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Abstract. Population change impacts almost every aspect of global change from land use, to greenhouse gas
emissions, to biodiversity conservation, to the spread of disease. Data on spatial patterns of population density
help us understand patterns and drivers of human settlement and can help us quantify the exposure we face
to natural disasters, pollution, and infectious disease. Human populations are typically recorded by national or
regional units that can vary in shape and size. Using these irregularly sized units and ancillary data related to
population dynamics, we can produce high-resolution gridded estimates of population density through intelli-
gent dasymetric mapping (IDM). The gridded population density provides a more detailed estimate of how the
population is distributed within larger units. Furthermore, we can refine our estimates of population density by
specifying uninhabited areas which have impacts on the analysis of population density such as our estimates of
human exposure. In this study, we used various geospatial datasets to expand the existing specification of unin-
habited areas within the United States (US) Environmental Protection Agency’s (EPA) EnviroAtlas Dasymetric
Population Map for the conterminous United States (CONUS). When compared to the existing definition of un-
inhabited areas for the EnviroAtlas dasymetric population map, we found that IDM’s population estimates for
the US Census Bureau blocks improved across all states in the CONUS. We found that IDM performed better in
states with larger urban areas than in states that are sparsely populated. We also updated the existing EnviroAtlas
Intelligent Dasymetric Mapping toolbox and expanded its capabilities to accept uninhabited areas. The updated
30 m population density for the CONUS is available via the EPA’s Environmental Dataset Gateway (Baynes et
al., 2021, https://doi.org/10.23719/1522948) and the EPA’s EnviroAtlas (https://www.epa.gov/enviroatlas, last
access: 15 June 2022; Pickard et al., 2015).

1 Introduction

Population density is a critical variable for understanding
human–environment relationships. It has been recognized as
an essential societal variable for studying human interactions
with the environment, and it is crucial for quantifying hu-
man exposure to natural hazards. Data on population den-
sity have facilitated global mapping of the changing human
footprint on Earth’s terrestrial surface (Venter et al., 2016).

The drivers and patterns of human settlement and population
growth are a key part of understanding this expanding hu-
man footprint. Population density data allow researchers to
investigate the spatiotemporal patterns of human settlement,
monitor changes in those patterns, and investigate how urban
areas expand (Fang et al., 2018; Wei et al., 2017; Fang and
Jawitz, 2019; Taubenböck et al., 2019). Furthermore, popu-
lation density maps have allowed researchers to identify nat-
ural drivers of population density such as elevation, tempera-
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ture, and precipitation (Liu et al., 2019; Samson et al., 2011).
Population density data offer insights into the impact of hu-
man settlement and the risks and exposure people face from
the environment. Population density has been used to assess
the impacts of human activity on coral reefs (Bellwood et
al., 2012; Cinner et al., 2013; Morais et al., 2019). Consid-
erable work has used population density data to quantify hu-
man exposure and vulnerability to natural disasters and pol-
lution (Smith et al., 2019; Nicholls and Small, 2002; Car-
roll et al., 1997; Samoli et al., 2019; Nahayo et al., 2019;
Nasiri et al., 2018; Yuan et al., 2019). For example, popula-
tion data have been used to quantify US population exposure
to fine particles as part of reporting the costs and benefits of
the Clean Air Act Amendments of 1990 (US Environmen-
tal Protection Agency, 2011). In Vietnam, researchers iden-
tified critical values of population density where the risk of
dengue fever is high (Schmidt et al., 2011). Globally, popu-
lation density was found to be a significant driver of the ori-
gins of emerging infectious diseases from 1940–2004 (Jones
et al., 2008).

In the United States (US), estimating population den-
sity usually involves distributing population counts collected
within source units such as blocks, or block groups delin-
eated by the US Census Bureau. The Census Bureau, like
many other organizations, relies on censuses and surveys to
allocate people to source units. Population density is often
simply estimated as the population count divided by the area
for each source unit. However, the population recorded in
these units can be disaggregated to provide estimates of how
the population within source units is distributed. This disag-
gregation is important when source units are large, varying in
shapes and sizes, or the population within the source units is
not evenly distributed (Leyk et al., 2019). Various techniques
have been used to allocate population counts from source
units to estimate population density. Pycnophylactic interpo-
lation estimates population density within source units using
a grid of equally sized cells (Tobler, 1979). The pycnophylac-
tic property of this method ensures that the counts from each
source unit are maintained in the process and that population
is not lost or displaced beyond the source unit within which it
was recorded (Tobler, 1979). Source units can be divided up
into smaller target units of homogenous population density.
For example, target units can be determined by the spatial in-
tersection between census blocks and land cover classes. In
this example, a target unit consists of the area of a land cover
class inside a census block. Areal weighting distributes the
population of source units to target units by the proportion
of the area of the target unit inside the source unit (Good-
child and Lam, 1980). This method maintains the counts of
the source units as suggested by Tobler (1979). However, the
only determinant of population density is the area of a tar-
get unit inside a source unit. This is problematic where area
might not be the best indicator of population dynamics. For
example, in a source unit that is largely covered by a wildlife
refuge and minimally covered by urban land use, the pro-

portion of the source unit’s population that resides in urban
land use should, in reality, be greater than that in the wildlife
refuge.

Dasymetric allocation of population can incorporate the
population dynamics that are to be expected within source
units in order to estimate population density. Dobson et
al. (2000) used coefficients calculated by weighted combina-
tions of factors that influence human populations to estimate
population density from aggregate population counts. Other
methods have used the random forest algorithm to predict
population density at fine scales using aggregate population
counts and aggregated fine-scale covariates that are related
to population density (Sorichetta et al., 2015; Stevens et al.,
2015). Researchers have modeled gridded population density
from small-area sampling of population counts rather than
using a national census (Weber et al., 2018). To improve esti-
mates, various dasymetric population mapping methods have
used land use–land cover; climatic and topographic variables
such as temperature, precipitation, elevation, and slope; and
socio-economic variables such as nighttime lights, roads, and
points of interest related to human activity (Karunarathne and
Lee, 2019; Lloyd et al., 2019; Ye et al., 2019). Dmowska and
Stepinski (2017) used dasymetric modeling with a hybrid
land cover and land use map to produce a US-wide grid of
population density at 30 m resolution. Their effort estimated
land cover densities using nationwide sampling of homoge-
neous census blocks but left open the possibility that local
sampling from smaller spatial extents could improve results.

