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Abstract. Surface soil moisture (SSM) is crucial for understanding the hydrological process of our earth sur-
face. The passive microwave (PM) technique has long been the primary tool for estimating global SSM from
the view of satellites, while the coarse resolution (usually >∼ 10 km) of PM observations hampers its applica-
tions at finer scales. Although quantitative studies have been proposed for downscaling satellite PM-based SSM,
very few products have been available to the public that meet the qualification of 1 km resolution and daily re-
visit cycles under all-weather conditions. In this study, we developed one such SSM product in China with all
these characteristics. The product was generated through downscaling the AMSR-E/AMSR-2-based (Advance
Microwave Scanning Radiometer of the Earth Observing System and its successor) SSM at 36 km, covering all
on-orbit times of the two radiometers during 2003–2019. MODIS optical reflectance data and daily thermal-
infrared land surface temperature (LST) that had been gap-filled for cloudy conditions were the primary data
inputs of the downscaling model so that the “all-weather” quality was achieved for the 1 km SSM. Daily images
from this developed SSM product have quasi-complete coverage over the country during April–September. For
other months, the national coverage percentage of the developed product is also greatly improved against the
original daily PM observations through a specifically developed sub-model for filling the gap between seams
of neighboring PM swaths during the downscaling procedure. The product compares well against in situ soil
moisture measurements from 2000+ meteorological stations, indicated by station averages of the unbiased root
mean square difference (RMSD) ranging from 0.052 to 0.059 vol vol−1. Moreover, the evaluation results also
show that the developed product outperforms the SMAP (Soil Moisture Active Passive) and Sentinel (active–
passive microwave) combined SSM product at 1 km, with a correlation coefficient of 0.55 achieved against that
of 0.40 for the latter product. This indicates the new product has great potential to be used by the hydrological
community, by the agricultural industry, and for water resource and environment management. The new product
is available for download at https://doi.org/10.11888/Hydro.tpdc.271762 (Song and Zhang, 2021b).
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1 Introduction

Surface soil moisture (SSM) is one of the most impor-
tant variables that dominate the mass and energy cycles
of the earth surface system (Entekhabi et al., 2010b).
Satellite-based SSM datasets of sufficiently fine spatiotem-
poral resolutions over large-scale areas have significant im-
plications for improved investigations in various research
fields including hydrological signature identification (Zhou
et al., 2021; Jung et al., 2010), agricultural yield pro-
duction estimation (Ines et al., 2013; Pan et al., 2019),
drought/waterlogging monitoring and warning (Vergopolan
et al., 2021; Den Besten et al., 2021; Jing and Zhang,
2010), and weather prediction and future climate analy-
sis (Koster et al., 2010; Walker and Houser, 2001). Mi-
crowave bands with centimeter-sized or longer wavelengths
(X-band, C-band, and L-band) are currently identified as
the primary band channels suitable for SSM observations
from the view of satellites due to their high penetration ca-
pabilities through cloud layers and vegetation canopies. In
terms of sensor types, microwave SSM detection includes
passive microwave (radiometer-based) techniques and active
microwave (radar, scatterometer) techniques. Satellite-based
passive microwave (PM) radiometers, e.g., Soil Moisture
Active Passive (SMAP), Soil Moisture and Ocean Salinity
(SMOS), and the Advance Microwave Scanning Radiometer-
2 (AMSR-2), can obtain SSM observations at a revisit inter-
val of 1–3 d, with relatively poor native spatial resolutions
of tens of kilometers. Active microwave (AM) such as radar
can achieve kilometer-scale and even finer resolutions of
observations targeting the earth surface. However, this usu-
ally sacrifices the swath width of radar configuration, be-
cause of which most satellite-based synthetic aperture radars
(SARs) have an obviously longer global revisit cycle (usually
longer than 5 d, e.g., Sentinel-1 SAR data) than the typical
radiometers. Moreover, AM radar backscatter signals are ex-
tremely sensitive to speckle noise (Entekhabi et al., 2016), as
well as the influence from soil roughness, vegetation canopy
structure, and water content (Piles et al., 2009). All the
above influential factors have seriously impeded the use of
AM radar techniques or combination of passive–active mi-
crowave datasets for producing high-spatial-resolution SSM
products with a frequent revisit.

Apart from microwave signals, solar reflectance or ground
emission signals originating from optical and infrared band
domains also have the potential to reflect SSM variation.
Based on optical and infrared bands, however, SSM is typ-
ically estimated based on indirect relationships through in-
termediate variables like soil evaporation (Komatsu, 2003),
vegetation condition (Zeng et al., 2004), or soil thermal in-
ertia (Verstraeten et al., 2006). To overcome the spatiotem-
porally instable performance in SSM modeling that might
be brought by such indirect relationships, they are typically
fused with the PM SSM datasets. In this manner, it can rec-
oncile the advantage of PM observations well with respect

to its high sensitivity to SSM variation, as well as that of
optical and infrared observations with respect to its finer spa-
tial resolutions at kilometer or even hectometer scales. Such
data fusion techniques are also known as downscaling tech-
niques of PM remote sensing SSM. Archetypal downscaling
models include the models based on the universal triangle
feature space (UTFS) (Chauhan et al., 2003; Choi and Hur,
2012; Sanchez-Ruiz et al., 2014), the DISaggregation based
on a Physical And Theoretical scale CHange (DISPACTH)
model (Merlin et al., 2010, 2005, 2013, 2008), and the Uni-
versity of California Los Angeles (UCLA) model (Peng et
al., 2016). The physics of these models are mainly based on
the response of SSM variation to changes in soil evapora-
tion or land surface evapotranspiration. Another significant
branch of such downscaling models is based on the sensi-
tivity of SSM to soil thermal inertia, which is quantified by
diurnal land surface temperature (LST) difference estimated
from thermal-infrared wave bands (Fang and Lakshmi, 2013;
Fang et al., 2018).

