-GNSS snow depth retrievals in multipath reflectometry,
GPS Solutions, 24, 1–13, https://doi.org/10.1007/s10291-020-00990-3, 2020.
Xiao, L., Che, T., and Dai, L.: Evaluation of Remote Sensing and Reanalysis
Snow Depth Datasets over the Northern Hemisphere during 1980–2016, Remote
Sensing, 12, 3253, https://doi.org/10.3390/rs12193253, 2020.
Ye, S., Chen, D., Liu, Y., Jiang, P., Tang, W., and Xia, P.: Carrier phase
multipath mitigation for BeiDou navigation satellite system, GPS Solutions,
19, 545–557, https://doi.org/10.1007/s10291-014-0409-1, 2015.
Yu, K., Ban, W., Zhang, X., and Yu, X.: Snow Depth Estimation Based on
Multipath Phase Combination of GPS Triple-Frequency Signals, IEEE
T. Geoscience Remote, 53, 5100–5109, https://doi.org/10.1109/TGRS.2015.2417214, 2015.
Yu, K., Li, Y., and Chang, X.: Snow Depth Estimation Based on Combination of
Pseudorange and Carrier Phase of GNSS Dual-Frequency Signals, IEEE
T. Geosci. Remote, 57, 1817–1828, https://doi.org/10.1109/TGRS.2018.2869284, 2018.
Zhang, H., Zhang, F., Che, T., Yan, W., and Ye, M.: Investigating the
ability of multiple reanalysis datasets to simulate snow depth variability
over mainland China from 1981 to 2018, J. Climate, 34, 9957–9972, https://doi.org/10.1175/JCLI-D-20-0804.1, 2021.
Zhang, S., Wang, X., and Zhang, Q.: Avoiding errors attributable to
topography in GPS-IR snow depth retrievals, Adv. Space Res., 59,
1663–1669, https://doi.org/10.1016/j.asr.2016.12.031, 2017.
Zhang, Z., Guo, F., and Zhang, X.: Triple-frequency multi-GNSS reflectometry
snow depth retrieval by using clustering and normalization algorithm to
compensate terrain variation, GPS Solutions, 24, 52, https://doi.org/10.1007/s10291-020-0966-4, 2020.
Zhou, W., Liu, L., Huang, L., Yao, Y., Chen, J., and Li, S.: A New GPS
SNR-based Combination Approach for Land Surface Snow Depth Monitoring,
Sci. Rep., 9, 3814, https://doi.org/10.1038/s41598-019-40456-2, 2019.
Short summary
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation Satellite System station networks in China. It includes snow depth of 24, 12, and 2/3/6 h records, if possible, for 80 sites from 2013–2022 over northern China (25–55° N, 70–140° E). The footprint of the data set is ~ 1000 m2, and it can be used as an independent data source for validation purposes. It is also useful for regional climate research and other meteorological and hydrological applications.
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation...
Special issue
Altmetrics
Final-revised paper
Preprint