Mennis and Hultgren (2006) developed an intelligent
dasymetric mapping (IDM) technique that estimates popula-
tion density by determining class-specific representative pop-
ulation densities from an ancillary raster containing classes
that are indicative of population dynamics. IDM relies on a
limited number of required input datasets, an ancillary raster,
and population source units. This makes IDM an appealing
method over other promising, but more complex, methods
(e.g., machine learning) because of its usability among broad
audiences and applicability at various locations and scales. In
2016, IDM was used to develop a dasymetric population map
of the conterminous US (CONUS) by the Environmental
Protection Agency’s (EPA) Office of Research and Develop-
ment. The map was developed for EnviroAtlas, an online col-
lection of interactive tools and resources that provides data,
research, and analysis on the relationships between nature,
people, health, and the economy (Pickard et al., 2015). Cen-
sus block counts for 2010 were disaggregated to 30 m grid
cells using the 2011 National Land Cover Database (NLCD)
as the ancillary raster. The identification of uninhabited ar-
eas and not allocating people to those areas can further refine
population density to areas where humans are more likely to
settle. This refinement has a marked impact on the accuracy
of estimates of population density (Fang and Jawitz, 2018;
Smith et al., 2019; Leyk et al., 2019).

Uninhabited areas in the 2016 EnviroAtlas dasymetric
population map effort were identified as the open water,
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perennial ice/snow, and emergent herbaceous wetlands land
cover classes along with areas that have a slope greater than
25 %. In this study, we updated the pre-existing EnviroAtlas
dasymetric population map for the CONUS by incorporating
additional geospatial datasets to expand areas identified as
uninhabited. We then conducted an assessment to test the va-
lidity of our methods and measure any improvement in popu-
lation density mapping associated with our effort. While up-
dating the EnviroAtlas dasymetric population map, we also
updated the EnviroAtlas IDM toolbox, a toolbox originally
developed for ESRI ArcMap 10.3 that allows users to create
dasymetric population maps of their own study areas. The
updated methodology has been implemented as a toolbox
for ArcGIS Pro and a standalone Python tool that relies on
open source libraries (US Environmental Protection Agency,
2022a, 2022b). We expanded the IDM toolbox’s capabilities
to accept additional uninhabited areas from users.

2 Data

We updated the existing population density map for CONUS
using data that were nationally consistent and complete, fit
for purpose, freely available or available under existing li-
cense, and relevant to human land use. Table 1 presents the
datasets and layers that were used to update the dasymetric
population map.

2.1 Boundaries

The TIGER/Line shapefiles from the United States Census
Bureau provided state boundaries along with their Federal
Information Processing Series (FIPS) codes (US Census Bu-
reau, 2012). The boundaries for statistical entities from the
US Census Bureau are organized hierarchically from cen-
sus blocks within block groups which are contained within
census tracts within the counties of a state (US Census Bu-
reau, 2012). We used a special release shapefile of the 2010
TIGER/Line census blocks that included the population and
housing counts from the 2010 decennial census carried out
by the US Census Bureau (US Census Bureau, 2012). The
shapefile also includes the state FIPS code, county FIPS
code, the census tract code, and the census tabulation block
number for each block (US Census Bureau, 2012).

2.2 Land cover

The 30 m, 2011 land cover classification from the 2016
NLCD (i.e., NLCD2016 2011) was used as the ancillary
raster (Yang et al., 2018; Homer et al., 2020). Yang et
al. (2018) used a leaf-on Landsat image as the base image
for the 2011 NLCD classification. Pixels with cloud, shade,
and other anomalies in the base Landsat image were filled
using leaf-on or leaf-off Landsat images within 2 years of
the base image (Yang et al., 2018). The NLCD classification

was carried out using a decision-tree classifier with the Land-
sat image and ancillary data (Yang et al., 2018). The overall
user accuracy for NLCD2016 2011 is 86.8 % (Wickham et
al., 2021)

2.3 Land use

In order to identify uninhabited areas, we used sev-
eral publicly available and proprietary datasets from
the OpenStreetMap Foundation & Contributors (OSM),
NAVSTREETS, CoreLogic, the Protected Areas Database
of the US (PAD-US), the North American Rail Net-
work (NARN), NLCD, and the National Elevation Dataset
(NED; OpenStreetMap contributors, 2019; CoreLogic, 2018;
HERE, 2017; Yang et al., 2018; US Geological Survey,
1999). From these data, we used several vector features
and rasters related to built structures, zoning, topogra-
phy, and protected areas. Volunteers contribute and main-
tain geospatial data about roads, rail roads, built struc-
tures, land use, parks, and various other categories for OSM
(OpenStreetMap contributors, 2019). NAVSTREETS pro-
vides boundaries for built structures and land use, and Core-
Logic provides boundaries for residential and non-residential
parcels (CoreLogic, 2018; HERE, 2017). PAD-US is pro-
duced by the United States Geological Survey (USGS) Gap
Analysis Program and provides nation-wide spatial data out-
lining the boundaries of protected open space held by na-
tional, state, and regional/local governments and non-profit
conservation organizations (US Geological Survey, 2018;
Gergely and McKerrow, 2016). NARN is managed by the
Federal Railroad Administration and is a comprehensive
database of the US railway system (Federal Railroad Ad-
ministration, 2019). NLCD includes a developed impervi-
ous descriptor product that classifies the NLCD’s percent
impervious product into types of roads and energy produc-
tion (Yang et al., 2018). The impervious product was devel-
oped by MRLC using regression tree models with Landsat
imagery and training datasets generated from nighttime light
imagery (Yang et al., 2018).