Sabaghy et al. (2020) have shown that using optical and in-
frared data can achieve finer-resolution SSM estimates which
are more consistent with ground soil moisture records com-
pared with using the radar datasets. Moreover, considering
the short revisit cycle (daily) of optical and infrared sen-
sors on board typical polar-orbit satellites, using optical and
infrared datasets to downscale PM SSM should be among
the optimal methods for obtaining SSM data with high spa-
tiotemporal resolutions over national, continental, or global
scales. On the other hand, satellite remote sensing SSM prod-
ucts that are characterized by 1 km resolution of daily re-
visit intervals and stable, long time series dating back to at
least 15–20 years ago are urgently required for accelerat-
ing the development of various research fields, especially the
agriculture industry, water resources management, and hy-
drological disaster monitoring (Sabaghy et al., 2020; Men-
doza et al., 2016). However, very seldom are sets of such
data products publicly available to the remote sensing re-
search community because of the following drawbacks. First,
there is a serious lack of cloud-free optical and infrared im-
agery, which means the method cannot deliver any SSM
downscaling under cloudy/rainy weather. Second, most of
the above-mentioned optical and infrared data-based down-
scaling methods were mainly evaluated at regional or even
smaller scales. This might raise concern on the universal-
ity of those methods. For example, the DISPATCH method
has been recognized to be less effective in humid (energy-
limited) regions compared with in arid and semi-arid (water-
limited) regions (Molero et al., 2016; Song et al., 2021;
Zheng et al., 2021). As far as the UTFS-based method is
concerned, a poorer performance was obtained compared to
the DISPATCH in a typical water-limited region in North
America, according to the experiment conducted by Kim and
Hogue (2012).

To improve the above-mentioned issues, we produced an
all-weather daily SSM data product at 1 km resolution all
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over China during 2003–2019, based on the fusion of mul-
tiple remote sensing techniques, including reconstruction of
optical and infrared observations under cloudy weather, as
well as an improved PM SSM downscaling methodology
proposed in our previous study (Song et al., 2021). The po-
tential significance of this study includes

1. better serving and investigating the land surface hydrol-
ogy processes and their sophisticated interactions with
human society at multi-scale (from national to regional)
resolutions in China because the country covers about
1/15 of the global terrestrial area with about 1/5 of the
world population, and

2. providing a methodology framework that can inspire fu-
ture studies on generating similar SSM datasets all over
the globe, based on the plentifulness of resources on cli-
mate type, land covers, and topography in China.

2 Methods and materials

2.1 Datasets

2.1.1 PM SSM data

Spatial downscaling of PM SSM is the fundamental the-
ory for constructing the target finer-resolution data product
in this study. Therefore, the native retrieval accuracy of the
coarse-resolution PM SSM data product, based on which
the downscaling procedures are performed, is considerably
crucial to the performance of the downscaled data product
(Busch et al., 2012; Im et al., 2016; Kim and Hogue, 2012).
Although the L-band PM brightness temperature (TB) ob-
served by satellite missions such as SMAP or SMOS is con-
sidered more suitable for SSM retrieval compared with C-
or X-band TB, both above missions started their space op-
erations in the 2010s. This means that to obtain downscaled
SSM of longer historical periods, we are still required to rely
on other C-/X-band-based radiometers which started their
operations earlier than SMAP and SMOS. An optimal satel-
lite PM TB observation system dating back to earlier years of
this century is composed of the Advanced Microwave Scan-
ning Radiometer of the Earth Observing System (AMSR-
E), together with its successor AMSR-2. AMSR-E operated
during 2002–2011 on board the Aqua satellite which is op-
erated by the National Aeronautics and Space Administra-
tion (NASA), whilst AMSR-2 has been operating on board
the Global Change Observation Mission 1 Water (GCOM-
W1) satellite developed by the Japan Aerospace Exploration
Agency (JAXA) since 2012.

Several classical PM SSM retrieval algorithms have been
applied to the aforementioned AMSR series (including
AMSR-E and AMSR-2) TB for generating long-term global
SSM products at 25 km (Table 1), including the JAXA algo-
rithm (Fujii et al., 2009; Koike et al., 2004), the Land Param-
eter Retrieval Model (LPRM) algorithm (Song et al., 2019b;

Meesters et al., 2005; Owe et al., 2001), and the algorithm
developed by the University of Montana (UMT) (Jones et
al., 2009; Du et al., 2016). A recent AMSR-based nighttime
SSM product during 2002–2019 has been produced through a
neural network trained against SMAP radiometer-based de-
scending SSM (hereafter referred to as “NN-SM product”)
(Yao et al., 2021). The global validation results show that this
NN-SM product is better than the JAXA and LPRM prod-
ucts.

Moreover, the NN-SM has also been compared with an-
other long-term ∼ 25 km all-weather SSM dataset gener-
ated through the European Space Agency (ESA)’s Climate
Change Initiative (CCI) program. The ESA-CCI SSM prod-
uct is different from the products mentioned above in that
it was implemented through the fusion of observations from
comprehensive AM- and PM-based satellite sensors rather
than only relying on the radiometers of the AMSR series. Ac-
cording to Yao et al. (2021), the ESA-CCI SSM has slightly
better validation accuracy than the NN-SM product, but the
number of available observations per pixel cell in an entire
year is much smaller for the ESA-CCI SSM in Southeast
China. In view of all of the above coarse-resolution SSM
data products, we finally selected the NN-SM product to im-
plement the following spatial downscaling procedures rather
than the ESA-CCI SSM to make a balance between data ac-
curacy and data availability per year. We have also made ad-
ditional evaluations within China in Appendix A to ensure
the relatively outstanding performance of the NN-SM prod-
uct as described above.

