Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3549-2022
https://doi.org/10.5194/essd-14-3549-2022
Data description paper
 | 
05 Aug 2022
Data description paper |  | 05 Aug 2022

A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)

Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao

Related authors

100 years of lake evolution over the Qinghai–Tibet Plateau
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021,https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023,https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022)
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023,https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Soil water retention and hydraulic conductivity measured in a wide saturation range
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023,https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023,https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Geospatial dataset for hydrologic analyses in India (GHI): a quality-controlled dataset on river gauges, catchment boundaries and hydrometeorological time series
Gopi Goteti
Earth Syst. Sci. Data, 15, 4389–4415, https://doi.org/10.5194/essd-15-4389-2023,https://doi.org/10.5194/essd-15-4389-2023, 2023
Short summary

Cited articles

Armstrong, R. L. and Brodzik, M. J.: Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors, Geophys. Res. Lett., 28, 3673–3676, https://doi.org/10.1029/2000GL012556, 2001. 
Che, T. and Dai, L.: Long-term series of daily snow depth dataset in China (1979–2020), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geogra.tpdc.270194, 2015. 
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T. J.: Snow depth derived from passive microwave remote-sensing data in China, Ann. Glaciol., 49, 145–154, https://doi.org/10.3189/172756408787814690, 2008. 
Che, T., Dai, L., Zheng, X., Li, X., and Zhao, K.: Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China, Remote Sens. Environ., 183, 334–349, https://doi.org/10.1016/j.rse.2016.06.005, 2016. 
Chen, Q., Won, D., and Akos, D. M.: Snow depth sensing using the GPS L2C signal with a dipole antenna, EURASIP J. Adv. Signal Process., 2014, 1–10, https://doi.org/10.1186/1687-6180-2014-106, 2014. 
Download
Short summary
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation Satellite System station networks in China. It includes snow depth of 24, 12, and 2/3/6 h records, if possible, for 80 sites from 2013–2022 over northern China (25–55° N, 70–140° E). The footprint of the data set is ~ 1000 m2, and it can be used as an independent data source for validation purposes. It is also useful for regional climate research and other meteorological and hydrological applications.
Altmetrics
Final-revised paper
Preprint