3 Methods

3.1 Uninhabited features

Uninhabited features were identified and prepared for each
CONUS state and Washington, DC. The goal of this step
was to produce a single layer of uninhabited features for each
state that would be used to reclassify NLCD pixels to a new
uninhabited land cover class. From NAVSTREETS, we iden-
tified shopping centers, industrial complexes, cemeteries, air-
craft roads, and rail roads as uninhabited. A 30 m buffer was
created around aircraft road centerlines, and a 15 m buffer
was created around railroad centerlines to ensure that all line
features were converted to raster. Because we could find no
existing rail yard polygon data, rail yard polygons were de-
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Table 1. Datasets used for updating the EnviroAtlas dasymetric population map. IDM uses in bold were used in the 2016 EnviroAtlas
dasymetric population map (m/u: possible mixed-use feature).

Source Dataset/version/ Data name IDM use
format/data type

Census blocks
Vintage, 2010 Census blocks with population and Source units

US Census Bureau TIGER/Line ESRI housing counts
Shapefile
Vector – polygon

Developed, open space Ancillary class

Developed, low intensity Ancillary class

Developed, medium intensity Ancillary class

Developed, high intensity Ancillary class

Barren land (rock/sand/clay) Ancillary class

2011 Land Cover Evergreen forest Ancillary class

Version 2 (2016) Mixed Forest Ancillary class

ERDAS Imagine Shrub/scrub Ancillary class

Multi-Resolution Land Raster – 30 m grassland/herbaceous Ancillary class

Characteristics Consortium/ Pasture/hay Ancillary class

National Land Cover Cultivated crops Ancillary class

Database Woody wetlands Ancillary class

Emergent herbaceous wetlands Ancillary class

Perennial ice/snow Ancillary class

Open water Ancillary class

Developed Primary road in urban area Uninhabited area

Imperviousness Primary road outside urban area Uninhabited area

Descriptor Energy production site in urban
Uninhabited area

2016 Edition, 2011 area

ERDAS Imagine Energy production site outside
Uninhabited area

Raster – 30 m urban area

Land Use A Shopping center Uninhabited feature (m/u)

9, 0, 2017
Industrial complex Uninhabited feature (m/u)

ESRI Geodatabase

HERE/ Vector – polygon Cemetery Uninhabited feature

NAVSTREETS Land Use B
9, 0, 2017 Aircraft roads Uninhabited feature
ESRI Geodatabase
Vector – polygon

Land use Retail Uninhabited feature (m/u)

2019 Commercial Uninhabited feature (m/u)

ESRI Shapefile Mall Uninhabited feature (m/u)

OpenStreetMap Foundation Vector – polygon Industrial Uninhabited feature (m/u)

(OSMF) & Contributors Places of interest
Supermarket Uninhabited feature (m/u)

2019

ESRI Shapefile
School Uninhabited feature

Vector –polygon

Rail network
North American Rail Network 2019 Rail network Uninhabited feature

ESRI Shapefile
Vector – line

Residential parcels
CoreLogic 2018 Residential parcels Inhabited feature

ESRI Shapefile
Vector – polygon
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Combined protected areas Local park Uninhabited feature

Proclamation, State park Uninhabited feature

US Geological Survey Gap marine, fee State forest Uninhabited feature

Analysis Project/ Protected designation, National wildlife refuge Uninhabited feature

Areas Database of the US easement National forest Uninhabited feature

2.0, 2018 National park Uninhabited feature

ESRI Geodatabase National lakeshore/seashore Uninhabited feature

Vector – polygon National grassland Uninhabited feature

2012
US Geological Survey Raster – 30 m National elevation dataset >25% slope=uninhabited

(projected to match area
NLCD)

rived from railroad lines in NARN. We approximated rail
yard extents by applying a 500 m buffer around all rail line
features with “YARDS” in the name field and then dissolved
the resulting polygons into one feature. We then applied a
negative 480 m buffer to the results of the 500 m buffer to
ensure we were not capturing areas outside the extent of the
rail lines. These areas were identified as uninhabited. From
OSM we identified retail, commercial land use, malls, in-
dustrial complexes, supermarkets, and schools as uninhab-
ited (Table 1). Additionally, we designated local parks, state
parks, state forests, national wildlife refuges, national forests,
national parks, national lakeshore or seashore, and national
grasslands from PAD-US as uninhabited (Table 1).

The possibility of housing within the areas we identified
as uninhabited warranted additional attention before mark-
ing the entire area as uninhabited. For example, national
forests have experienced an estimated housing growth of
about 940 000 units between 1940 and 2000 within their
boundaries (Radeloff et al., 2010). In order to allocate po-
tential population within areas identified as uninhabited,
we removed (i.e., spatially clipped) areas covered by resi-
dential parcels within all uninhabited features listed in Ta-
ble 1. We used the residential parcels from the area par-
cel feature class from CoreLogic (2018). Residential parcels
in this dataset included typical single-family residences;
however, multi-family dwellings including apartment com-
plexes, urban mixed use, and retirement communities were
often considered commercial properties. We found no consis-
tent method to isolate these multi-family-inhabited land-use
parcels from other uninhabited commercial parcels; there-
fore, we could not identify all commercial parcels as unin-
habited.

Mixed-use zones may contain census blocks with a mix of
retail, commercial, civic, business, industrial, and residential
land uses (Moos et al., 2018; Song and Knaap, 2004). Several
of the land use types we identified as uninhabited can exist
in mixed-use zoning and thus potentially be inhabited. From
OSM and NAVSTREETS, we labeled shopping centers, in-
dustrial complexes, malls, and supermarkets along with retail

and commercial land uses as areas we initially identified as
uninhabited that can be found in mixed-use zoning (Table 1).
If the combined area of these features covered greater than
90 % of the entire census block area, that block was labeled
as mixed use, and those features within that block were ex-
cluded from our uninhabited features.

Furthermore, if the combined area of features we identified
as uninhabited covered more than 99 % of a census block, all
features within that block were excluded from our uninhab-
ited features. This way, if a census block was covered almost
entirely by uninhabited features, any population recorded in
that block would not be lost. Uninhabited vector features re-
maining after excluding residential parcels, mixed-use fea-
tures, and features that covered more than 99 % of a block
were projected onto an Albers equal-area conical projection
and used as the uninhabited features for IDM (Fig. 1a). The
updated IDM toolbox reclassifies ancillary raster pixels that
coincide with uninhabited features to a new uninhabited an-
cillary class.