2.1.2 Optical remote sensing data and digital elevation
model (DEM)

Optical remote sensing datasets provide finer spatial texture
information on the daily basis for the downscaling purpose
of PM SSM. Such data that can be used as inputs of our
SSM product processing line are mainly provided by the
Moderate-resolution Imaging Spectroradiometer (MODIS)
on board the Terra and Aqua satellites. Specifically, they
involve the 1 km daily nighttime Aqua MODIS LST prod-
uct (MYD21A1N.v061) and the 500 m daily Bidirectional
Reflectance Distribution Function (BRDF) – Adjusted Re-
flectance dataset (MCD43A4.v061). MYD21A1 LST data
can be recognized as a crucial proxy of land surface thermal
capacity (Fang et al., 2013) and soil evaporative rate (Merlin
et al., 2008). The MCD43A4 nadir reflectance product, with
view angle effect corrected using the BRDF model, is capa-
ble of providing observations from visible to shortwave in-
frared bands that can characterize water content variation in
the bare soils as well as the vegetation canopy. Overall, the
above-mentioned datasets were selected primarily because
they deliver indicators (land surface thermal capacity, soil
evaporative rate, or vegetation condition) that can respond
well to soil moisture dynamics from different aspects. Prior
to being employed for SSM downscaling, a conventional pre-
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Table 1. Information of all-weather microwave remote sensing coarse-resolution SSM data products that can be potentially downscaled to
obtain fine-resolution SSM.

Name Resolution Satellite radiometers involved Data availability (URL)

NN-SM product 36 km (by the
EASE-Grid
projection)

AMSR-E/AMSR-2 (2002–2011, 2012–
present)

https://data.tpdc.ac.cn/en/data/
c26201fc-526c-465d-bae7-5f02fa49d738/
(last access: 10 March 2021)

ESA-CCI v6.1 product 0.25◦ AMSR-E/AMSR-
2/SMOS/WindSat/SMMR/SSM/I/TMI
(1978–2020)

https://www.esa-soilmoisture-cci.org/v06.
1_release (last access: 15 June 2021)

JAXA product 0.25◦/0.1◦ AMSR-E/AMSR-2 (2002–2011, 2012–
present)

https://gportal.jaxa.jp/ (last access:
15 June 2021)

LPRM product 0.25◦/0.1◦ AMSR-E/AMSR-2 (2002–2011, 2012–
present)

https://search.earthdata.nasa.gov/ (last ac-
cess: 16 June 2021)

UMT product 25 km (by the
EASE-Grid
projection)

AMSR-E/AMSR-2 (2002–present) http://files.ntsg.umt.edu/data/LPDR_v2/
(last access: 18 June 2021)

processing procedure of pixel quality check was applied for
both optical products by screening out pixels not classed
as “good quality”, according to the 8 bit quality assessment
(QA) field of each spectral band. Moreover, to normalize
their natively different spatial resolutions, all MCD43A4-
based reflectance values at the 500 m pixel level were up-
scaled to the sinusoidally projected MODIS 1 km grids using
their spatial averages.

Apart from MODIS optical remote sensing data, all 90 m
DEM tiles generated by the NASA Shuttle Radar Topogra-
phy Mission (SRTM; http://srtm.csi.cgiar.org/, last access:
10 July 2020) were mosaicked all over China and then em-
ployed as another essential input variable for the procedures
as described in Sect. 2.2.2 below. Similar to that applied
to the MCD43A4 product, spatial upscaling in correspon-
dence to the MODIS 1 km grids is also an indispensable pre-
processing step for the mosaicked DEM data.

2.1.3 Study area and validation data

Our study area is set up as the total terrestrial extent of China.
To comprehensively evaluate the SSM downscaling perfor-
mances for different geographic regions (see Sect. 3.3), we
divided the country further into six different geographic–
climate regions using elevation, precipitation, hydrogeology,
vegetation type, and topography. The six regions include the
northeast monsoon (NEM) region, the northwest arid (NWA)
region, the Qinghai–Tibet Plateau (QTP) region, the North
China Monsoon (NCM) region, the South China Monsoon
(SCM) region, and the southwest humid (SWH) region. The
detailed delimitation principle of these geographic–climate
regions was originally described in Meng et al. (2021). The
geographic zoning map is shown in Fig. 1, while the corre-
sponding shapefile boundary files can be accessed from the

Resource and Environment Science and Data Center of the
Chinese Academy of Sciences (http://www.resdc.cn/, last ac-
cess: 22 May 2021).

We utilized ground soil moisture measurements for vali-
dating the downscaled remote sensing SSM product at the lo-
cal scale. The ground measurements are derived from 2417
meteorological stations (including 756 basic stations of the
National Climate Observatory and 1661 regionally intensi-
fied stations) in China, as partially shown in Fig. 1. The soil
moisture measurement devices at these stations, with uni-
form observation standards, are instrumented under the na-
tional project of the Operation Monitoring System of Au-
tomatic Soil Moisture Observation Network in China (Wu
et al., 2014 ), the construction of which has been led by
the China Meteorological Administration since 2005. Until
2016, all stations were in operation for automatically observ-
ing hourly in situ soil moisture dynamics at eight different
depth ranges (0–10, 10–20, 20–30, 30–40, 40–50, 50–60,
70–80, 90–100 cm). It has also been widely used by previ-
ous studies for evaluating satellite soil moisture estimates in
China (Meng et al., 2021; Chen et al., 2020; Zhang et al.,
2014; Zhu and Shi, 2014). In our current study, ground mea-
surements matching the shallowest depth range (0–10 cm)
from the initial time of each station until the end of 2019 are
employed as the validation benchmark of the satellite SSM
retrievals. At the temporal dimension, measurements made
at 01:00 and 02:00 LT are averaged, in order to match the
mean satellite transit time of 01:30 LT for AMSR descend-
ing observations.

