Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2613-2022
https://doi.org/10.5194/essd-14-2613-2022
Data description paper
 | 
08 Jun 2022
Data description paper |  | 08 Jun 2022

A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019

Peilin Song, Yongqiang Zhang, Jianping Guo, Jiancheng Shi, Tianjie Zhao, and Bing Tong

Related authors

Integration of the vegetation phenology module improves ecohydrological simulation by the SWAT-Carbon model
Mingwei Li, Shouzhi Chen, Fanghua Hao, Nan Wang, Zhaofei Wu, Yue Xu, Jing Zhang, Yongqiang Zhang, and Yongshuo H. Fu
Hydrol. Earth Syst. Sci., 29, 2081–2095, https://doi.org/10.5194/hess-29-2081-2025,https://doi.org/10.5194/hess-29-2081-2025, 2025
Short summary
A high-resolution (0.05°) global seamless continuity record (2002–2023) of near-surface soil freeze-thaw states via passive microwave and optical satellite data
Defeng Feng, Tianjie Zhao, Jingyao Zheng, Yu Bai, Youhua Ran, Xiaokang Kou, Lingmei Jiang, Ziqian Zhang, Pei Yu, Jinbiao Zhu, Jie Pan, Jiancheng Shi, and Yuei-An Liou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-62,https://doi.org/10.5194/essd-2025-62, 2025
Preprint under review for ESSD
Short summary
Low-level atmospheric turbulence dataset in China generated by combining radar wind profiler and radiosonde observations
Deli Meng, Jianping Guo, Juan Chen, Xiaoran Guo, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Hui Xu, Tianmeng Chen, Rongfang Yang, and Jiajia Hua
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-138,https://doi.org/10.5194/essd-2025-138, 2025
Revised manuscript under review for ESSD
Short summary
A high-resolution divergence and vorticity dataset in Beijing derived from the radar wind profiler mesonet measurements
Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-589,https://doi.org/10.5194/essd-2024-589, 2025
Revised manuscript under review for ESSD
Short summary
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, Sang-Keun Song, and Kyung-Ja Ha
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025,https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary

Related subject area

Hydrology
GRILSS: opening the gateway to global reservoir sedimentation data curation
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025,https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025,https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025,https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025,https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary

Cited articles

Albergel, C., de Rosnay, P., Gruhier, C., Munoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226, https://doi.org/10.1016/j.rse.2011.11.017, 2012. 
Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically weighted regression: A method for exploring spatial nonstationarity, Geogr. Anal., 28, 281–298, 1996. 
Busch, F. A., Niemann, J. D., and Coleman, M.: Evaluation of an empirical orthogonal function-based method to downscale soil moisture patterns based on topographical attributes, Hydrol. Process., 26, 2696–2709, 2012. 
Carlson, T. N., Gillies, R. R., and Perry, E. M.: A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover, Remote Sens. Rev., 9, 161–173, 1994. 
Champagne, C., McNairn, H., and Berg, A. A.: Monitoring agricultural soil moisture extremes in Canada using passive microwave remote sensing, Remote Sens. Environ., 115, 2434–2444, 2011. 
Download
Short summary
Soil moisture information is crucial for understanding the earth surface, but currently available satellite-based soil moisture datasets are imperfect either in their spatiotemporal resolutions or in ensuring image completeness from cloudy weather. In this study, therefore, we developed one soil moisture data product over China that has tackled most of the above problems. This data product has the potential to promote the investigation of earth hydrology and be extended to the global scale.
Share
Altmetrics
Final-revised paper
Preprint