3.2 Ancillary raster

NLCD2016 2011 was the basis for the ancillary raster. We
retained the only non-land cover attribute for identifying un-
inhabited areas from the 2016 EnviroAtlas dasymetric popu-
lation map; areas with a slope of greater than 25 % were con-
sidered uninhabited. The percent slope was calculated from
the National Elevation Dataset using GDAL (GDAL/OGR
contributors, 2019). In addition to slope, we used other grid-
ded datasets to mask uninhabited areas. Land cover pixels
that coincided with uninhabited area pixels from Table 1 (i.e.,
primary roads and energy production classes from the devel-
oped imperviousness descriptor, or a slope of greater than
25 %) were reclassified to a new uninhabited land cover class.
This reclassified NLCD classification was used as the ancil-
lary raster for IDM (Fig. 1b).
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Figure 1. Data preparation workflow for uninhabited features (a), ancillary raster (b), and source units (c) for IDM processing.

3.3 Source units

The US Census Bureau blocks with associated population
counts from the 2010 decennial census were used as source
units for IDM. The IDM toolbox converts source units into a
raster that matches the spatial resolution and extent of the in-
put ancillary dataset. Small or irregularly shaped source units
that do not coincide with the center of a pixel at the ancil-
lary dataset resolution will not be represented in the derived
raster, and the population in that unit will not be included in
the estimate of population density. To account for the pop-
ulation in these blocks, we identified any populated census
block that would not be represented in a 30 m×30 m pixel.
These blocks were spatially merged and had their population
added to the neighboring block that met all the following cri-
teria:

1. had the longest shared border,

2. was in the same census tract,

3. had a population greater than zero.

If no neighboring block in the same census tract had popula-
tion, then criteria 3 was dropped. This allowed us to account
for population in these small blocks while not displacing the
population outside of the census tract and limiting displacing
population into unpopulated blocks. Census blocks were pro-
jected onto an Albers equal-area conical projection to match

the NLCD. This modification of the 2010 census blocks was
used as the source units for IDM (Fig. 1c).

3.4 Intelligent dasymetric mapping

The IDM method from Mennis and Hultgren (2006) was
used to estimate the population density (people per pixel).
The modified 2010 US Census Bureau blocks with associ-
ated population were used as source units, and the NLCD
reclassified to incorporate uninhabited areas was used as the
ancillary raster. The target units were created by the spatial
intersection between NLCD classes and US Census Bureau
blocks. Therefore, each target unit consists of the area of an
NLCD class inside a block. A homogenous gridded popula-
tion density (30 m×30 m) was estimated for each target unit
inside the census blocks.

In order to estimate the population density for the target
units, a representative population density was estimated for
each land cover class from NLCD for each state. The repre-
sentative population density of a land cover class is the num-
ber of people per pixel that were expected to reside in that
land cover class throughout the state. IDM offers three ways
to estimate the representative population density for an an-
cillary class. First, a representative population density can be
set for an ancillary class from expert or domain knowledge or
previous research. In line with the 2016 specification of un-
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inhabited areas, the representative population density for the
following land cover classes from NLCD was preset to zero
people per pixel: open water, perennial ice/snow, and emer-
gent herbaceous wetlands. Since we added an additional “un-
inhabited” class to the NLCD classification, we also set the
preset density for this class to zero people per pixel. Second,
the representative population density for an ancillary class
can be sampled from source units that are considered repre-
sentative of that ancillary class. The IDM toolboxes we de-
veloped allow users to set sampling eligibility thresholds. For
this effort we determined that a representative block, b, for a
sampled land cover class, s, met the following criteria.

1. A total of 95 % of the area of the source unit b was cov-
ered by land cover class s.

2. The area of source unit b was greater than 900 m2

(1 pixel).

At least three representative census blocks were required for
a land cover class to be considered sampled. After collecting
all the representative blocks for a sampled land cover class,
the representative population density for the class was esti-
mated as (Mennis and Hultgren, 2006)

D̂s =

m∑
b=1

yb/

m∑
b=1

Ab, (1)

where D̂s is the representative population density of sam-
pled land cover class s, yb is the population count of census
block b,Ab is the area of census block b, andm is the number
of representative blocks for class s.

Since the entire area of the block is used to distribute pop-
ulation counts in Eq. (1), only using blocks where 95 % of
the area is covered by the sampled land cover class ensures
that the representative population density estimated for the
class is based on homogenous blocks. Lastly, intelligent areal
weighting (IAW) was used to calculate the representative
population density for all land cover classes within each state
where insufficient representative blocks were found and no
representative population density was preset. By this point,
a representative population density had been determined by
either a sampled or preset representative population density
for land cover class k (i.e., {k ∈ C |k ∈ (P ∪ S)}, where C
is the set of all ancillary classes, P is the set of all preset
ancillary classes, and S is the set of all sampled ancillary
classes). IAW calculates the remaining population counts for
each source unit after sampled and preset representative pop-
ulation densities have determined a population estimate for
target units in the source unit when possible (Mennis and
Hultgren, 2006):

Gb = yb−
∑

t(k)∈b
D̂kAt(k), (2)

where Gb is the remaining census population count for
block b, D̂k is the representative population density of land

cover class k, andAt(k) is the area of the target unit associated
with land cover class k in census block b.

After calculating the remaining population for each block,
an initial population was allocated to a given block’s target
units associated with land cover class i that had not been de-
termined by either a sampled or preset representative pop-
ulation density (i.e., {i ∈ C|i 6∈ (P ∪ S)}). IAW uses areal
weighting to distribute the remaining census counts to the
remaining target units (Mennis and Hultgren, 2006):

ŷt(i) =

{
0, if Gb < 0

Gb
(
At(i)/

∑
t(i)∈b

At(i)
)
, if Gb ≥ 0 , (3)

where ŷt(i) is the initial estimated population count for the
target unit associated with land cover class i in block b, and
At(i) is the area of the target unit associated with land cover
class i in block b.