Moreover, 0 cm top ground temperatures are simultane-
ously measured at all these meteorological stations on the
daily basis at the local time windows of 02:00, 10:00, 14:00,
and 22:00 LT (local time). We therefore exploited such mea-
surements recorded at 02:00 LT to validate the cloud gap-
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Figure 1. The geographic zoning map of the study area (delineated using the purple color) superposed with topographic information, as
well as general locations for the 756 basic meteorological stations (http://data.cma.cn/, last access: 20 January 2021) that provide partial
benchmark measurements for SSM and LST validation in this study.

filled nighttime (∼ 01:30 LT) LST estimates over the Aqua-
MODIS-based 1 km pixels containing these stations (see
Sect. 2.2.2). Our primary validation period covers the entire
years of 2017, 2018, and 2019.

In addition to the ground soil moisture measurements, the
SMAP level 3 radiometer-based daily 36 km SSM product
(https://doi.org/10.5067/OMHVSRGFX38O; O’Neill et al.,
2021b) in its descending orbit scenes (at ∼ 06:00 LT) from
2016 to 2019, was employed as another complemental vali-
dation benchmark. This dataset has the potential to provide
more comprehensive evaluations to our developed product
at regional/national scales, especially on account of its no-
tably creditable performance (see Fig. A1 in Appendix A).
The latest version of this dataset (SPL3SMP, Version 8) con-
tains soil moisture retrievals based on different algorithms
including the dual channel algorithm and the single channel
algorithm. In this study we only extracted SSM estimates de-
rived with the dual channel algorithm because this algorithm
was reported to outperform the single channel algorithm over
some agricultural cropland core validation sites (O’Neill et
al., 2021a).

2.1.4 Ancillary SSM products for comparison

In order to comprehensively demonstrate the validation per-
formance of our proposed SSM product, there is necessity to
make an inter-comparison against similar existing datasets.
In this regard, we introduced the level 2 SMAP–Sentinel
active–passive combined SSM product on 1 km earth-fixed
grids, i.e., the SPL2SMAP_S_V3 dataset (Das et al., 2020),
and used its validation performance against in situ measure-
ments throughout the years of 2017, 2018, and 2019 as a
baseline to better evaluate our proposed SSM product. The
SPL2SMAP_S_V3 dataset contains global SSM at resolu-
tions of 3 and 1 km, which were disaggregated from the
SMAP radiometer-based SSM retrievals of 36 and 39 km
footprints in conjunction with the high-resolution Sentinel-
1 C-band radar backscatter coefficients (Das et al., 2019).
To our knowledge, this dataset is possibly the only publicly
available product which can provide global remote sensing
SSM estimates at the 1 km resolution. The Sentinel backscat-
ter coefficient inputs for this product are only those received
in the descending orbit scenes (at ∼ 06:00 LT), whilst the
closest SMAP SSM retrievals from either ascending (at ∼
18:00 LT) or descending orbits are used to spatially match up
with the Sentinel-1 scene. It is noticed that at the descend-
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ing observation time the soil moisture vertical profile has
approached a hydrostatic balance (Montaldo et al., 2001),
thereby providing the optimal chance for soil moisture fu-
sion and validation with observations at different soil depths.
Therefore, we only selected the 1 km disaggregated SSM es-
timates based on descending SMAP SSM retrievals (i.e., the
subset with the field name of “disagg_soil_moisture_1 km”
in the SPL2SMAP_S_V3 dataset). Meanwhile, the 0–10 cm
in situ soil moisture measurements observed at 06:00 LT and
the SMAP radiometer-based descending SSM estimates were
employed as the validation benchmarks in a manner similar
to that applied to our proposed SSM product (Sect. 2.1.3).

2.2 Methodology

The general methodological framework for producing the all-
weather daily 1 km SSM product is shown in Fig. 2, with
details described in the following context of this section.

2.2.1 Reconstruction of thermal-infrared LST and
remote sensing (vegetation) indices under cloudy
conditions

Reconstruction of missing pixels under cloudy conditions
in the optical remote sensing input datasets is the prereq-
uisite for achieving the “all-weather” property of the final
downscaled SSM output. For reconstructing thermal-infrared
LST, we adopted the cloud gap-filling method as proposed
by our previous study (Song et al., 2019a). This method, also
referred to as a typical spatiotemporal data fusion (STDF)
method (Dowling et al., 2021), was built using clear-sky
LST observations of spatially neighboring pixels observed at
proximal dates, with concurrent normalized difference vege-
tation index (NDVI) and DEM also employed as additional
data inputs. The STDF method can be expressed as follows:

LST∗t1 = a×LST∗t0 + b×NDVI∗t1 + c×DEM∗+ d, (1)

where the superscript ∗ indicates that this variable has been
normalized to the range 0 to 1.0 (Song et al., 2019a), based
on the maximum and minimum values of that variable found
across China (excluding invalid values representing states of
snow, ice, and water bodies). Parameters a, b, c, and d are
coefficients fitted between all pixels with clear-sky LST es-
timates on a specific date t1 (LST∗t1) and their counterparts
on one proximal date t0 (LST∗t0). NDVI∗t1 indicates the corre-
sponding (normalized) NDVI on the t1 date calculated using
the MCD43A4 daily product. After deriving the coefficients
of a, b, c, and d , Eq. (1) was used to fill all cloudy MODIS
LST pixels on the t1 date. For any t1 date included in the
study period, the t0 date was iterated among all neighboring
dates of t1 meeting the condition |t0−t1| ≤ 30 (from the near-
est date to the furthest date). The average of estimated LST
values for t0 was then taken in which a cloud gap pixel was
filled more than once (based on the iterative t0 dates). The it-

eration was stopped when the fraction of pixels with effective
LST values on t1 was equal to or exceeded 0.99.

