Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2833-2022
https://doi.org/10.5194/essd-14-2833-2022
Data description paper
 | 
23 Jun 2022
Data description paper |  | 23 Jun 2022

Improving intelligent dasymetric mapping population density estimates at 30 m resolution for the conterminous United States by excluding uninhabited areas

Jeremy Baynes, Anne Neale, and Torrin Hultgren

Related subject area

Land Cover and Land Use
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024,https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024,https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024,https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary

Cited articles

Azar, D., Engstrom, R., Graesser, J., and Comenetz, J.: Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data, Remote Sens. Environ., 130, 219–232, https://doi.org/10.1016/j.rse.2012.11.022, 2013. 
Baynes, J., Neale, A., and Hultgren, T.: 2010 Dasymetric Population for the Conterminous United States v3, US Environmental Protection Agency Office of Research and Development [data set], https://doi.org/10.23719/1522948, 2021. 
Bellwood, D. R., Hoey, A. S., and Hughes, T. P.: Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs, Proc. Biol. Sci., 279, 1621–1629, https://doi.org/10.1098/rspb.2011.1906, 2012. 
Carroll, R. J., Chen, R., George, E. I., Li, T. H., Newton, H. J., Schmiediche, H., and Wang, N.: Ozone Exposure and Population Density in Harris County, Texas, J. Am. Stat. Assoc., 92, 392–404, https://doi.org/10.1080/01621459.1997.10473988, 1997. 
Cinner, J. E., Graham, N. A., Huchery, C., and Macneil, M. A.: Global effects of local human population density and distance to markets on the condition of coral reef fisheries, Conserv. Biol., 27, 453–458, https://doi.org/10.1111/j.1523-1739.2012.01933.x, 2013. 
Download
Short summary
Census data are typically provided in irregularly shaped spatial units. To get a more refined estimate of population density, we downscaled population counts from United States (US) census blocks to a 30 m grid using intelligent dasymetric mapping. Furthermore, we improved our density estimates by using multiple spatial datasets to identify and mask uninhabited areas. Masking these uninhabited areas improved density estimates for every state in the conterminous US.
Altmetrics
Final-revised paper
Preprint