Equation (3) differs slightly from the methods of Mennis
and Hultgren in that here an initial population of zero was
allocated to unsampled land cover classes if the total pop-
ulation estimated for sampled or preset classes in the block
exceeded the census count for the block. Although not ex-
plicitly stated in Mennis and Hultgren, this was implied as
it avoids negative population estimates attributed to target
units. After the initial population counts were estimated for
each target unit associated with land cover class i, the repre-
sentative population density of land cover class i was deter-
mined as (Mennis and Hultgren, 2006)

D̂i =

p∑
t(i)=1

ŷt(i)/

p∑
t(i)=1

At(i), (4)

where D̂i is the representative population density of land
cover class i, and p is the number of target units in the study
area that are associated with land cover class i.

After the representative population density for each land
cover class was determined using either a preset density, sam-
pling (Eq. 1), or IAW (Eq. 4), the final population estimate
for target unit t , which consists of the area of a land cover
class c (i.e., {c ∈ C}) inside block b, was calculated as (Men-
nis and Hultgren, 2006)

ŷt =


yb

(
At/

n∑
t=1
At

)
, if

n∑
t=1
D̂c(t) = 0

yb

(
AtD̂c(t)/

n∑
t=1
AtD̂c(t)

)
, if

n∑
t=1
D̂c(t) > 0

, (5)

where ŷt is the population estimated for target unit t asso-
ciated with land cover class c in block b, n is the number of
target units in block b,At is the area of target unit t , and D̂c(t)
is the representative population density of land cover class c
associated with target unit t .

Equation (5) ensured that the population was not displaced
beyond the block (Mennis and Hultgren, 2006). Equation (5)
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is also a slight deviation from Mennis and Hultgren in that
area weighting would be used for population within a block
made up entirely of land cover classes with representative
population densities estimated at or preset to zero. Although
rare, there were instances of populated census blocks com-
posed entirely of these land cover classes. This modification
ensured any population within these blocks was not lost with-
out giving weight to any specific land cover class. The final
population density for a target unit t that is associated with
ancillary class c and source unit b can be calculated as (Men-
nis and Hultgren, 2006)

d̂t = ŷt/At, (6)

where d̂t is the population density (people per pixel) esti-
mated for target unit t .

We chose to apply IDM using sub-national zones versus
a national analysis. States were selected as zones because
they are generally large enough to collect a suitable num-
ber of homogenous source units for sampling while being
small enough to represent some of the heterogeneity in pop-
ulation density across the CONUS. The input blocks, unin-
habited features, and land cover rasters were prepared for
each CONUS state and Washington, DC. In order to increase
the number of representative blocks, all data for Rhode Is-
land were combined with neighboring Massachusetts. Like-
wise, data for Washington, DC, were combined with Mary-
land. Representative population densities were determined
for 17 land cover classes in 47 “states” in the US for a total
of 799 estimated densities (Table 2). Four land cover types
were preset at zero for every state. Of the 611 unique land
cover type–state combinations that were not initially preset
at zero, 596 were determined with sampling, 14 were deter-
mined using IAW, and one was preset (Table 2). In Connecti-
cut, the representative population density for scrub/shrub
was estimated at 3.4 using IAW. This would have resulted
in shrub/scrub having the highest representative population
density for any land cover type in the state, and the estimate
was over 6 standard deviations above the mean for that land
cover type in all states. We chose to rerun IDM for Connecti-
cut using the average representative density for scrub/shrub
from all other states as a preset density. Population density
was determined for each NLCD pixel within each state and
then joined to create a seamless 30 m population density es-
timate for the CONUS (Fig. 2).

3.5 Assessment

The method we described above results in census block esti-
mates equal to the census block numbers reported by the US
Census Bureau; therefore, there is no cumulative error at the
block level. To assess the validity and accuracy of our repre-
sentative population density estimates, we applied IDM to a
larger source unit (i.e., census tract) using densities that we
determined from the smaller source unit (i.e., census block).
In other words, we disaggregated the recorded population for

the census tract using block-level representative population
densities (Fig. 3). We concatenated the state FIPS code, the
county FIPS code, and the tract code to aggregate the census
blocks by tract. The census population count for each tract
was calculated by summing the census population count from
all the blocks inside each tract. An IDM population estimate
for each block was then calculated by summing the per-pixel
population densities estimated by using tracts as source units.

Mean absolute error (MAE) and root mean square error
(RMSE) were calculated to assess the error between the es-
timated block population and the recorded block population.
RMSE was normalized by the mean block population within
the summary unit (i.e., state or county) to facilitate compar-
ison between summary units (NRMSE). These metrics were
calculated for each state and county in CONUS. Addition-
ally, these metrics were calculated for the CONUS to com-
pare model and zone performance and to facilitate compar-
ison with other dasymetric population mapping efforts. The
metrics were calculated as

MAEs =

∑n
b=1

∣∣yb− ŷb
∣∣

n
, (7)

RMSEs =

√∑n
b=1

(
yb− ŷb

)2
n

, (8)

NRMSEs =
RMSEs

ys
, (9)

where yb is the census population count for block b, ŷb is the
estimated population for block b, s is the unit for which cen-
sus block errors are summarized. We used state, county, and
the CONUS. ȳs is the mean census block population count
for unit s, and n is the number of blocks in unit s.

We compared the RMSE and MAE between the 2016
specification of uninhabited areas and our updated specifi-
cation by running IDM for all CONUS states using both
specifications. The 2016 specification of uninhabited areas
used a preset density of zero people per pixel for land cover
classes open water, perennial ice/snow, and emergent herba-
ceous wetlands and included areas with a slope of greater
than 25 %.

4 Results

4.1 IDM performance

NRMSE ranged from 1.21 to 3.39 (Fig. 4; Table 3). The high-
est state NRMSE between census block population counts
and IDM estimated block population counts is for North
Dakota with an RMSE that is 3.39 times the mean census
block population, Wyoming with an RMSE that is 2.91 times
the mean census block population, and Montana with an
RMSE that is 2.60 times the mean census block population
(Table 3). The lowest NRMSE between census block popu-
lation counts and IDM estimated block population counts is
for Connecticut with an RMSE that is 1.21 times the mean
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Table 2. Representative population densities determined using IDM. Note the heat map is scaled light blue to dark blue based on the sorted
rank of densities for each state.

census block population, Michigan with an RMSE that is
1.36 times the mean census block population, and New Jer-
sey with an RMSE that is 1.38 times the mean census block
population (Table 3). NRMSE was summarized by state and
county (Fig. 5), highlighting areas with the highest (tending
towards less densely populated) and lowest values (tending
towards more urban).