An important flaw of this STDF method should be noted
with regard to the potentially existential bias of the cloud
gap-filled LST outputs because the outputs represent theoret-
ically reconstructed LST under clear-sky rather than under
the real cloudy conditions. Another of our previous studies
(Dowling et al., 2021) concerning this STDF method pro-
posed a follow-up step, which incorporated PM-derived sur-
face temperature, to adjust that bias. In our current produc-
tion pipeline, however, this follow-up step for cloud bias ad-
justment in LST was not carried out. This is because the re-
sults in Appendix B show that using LST generated by the
STDF alone leads to more accurate SSM outcomes in gen-
eral. The possible reasons for this are discussed in Sect. 4.2.

Reconstruction of the remote sensing vegetation indices
under cloudy conditions, including NDVI and NMDI (nor-
malized multi-band drought index), was simply based on the
modified time series filter of the Whiitaker smoother (MWS)
as developed by Kong et al. (2019). This is reasonable be-
cause the dynamic trends of vegetation growth are relatively
less volatile compared to LST on the daily basis and can thus
be gap-filled for missing values using a time-series-filtering-
like algorithm.

2.2.2 Improved downscaling technique of SSM based
on fusion of PM and optical and infrared data

The core component of the SSM downscaling methodology
is an improved linking model between PM SSM and (fine-
resolution) optical remote sensing observations. This model
enhances the relatively poorer performance of the conven-
tional DISPATCH in energy-limited regions, whilst it main-
tains the generally good quality of the DISPATCH in water-
limited ones. Therefore, the improved model is more appro-
priate to be applied in China, which contains a wide range of
geographical settings, compared to other conventional down-
scaling models. Since this model originates from our previ-
ous study (Song et al., 2021), herein we simply give its math-
ematical expression as follows:

SSM=
a× ln(1−SEE)
1− b×NMDI

+ c. (2)

In Eq. (2), SEE denotes “soil evaporative efficiency”
and is a mathematical function of LST and the typi-
cal NDVI, with its specific form described in Merlin et
al. (2008). NMDI is another remote sensing index cal-
culated as Rinfr,860 nm−(Rsw,1600 nm−Rsw,2100 nm)

Rinfr,860 nm+(Rsw,1600 nm−Rsw,2100 nm) (Wang and Qu,
2007). Rinfr,860 nm, Rinfr,1600 nm, and Rinfr,2100 nm represent
land surface reflectance signals derived from three different
MODIS-MCD43A4-based near-infrared–shortwave-infrared
bands, with their wavelengths centering at 860, 1600, and
2100 nm respectively. The parameters a, b, and c are em-
pirical coefficients that represent background information of
local soil texture and vegetation types. In Song et al. (2021),
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Figure 2. The overall methodological framework of this study.

these coefficients have been fitted and calibrated based on
multi-temporal observations at the PM pixel scale. In our
current study, however, we have discovered that coupling of
multiphase observations at both the spatial and the temporal
dimensions can lead to more optimal solutions of the coeffi-
cients as they can produce downscaled SSM images with a
notably declined effect of “mosaic” against the original PM
36 km pixels. Therefore, the modified optimal cost function
χ2 for deriving these coefficients is re-defined as follows:

χ2
=

dl∑
d=−dl

N=ws×ws∑
i=0

wi × (SSMob,i,d−SSMmod,i,d)2. (3)

Through the cost function, the spatial extent of each 36 km
pixel P0 on any arbitrary date D0 obtains a unique set of
coefficients. As shown by Eq. (3), all pixels were exploited
within the spatial square window (with its side length equal
to ws) centered at P0 ranging from −dlth day to dlth day
relative to the date of D0. To determine the optimum values
for dl and ws, we have tested each member in the collec-
tion of [3, 5, 7, 9, 11, 13] for both parameters. An evaluation
against in situ data indicates that the optimum dl and ws are
5 and 7, respectively (results are similar to what is shown in
Sect. 3.2 but not presented here). SSMob and SSMmod de-
note the AMSR NN-SM 36 km SSM observations and SSM
observations modeled by Eq. (2) based on upscaled optical
datasets, respectively. wi is a weight coefficient used to en-
sure that neighboring observations near the centering pixel
P0 play more dominating roles as compared with the far-end
pixels in the cost function, considering Tobler’s first law of
geography (Sui, 2004). wi is calculated using an adaptive bi-

square function:

wi =

[
1−

(
disi
b

)2
]2

,disi < b

wi = 0,disi>=b, (4)

where disi indicates the distance between the ith pixel and
the centering pixel P0. b is named as the adaptive kernel
bandwidth of the bi-square function (Duan and Li, 2016)
and is optimized as 200 km through using a cross-validation
method as recommended by Brunsdon et al. (1996).

With the linking model obtained, we can subsequently
utilize the spatial downscaling relationship function to pro-
duce 1 km fine-resolution SSM. The downscaling relation-
ship function is constructed by transforming the linking
model into its Taylor expansion formula and preserving all
components with respect to the input optical variables of the
linking model at first and second orders. This relationship is
inspired from Malbéteau et al. (2016) and Merlin et al. (2010)
and is mathematically described below:

SSM1 km = SSM36 km+

(
∂SSM
∂SEE

)
36 km

× (SSE1 km−〈SSE〉36 km)

+ 0.5×
(
∂2SSM

∂SEE2

)
× (SSE1 km

−〈SSE〉36km)2
+

(
∂SSM
∂NMDI

)
36 km

× (NMDI1 km−〈NMDI〉36 km)

+ 0.5×
(
∂2SSM
∂NMDI2

)
× (NMDI1 km−〈NMDI〉36 km)2. (5)
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In the above relationship, 〈〉 denotes the spatial averag-
ing operator for all of the 1 km optical remote sensing in-
put variables within the corresponding 36 km pixel, and
∂SSM
∂SEE

(
∂2SSM
∂SEE2

)
and ∂SSM

∂NMDI

(
∂2SSM
∂NMDI2

)
respectively denote the

first- (second-)order partial derivative of the linking model
described in Eq. (2).