4.2 Uninhabited areas

The updated specification of uninhabited areas identified an
additional 186 764 551 30 m pixels (∼ 168 000 km2; an area
slightly less than Washington State) as having zero popula-
tion in comparison to the 2016 specification of uninhabited
(Table 4). Recalling that the nature of IDM does not allow
for population to be displaced beyond the original source
unit (i.e., census block), our updated definition reallocated
approximately 9.56 million people from uninhabited areas to
areas that are more likely to be inhabited (Table 4; Fig. 6).

RMSE and MAE improved for all states with the expan-
sion of uninhabited areas (Table 3). RMSE improved by an
average of 2.46 persons per census block (σ = 1.37), and
MAE improved by an average of 1.10 persons per census
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Figure 2. Population density estimated by intelligent dasymetric mapping at 30 m spatial resolution for the conterminous United States and
areas around (a) Santa Clara County, CA; (b) Natrona and Converse counties, WY; (c) Concho County, TX; (d) metropolitan Chicago, IL;
(e) Durham County, NC; and (f) metropolitan New York City, NY.

block (σ = 0.69) across all states. The most improved states
were New Jersey and New York with a difference in RMSE
of −7.85 and −5.56 and a difference in MAE of −3.72
and −2.89. Some of the least improved states were North
Dakota and Arkansas with a difference in RMSE of −0.76
and −0.92 and a difference in MAE of −0.23 and −0.35
(Table 3). The expanded use of uninhabited areas improved
overall RMSE for the CONUS when applying IDM both with
nationally determined densities and with state level densities
(Table 5).

5 Discussion

5.1 IDM performance

IDM is a useful method to allocate population within hetero-
geneous source units. Intuitively, we would expect that iden-
tifying uninhabited areas within those source units would im-
prove the accuracy of the allocation. Improvements in popu-
lation model performance by adding variables for uninhab-
ited areas were demonstrated by others (Fang and Jawitz,
2018). Many of the widely used models rely on multiple
ancillary data layers to allocate population while acknowl-
edging input data are often limited because of temporal
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Figure 3. A simulated illustration of six census blocks and associated population within a single census tract (a, d). This tract has two
land cover types, A and B, with representative population densities estimated at 5.0 and 0.2, respectively, and an uninhabited feature that is
new to the updated specification of uninhabited areas. Block level errors are provided adjacent to each block. Because our method has no
cumulative error at the block level (b, e), we assessed our representative population densities by applying the densities at the tract level (i.e., no
cumulative error at the tract level) with the updated specification of uninhabited areas (c) and the 2016 specification of uninhabited areas (f).
In this illustration the tract has a MAE of 40.6 with the 2016 specification of uninhabited areas (f) and 11.3 with updated specification
of uninhabited areas (c). Note that for illustrative purposes in this figure, we used the same representative population density estimates
for both updated (a–c) and 2016 (d–f) specifications. In practice the representative population density estimates for the updated and 2016
specifications were determined independently and most likely would have been different.

Figure 4. NRMSE between block population estimates and block population census counts calculated for CONUS states (a) and counties (b).
Block population was estimated by running IDM with census tracts as source units and applying representative population densities estimated
by IDM using census blocks as preset densities.

constraints and necessity to cover large extents (Leyk et
al., 2019). With a decrease in RMSE and MAE for every
CONUS state after identifying additional uninhabited areas,
we have shown that with suitable, nationally consistent data
improvements in population density, estimates can be real-
ized on regional, state, and country scales at a high spatial
resolution.

Dasymetric mapping across an area as large and heteroge-
nous as the CONUS benefited from the use of sub-national
zones. Applying IDM on a state-by-state basis showed an im-
provement over using densities determined from a national
analysis. A balance must be found in defining zones to en-
sure they are large enough to provide enough data to de-
velop a useful model and small enough to maintain a suitable
level of homogeneity within the zone. We attempted to fur-
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Figure 5. Census urban areas and county NRMSE between census block population count and the estimated block population count from
IDM for some of the states with the lowest NRMSE ((a) Connecticut, (b) Michigan, and (c) New Jersey) and highest NRMSE ((d) Montana,
(e) Wyoming, and (f) North Dakota).

Figure 6. A census block near Sacramento, California, with a cemetery (i.e., uninhabited feature) covering most of the block and residential
housing along the eastern border (a). IDM results with the 2016 specification of uninhabited (b) have population throughout the block while
IDM results with the updated specification of uninhabited (c) have zero population for the cemetery and denser population along the eastern
border.

ther refine our product by using county-level 2013 United
States Department of Agriculture Rural Urban Continuum
Codes (RUCC) to create additional ancillary classes (US De-
partment of Agriculture, 2020). RUCC has nine classes but
can be collapsed to official Office of Management and Bud-
get metro and nonmetro county classification. We processed
each state as described above but altered the ancillary raster
so that the four developed NLCD classes within metro coun-
ties were given different values than the developed classes
within nonmetro counties. This analysis did not show a sig-
nificant difference in RMSE when compared to our state-by-
state analysis. There may be a better scheme to highlight the
differing population dynamics between rural and urban areas,
but it would likely require more refined data than the county

level. Dmowska and Stepinski (2017) used nationally deter-
mined densities but achieved lower error by taking advantage
of a national land use map (Theobald, 2014) to identify unin-
habited areas. We calculated a measure of error following the
methods described in Dmowska and Stepinski (2017) and our
error was comparable, but higher (43.17 mean block group
RMSE versus 45.21 mean block group RMSE). However, the
development of the Theobald land use map required a signifi-
cant effort, and it is not clear whether those data will be avail-
able beyond 2010. The methods described here resulted in a
comparable product using a variety of readily available and
frequently updated data sources that can be appended as new
sources become available or replaced entirely when more re-
fined locally available data identifying uninhabited areas are
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Table 3. Census block average error by state after applying block
level representative population densities for each ancillary class to
census tracts and ensuring pycnophylactic integrity at the tract level.
Changes in error from the 2016 specification of uninhabited areas
are in parentheses.

State RMSE NRMSE MAE

AL 36.32 (−1.48) 1.86 (−0.08) 13.13 (−0.6)
AR 33.21 (−0.92) 2.07 (−0.06) 11.50 (−0.35)
AZ 52.18 (−2.88) 1.94 (−0.11) 15.84 (−1.02)
CA 78.32 (−5.05) 1.47 (−0.09) 28.31 (−2.67)
CO 44.50 (−2.84) 1.74 (−0.11) 15.46 (−1.29)
CT 65.43 (−2.56) 1.21 (−0.05) 28.29 (−1.71)
DC_MD 75.54 (−3.13) 1.73 (−0.07) 27.81 (−1.71)
DE 64.97 (−4.45) 1.71 (−0.12) 25.09 (−1.97)
FL 66.61 (−3.29) 1.68 (−0.08) 23.05 (−1.33)
GA 59.00 (−4.44) 1.75 (−0.13) 20.58 (−1.65)
IA 28.17 (−0.99) 1.97 (−0.07) 10.25 (−0.45)
ID 23.80 (−1.46) 2.23 (−0.14) 7.51 (−0.46)
IL 49.90 (−3.37) 1.72 (−0.12) 18.92 (−1.55)
IN 41.92 (−1.74) 1.69 (−0.07) 15.62 (−0.86)
KS 25.74 (−0.99) 2.11 (−0.08) 8.38 (−0.34)
KY 43.22 (−3.17) 1.57 (−0.12) 16.54 (−1.17)
LA 44.59 (−1.22) 1.96 (−0.05) 15.59 (−0.58)
ME 36.80 (−1.56) 1.88 (−0.08) 13.10 (−0.48)
MI 41.38 (−2.47) 1.36 (−0.08) 16.14 (−1.29)
MN 36.80 (−1.87) 1.77 (−0.09) 13.05 (−0.83)
MO 32.32 (−1.28) 1.80 (−0.07) 11.26 (−0.63)
MS 39.11 (−0.98) 2.21 (−0.06) 13.08 (−0.58)
MT 19.66 (−1.68) 2.60 (−0.22) 6.08 (−0.49)
NC 48.84 (−1.99) 1.46 (−0.06) 19.83 (−0.91)
ND 17.27 (−0.76) 3.39 (−0.15) 4.61 (−0.23)
NE 21.04 (−1.41) 2.18 (−0.15) 6.91 (−0.42)
NH 46.90 (−1.81) 1.69 (−0.07) 17.33 (−0.91)
NJ 73.17 (−7.85) 1.38 (−0.15) 29.52 (−3.72)
NM 29.95 (−1.96) 2.41 (−0.16) 8.81 (−0.65)
NV 64.16 (−2.33) 1.98 (−0.07) 18.42 (−1.07)
NY 89.75 (−5.56) 1.60 (−0.1) 32.59 (−2.89)
OH 48.09 (−2.6) 1.48 (−0.08) 17.89 (−1.42)
OK 30.35 (−1.29) 2.12 (−0.09) 9.75 (−0.49)
OR 36.90 (−2.57) 1.87 (−0.13) 11.75 (−0.88)
PA 54.89 (−3.99) 1.79 (−0.13) 20.45 (−1.67)
RI_MA 63.00 (−2.18) 1.46 (−0.05) 25.41 (−1.34)
SC 44.46 (−1.93) 1.71 (−0.07) 16.53 (−0.81)
SD 23.18 (−1.77) 2.49 (−0.19) 7.52 (−0.55)
TN 44.51 (−1.99) 1.65 (−0.07) 16.63 (−0.81)
TX 58.50 (−2.41) 2.08 (−0.09) 18.47 (−1.12)
UT 41.00 (−3.08) 1.68 (−0.13) 13.38 (−1.27)
VA 63.94 (−1.3) 2.24 (−0.05) 17.45 (−1.44)
VT 34.48 (−3.03) 1.74 (−0.15) 11.83 (−1.04)
WA 51.45 (−3.72) 1.47 (−0.11) 18.99 (−1.56)
WI 36.56 (−3.27) 1.59 (−0.14) 13.61 (−1.53)
WV 27.07 (−1.49) 1.91 (−0.11) 9.58 (−0.61)
WY 19.35 (−1.47) 2.91 (−0.22) 5.79 (−0.46)

available. The combination of identifying uninhabited areas
along with the use of local or regional zones reduced RMSE
and resulted in a more accurate dasymetric population prod-
uct.

The representative population densities determined from
IDM (Table 2) intuitively make sense. The four developed
land cover classes were consistently orders of magnitude
higher than all other land cover classes for all states. The den-
sities were higher for “developed, low intensity” compared to
“developed, open space” and were almost always higher for
“developed, medium intensity” compared to “developed, low
intensity”. The “developed, high intensity” land cover class
was, however, often lower than the medium-intensity class
likely due to the influence of highly developed and lightly
populated industrial and commercial areas.

IDM’s accuracy seems to be dependent on the spatial dis-
tribution of the population. States with the lowest NRMSE
such as Connecticut and New Jersey tend to have larger urban
areas with higher population counts well distributed through-
out the state. This trend is likely from these states having a
higher number of homogenous blocks from across the state
identified as representative blocks. Conversely, states with
the highest NRMSE such as North Dakota and Wyoming
tend to be characterized by small population centers sur-
rounded by large sparsely populated lands (Fig. 5). These
states tend to have fewer, less evenly distributed blocks el-
igible to be representative blocks. The same pattern seems to
be repeated for counties. A given state’s IDM representative
population densities perform better in counties with a dis-
persed distribution of high population throughout the county
rather than a stark difference between high-population cen-
ters and surrounding sparsely populated areas. For example,
some of the counties with the highest NRMSE in central
and western Montana are characterized by low-population
blocks throughout the county with small concentrations of
higher-population blocks (Fig. 5). Furthermore, the counties
in Michigan’s upper peninsula with fewer urban areas tend
to have higher NRMSE than the counties in the south with
more distributed urban areas (Fig. 5).