It should be noticed that there exist middle- and low-
latitude gap regions between seams of neighboring daily
AMSR-E(-2) swaths, indicating that SSM36 km in Eq. (5) is
not always available on the daily basis (Song and Zhang,
2021a). For such PM seam gaps on a particular date t0,
the corresponding SSM36 km,t0 in Eq. (5) is substituted
by 0.5× (SSM36 km,t0+1+SSM36 km,t0−1)+1SSM36 km,t0.
Herein SSM36 km,t0−1 and SSM36 km,t0+1 respectively de-
note the SSM estimate before and after the date of t0.
1SSM36 km,t0 is a component for correcting inter-day bias,
with the following expression:

1SSM36 km,t0 = SSM
(
SEE36 km,t0,NMDI36 km,t0

)
− 0.5× (SSM

(
SEE36 km,t0−1,NMDI36 km,t0−1

)
+SSM

(
SEE36 km,t0+1,NMDI36 km,t0+1

)
). (6)

In the above equation, SSM(SEE36 km, NMDI36 km) denotes
SSM that is directly modeled based on Eq. (1) using 36 km
SEE and NMDI. The 36 km SEE and NMDI are obtained via
averaging the variables spatially from their native resolution
at 1 km. If all SSM36 km during the 3 consecutive days (t0−1,
t0, and t0+1) are missing due to other extreme conditions like
snow, ice, or surface dominated by substantially large water
bodies, the downscaling process cannot be fulfilled, and all
1 km sub-pixels with the SSM36 km have to be set as null val-
ues.

2.2.3 Evaluation metrics

We employed the classic metrics of root mean square dif-
ference (RMSD) and correlation coefficient (r value) for
evaluating satellite-based (SSM and LST) estimates against
ground measurements. Herein RMSD is not referred to as
“root mean square error” (RMSE), although the latter term
shares the same definition and has been used more com-
monly in previous studies. This is because both ground ob-
servations and other benchmark data (i.e., SMAP radiometer-
based SSM) may also present measurement uncertainties
in practice. For SSM evaluation, the unbiased RMSD, or
ubRMSD (Entekhabi et al., 2010a; Molero et al., 2016), is
calculated instead of RMSD when validated against ground
soil moisture measurements. This can better investigate the
time series similarity between satellite and in situ datasets by
eliminating the systematic bias caused by spatial-scale mis-
match between them.

The above-mentioned classic metrics are primarily suit-
able to evaluate the absolute reliability of an independent re-
mote sensing product. However, we also require another met-
ric for characterizing the relative improvement of the down-

scaled SSM estimates against the original PM observations
on capturing local soil moisture dynamics. For this purpose,
we employed the “gain metric” of Gdown, which was devel-
oped particularly by Merlin et al. (2015) for the assessment
of the soil moisture downscaling methodology. Gdown is a
comprehensive indicator for evaluating gains of the down-
scaled SSM against the original coarse-resolution PM data in
terms of their mean bias, bias in variance (slope), and time se-
ries correlation with ground benchmark. It has a valid domain
between −1 and 1, with positive (negative) values indicat-
ing improved (deteriorated) spatial representativeness of the
downscaled SSM against the original PM data. The detailed
definition and introduction of Gdown are given in Eq. (8) and
Sect. 3.3 of Merlin et al. (2015).

3 Results

3.1 Evaluation of reconstructed thermal-infrared LST
under cloudy conditions

The meteorological-station-based validation of reconstructed
1 km thermal-infrared LST under cloudy conditions was
preliminarily fulfilled to ensure the high quality of input
dataset variables for SSM downscaling. Since disadvanta-
geous effects might be brought to this validation campaign by
the potentially existing heterogeneity of the validated 1 km
thermal-infrared remote sensing pixels, we firstly analyzed
correlations between estimated and benchmark datasets at
each station only based on satellite remote sensing observa-
tions obtained under clear-sky conditions. Stations that have
their correlation coefficients (rclr) lower than 0.9 herein have
to be screened out because there exist higher chances of
cross-scale spatial mismatch within and around these stations
in terms of the land surface thermal properties. Among all
2417 stations (see Sect. 2.1.3) where 0 cm in situ top ground
temperature measurements were available, we finally pre-
served 2107 stations characterized by rclr > 0.9. In the sub-
sequent step, remote sensing LST under cloudy and clear-
sky conditions was validated at these stations, with the re-
sults revealed in Fig. 3. It can be seen in Fig. 3a and b
that very close performances have been achieved between
the clear-sky and the cloudy scenarios, especially consid-
ering their almost equally high validating correlations be-
tween 0.94 and 0.96. For each independent station, we cal-
culated the RMSD difference (RMSD_diff) between the two
scenarios, based on the formula of RMSDclr−RMSDcld (the
subscripts of “clr” and “cld” denote clear-sky and cloudy
conditions respectively). The statistical distribution of this
RMSD difference with regard to different stations is shown
in Fig. 3c. Apparently, 1942 stations all over the country have
obtained an RMSD difference value below 2.6 K, and the
mean RMSD difference is about 1.9 K. All the above results
have indicated that the uncertainty of our nighttime LST re-
construction algorithm proposed for cloudy conditions is not
very significant. The corresponding uncertainty that could be
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propagated to downscaled SSM in this stage is analyzed be-
low in Sect. 3.2.

3.2 Evaluation of the final 1 km SSM product

The overall validation results of the finally downscaled 1 km
SSM product against ground soil moisture data are shown
in Fig. 4. Figure 4a shows that about 85 % (N : 1833) of the
total 2154 stations (the remaining 263 stations are located
in pixels with no effective PM observations and are thus
removed) have obtained significantly positive downscaling
gains (Gdown > 0.03). This hints that the 1 km SSM product
can better capture the dynamic behaviors of local ground soil
moisture data than the original 36 km PM NN-SM data, re-
vealing higher spatial representativeness of the downscaled
SSM data product over the country. According to Fig. 4b,
the mean ubRMSD of all stations is about 0.054 vol vol−1,
while 90 % of those stations have a number lower than
0.088 vol vol−1. In addition, we made another analysis con-
cerning the possible influence of land cover types on SSM
downscaling performance in Fig. 4c. The spatial information
of land cover types was derived from the MODIS MCD12Q1
(https://doi.org/10.5067/MODIS/MCD12Q1.006; Friedl and
Sulla-Menashe, 2019) International Geosphere Biosphere
Programme (IGBP)-based land use image in 2019. For sta-
tions that experienced land use change throughout the years
of the study period, the ubRMSD is only reported for data in
the year 2019. Clearly, better accuracies are observed mainly
in grassland, cropland, and bare soil surface, whilst relatively
poorer performances (with averages of ubRMSD higher than
0.06 vol vol−1) are seen in urban regions, (woody) savanna,
and crop-to-natural-vegetation mosaic areas. Such a relative
performance across land covers is logical because all the
land cover types with their average ubRMSD higher than
0.06 vol vol−1 are characterized by lower hydrologic homo-
geneity in terms of their definition, e.g., savanna, which is
a mixture of grass and tall trees, and urban areas, which are
composed of an impervious underlying surface.

In Fig. 5, we compared time series of regionally aggre-
gated SSM from our developed 1 km SSM product to that
from the SMAP 36 km descending SSM for each of the six
different geographic–climate regions (as shown in Fig. 1)
from 2016 to 2019. Via this effort, we mainly aim to reveal
the consistency degree on reflecting soil moisture temporal
dynamics at different geographical settings between the two
SSM products. This also provides another view to evaluate
the reliability of our developed product. Because the SMAP
radiometer has a slightly longer revisit cycle (∼ 2–3 d) than
AMSR-2, the time series data are also aggregated and aver-
aged at the temporal dimension, with a displayed revisit cycle
equal to 3 d. Overall, the time series data correlate well with
each other for all six regions. The relatively lower RMSDs
(< 0.02 vol vol−1) are found in regions with comparatively
sparser vegetation cover including the NWA region, the QTP
region, and the NCM region. For the other three dense veg-

etation regions, the performances of our developed product
are slightly poorer. This is especially the case for the SCM
region, with a lower r value of 0.84. The reason can be at-
tributed to the enlarged difference in penetration depth into
the soil layers between L-band (SMAP) and C-, X-, and
K-band (AMSR-2) emissions under dense vegetation cover
(Ulaby and Wilson, 1985).

In Fig. 6b we employed the downscaled SSM image
on 29 May 2018 as an example to demonstrate the spa-
tial features of the developed product. Meanwhile, we
also show the map of SMAP–Sentinel combined SSM
(SPL2SMAP_S_V3) obtained from 26 to 31 May 2018 in
Fig. 6a as a contemporaneous comparison reference. Clearly,
the SPL2SMAP_S_V3 map has a much lower coverage per-
centage over the study region compared with the map of the
currently developed product on one single date even though
the former was generated based on multi-date images. Both
maps show similar spatial texture depicting the relatively
dry climate in northwestern China compared with the humid
climate in the middle-lower Yangtze River Plain. Neverthe-
less, there also exist cases where the details in texture differ
prominently, like that in the far northeastern end of the coun-
try.

For the sake of further analysis on this point, results of
the quantitative comparison as proposed in Sect. 2.1.3 and
2.1.4 are demonstrated in Fig. 6c–f. Figure 6c and d show
the RMSD maps of the two respective products against
SMAP radiometer-based SSM estimates at the 36 km pixel
scale. For both products it is shown that compared with the
lower averaged RMSD of 0.04 vol vol−1 in the NWA re-
gion, the uncertainty can increase (shown in yellow) in the
densely vegetated NEM and the SCM regions, with aver-
aged RMSDs of 0.07–0.08 vol vol−1. However, our devel-
oped product has noticeably lower RMSD (0.05 vol vol−1)
than the SPL2SMAP_S_V3 data (0.07–0.09 vol vol−1) in the
SWH and part of the QTP regions. Considering their rela-
tively higher elevations, it may be roughly drawn that our
downscaled SSM product is more reliable than that based on
active–passive microwave combined datasets in areas with
increased topographic effects. Figure 6e shows that the cur-
rently developed SSM product obtained a 0.078 vol vol−1

ubRMSD and a correlation coefficient of 0.55 against the
in situ soil moisture measurements. It converges more appar-
ently to the 1 : 1 line when compared with validation result
of the SPL2SMAP_S_V3 dataset in Fig. 6f. As with the area
of China, therefore, the currently developed product is gen-
erally superior to the global SMAP–Sentinel combined SSM
in terms of both coverage percentage and estimate accuracy.

In Fig. 7, we display the cumulative distribution frequency
of coverage percentages of the downscaled SSM product and
of the original PM NN-SM product for each season. It should
be noted that in this statistical scheme, pixels identified as
static water bodies by the MODIS MCD12Q1 land cover
type product were not considered in the denominator of the
coverage percentage. Moreover, the gap times between the
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Figure 3. Validation results of the cloud gap-filled LST in China. (a) Density plot of thermal-infrared LST under clear-sky conditions com-
pared to the 0 cm ground temperature measurements for all stations. (b) Same as (a) but for thermal-infrared LST under cloudy conditions.
(c) Statistical distribution of difference between RMSD of clear-sky LST and RMSD of gap-filled LST under cloudy conditions with regard
to different meteorological stations over the study region.

respective on-orbit period of AMSR-E and of AMSR-2 (from
October 2011 to June 2012, during which there are no effec-
tive observations from the PM NN-SM product) were also
excluded. It is apparent that in Fig. 7b and c, almost all down-
scaled daily SSM images over the 16–17 years have achieved
a coverage percentage higher than 85 %. In comparison, the
majority of the PM NN-SM daily images have their coverage
percentages below 80 % over the study region primarily due
to the PM seam gaps particularly existing in low latitudes
(see Sect. 2.2.2). In Fig. 7a and d, the percentages of effec-
tive pixels in both the PM and the downscaled SSM images
are far lower than their counterparts in the other two subfig-

ures. This is mainly ascribed to extreme meteorological con-
ditions including snow, ice, and frozen soils that are typically
persistent throughout most of these specified months in the
northwestern regions of China. Such conditions can impede
reliable estimates of SSM based on all satellite remote sens-
ing techniques in the current time. The above inter-seasonal
differences on data coverage are also reflected in Fig. 8 in
another manner based on presenting the spatial distributions
of number percentages of available dates in each 3-month
period.