5.2 Uncertainty and limitations

Dasymetric modeling assumes a predictive relationship be-
tween ancillary data and a ground truth population surface,
but, like any model, it only represents an approximation, with
various sources of uncertainty. The core assumption is that
population density is homogenous within ancillary classes,
and many studies, including this one, put emphasis on refin-
ing those ancillary classes to make them more homogenous,
or to allow for a degree of spatial autocorrelation in the het-
erogeneity of in-class density by using different estimates in
different zones. As higher-resolution ancillary data become
more readily available, such efforts may face diminishing
returns because a smaller spatial unit of measurement may
have less sub-unit heterogeneity but more proportional un-
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Table 4. Count of pixels with and without population using the 2016 specification of uninhabited and the updated specification of uninhabited.
Note that counts include pixels within zero population blocks.

Pixels with Pixels with Population in updated
population= 0 population> 0 uninhabited

2016 dasymetric map 4 338 376 834 4 641 477 058 9 564 807
Updated dasymetric map 4 525 111 385 4 454 742 507 –
Difference (186 734 551) 186 734 551 9 564 807

Table 5. Census block error for CONUS after applying block-level representative population density for each ancillary class to census tracts
and ensuring pycnophylactic integrity at the tract level.

RMSE NRMSE MAE

2016 uninhabited areas (nationally determined densities) 58.14 2.04 4.48
Updated uninhabited areas (nationally determined densities) 55.31 1.95 4.34
2016 uninhabited areas (state-by-state determined densities) 54.80 1.93 4.30
Updated uninhabited areas (state-by-state determined densities) 51.93 1.83 4.15

certainty with regard to the population estimates (Azar et al.,
2013; Nagle et al., 2014). Reducing uncertainty, therefore,
is a matter of refining the fidelity between the ancillary data
and the population density surface through a combination of
automated and expert-guided techniques, often iteratively.

The decision to substitute the representative population
density of shrub/scrub in Connecticut with a national average
illustrates the importance of reviewing the output of IDM. In-
deed, we would not expect shrub/scrub to be the most densely
populated land cover class within Connecticut, and the esti-
mated density is clearly an outlier when compared to other
states’ values for that same land cover class. While there are
other values in our final estimates (Table 2) that may warrant
additional attention, we believed this particular representa-
tive population density was so far outside the range of the
other states we needed to consider an alternative value. It is
imperative to review the results for logical consistency and
consider modifications based on local knowledge before ac-
cepting the results.

Data for our uninhabited areas have a wide temporal
range due to the varying frequency at which they are up-
dated. For example, OSM data reflect the most recent ed-
its made by contributors while the NLCD roads and en-
ergy development are from 2011. Although our population
estimates are from the 2010 decennial census, the unin-
habited areas are not restricted to 2010. There might be
additional uninhabited areas since 2010. Furthermore, the
rules applied to filter and refine uninhabited areas were
determined for a national allocation of population. The
EnviroAtlas IDM toolbox for ArcGIS Pro (https://github.
com/USEPA/Dasymetric-Toolbox-ArcGISPro, last access:
15 June 2022) or open source GIS (https://github.com/
USEPA/Dasymetric-Toolbox-OpenSource, last access: 15
June 2022) can be used to refine population estimates if more
detailed local or regional data for uninhabited areas are avail-

able. It is important to note that the accuracy of the pop-
ulation estimates is dependent on the accuracy of the in-
put data. Some sources of uncertainty are the accuracy of
the NLCD classification, the census block boundaries, and
the boundaries and labels of various OSM, PAD-US, and
NAVSTREETS layers.

6 Code and data availability

The Dasymetric Toolbox for ArcGIS Pro (https://github.
com/USEPA/Dasymetric-Toolbox-ArcGISPro, last access:
15 June 2022; https://doi.org/10.5281/zenodo.6645816, US
Environmental Protection Agency, 2022a) and Dasymetric
Toolbox for Open Source GIS (https://github.com/USEPA/
Dasymetric-Toolbox-OpenSource, last access: 15 June 2022;
https://doi.org/10.5281/zenodo.6645824, US Environmen-
tal Protection Agency, 2022b) are available on the US
EPA’s GitHub page. The updated EnviroAtlas dasymet-
ric population map at 30 m resolution for the CONUS
is available via the EPA’s Environmental Dataset Gate-
way (https://doi.org/10.23719/1522948, Baynes et al., 2021).
Data can also be accessed or viewed from the EPA’s En-
viroAtlas (https://www.epa.gov/enviroatlas, last access: 15
June 2022; Pickard et al., 2015). Dasymetric population es-
timates for US states and territories outside the CONUS are
in progress. Updates for all US states and territories for the
2020 US Census are planned and will be available on the
EPA’s EnviroAtlas.

Maps throughout this article were created using ArcGIS®

software by Esri. ArcGIS™ and ArcMap™ are the intel-
lectual property of Esri and are used herein under license.
Copyright © Esri. All rights reserved. For more information
about Esri® software, please visit https://www.esri.com (last
access: 15 June 2022). Use of OpenStreetMap data requires
the following acknowledgement: “Map data copyrighted
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OpenStreetMap contributors and available from https://www.
openstreetmap.org”(last access: 15 June 2022).

7 Conclusions

In this study, we updated the existing dasymetric population
map by the EPA’s EnviroAtlas by using additional geospa-
tial datasets to expand the coverage of uninhabited areas.
We used IDM developed by Mennis and Hultgren (2006) to
estimate gridded 30 m population density for the CONUS.
The improved identification and masking of uninhabited ar-
eas improved the accuracy of population estimates for all
CONUS states. Our accuracy assessment method showed
that the IDM method was better at mirroring the census
block population counts of states with larger urban areas
and smaller areas of sparsely populated land. The datasets
and methods described here will be used to update the dasy-
metric population estimates for the CONUS once 2020 land
cover and census data are available. Furthermore, the updated
IDM toolbox will be used to specify uninhabited areas and
to produce gridded population estimates for Alaska, Hawaii,
Puerto Rico, and the Virgin Islands. The dasymetric popula-
tion map and the IDM toolbox will be available in EnviroAt-
las.
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