The techniques behind the coverage improvement of the
downscaled SSM (against PM and optical data inputs) can
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Figure 4. General validation results of the currently developed
SSM product. (a) Gdown distribution for different stations over
China. (b) ubRMSD distribution for different stations over China.
(c) ubRMSD statistics reported for different land covers. The num-
bers in the parentheses of the x axis labels represent the amount
of meteorological stations corresponding to that specific land cover
type.

be categorized into two classes, i.e., cloud gap-filling of the
input optical datasets (see Sect. 2.2.1), as well as the filling
of downscaled SSM in PM seam gaps (see Sect. 2.2.2). Ta-
ble 2 reports the specific validation results (using averages of
ground measurements at all stations) of downscaled SSM in
these coverage-improved conditions, relative to that gener-

ated without using any coverage improvement technique, in
order to evaluate the propagated effect of such techniques on
the final product. The very limited difference for ubRMSD
values (0.053 versus 0.056 vol vol−1) between cloudy and
clear-sky conditions suggest that the 1 km SSM estimates
from our final product are generally compatible between
cloudy and clear-sky conditions. The downscaled SSM es-
timated for regions of PM seam gaps has a slightly worse
(but still acceptable) accuracy, considering its ubRMSD of
0.059 vol vol−1 compared to the 0.052 vol vol−1 ubRMSD of
the PM-observed 1 km pixels. In summary of Fig. 7 and Ta-
ble 2, the currently developed product has achieved a sub-
stantially improved spatial coverage against the original re-
mote sensing input datasets, whilst it successfully preserved
the SSM downscaling accuracy of the observation-covered
pixels at the same time.

4 Discussion

4.1 Uncertainty of SSM evaluation between satellite and
ground scales

In this study, we made evaluations of remote sensing SSM
products at different spatial resolutions using measure-
ments from 2000+ stations provided by the national-level
soil moisture observation network of China as the stan-
dard benchmark. Through the evaluations, a ubRMSD of
0.074 vol vol−1 is reported for the original 36 km NN-SM
SSM product (Fig. A1b). We notice that this result is con-
siderably poorer if compared with another previous evalua-
tion campaign targeted at the same product (Yao et al., 2021),
which achieved a global RMSE (RMSD) of 0.029 vol vol−1.
However, this difference is not unexpected because the two
campaigns were carried out in different regions of the world.
Also, that particular study (Yao et al., 2021) was conducted
based on completely different ground soil moisture observa-
tions provided by the International Soil Moisture Network
(ISMN) (Dorigo et al., 2021). Compared to the observa-
tion network employed in this study, the observation sites
of ISMN are more intensively distributed as an “integrated
soil moisture station” so as to provide spatially averaged soil
moisture within a grid of tens of kilometers. In this regard,
we admit that the ISMN is generally more professional in
evaluating satellite PM-based SSM retrievals at a coarser res-
olution. But on the other hand, only a few (≤ 4) of such “inte-
grated stations” have been set up sporadically within China,
making the ISMN data much less representative of our study
region compared with the national-level soil moisture net-
work of China exploited by our current study.

Although the higher RMSD of the national-level soil mois-
ture network of China may indicate larger measurement un-
certainty than the ISMN, the negative influence that might
be imposed on our study purpose should be inconsequen-
tial. This is because we focus more on the relative vali-
dation performance of different SSM products rather than
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Figure 5. Time series of SSM aggregated at each of the six different geographic–climate regions (as shown in Fig. 1) in China for our
developed 1 km product, as well as for the SMAP 36 km SSM dataset. The time series range is from 2016 to 2019 with a revisit cycle of 3 d.

Table 2. Comparisons between validation results for pixels under coverage-improved regions and for pixels under remote-sensing-
observation-covered regions.

Evaluation metric∗ Comparison between cloudy Comparison between PM-observed regions
and clear-sky conditions and regions of PM seam gaps

Clear-sky conditions Cloudy conditions PM-observed regions PM seam gaps

ubRMSD (vol vol−1) 0.053 0.056 0.052 0.059
Correlation coefficient 0.49 0.47 0.49 0.44

∗ All evaluation metrics in this column indicate the average of all available stations.

on the absolute value of any evaluation metric including
ubRMSD and the correlation coefficient calculated against
ground measurements. Specifically, the 1 km downscaled
SSM obtained an average ubRMSD of about 0.054 vol vol−1

among different stations according to Fig. 4b. Moreover, the
result of the evaluation in Fig. 6d based on combination of
multi-station ground measurements shows a global ubRMSD
of 0.078 vol vol−1 for this product. Overall, the above-
mentioned results can be identified as at least comparable to
the global (multi-station-based) ubRMSD of 0.074 vol vol−1

of the original NN-SM data as they are evaluated against the

same benchmark. Therefore, the conclusion is safely drawn
that the currently developed product preserves the retrieval
accuracy of the coarse-resolution NN-SM data whilst im-
proving the spatial representativeness of the latter product
substantially according to the mostly positive Gdown values
in Fig. 4a.

Moreover, one may also argue that the r value of 0.55 for
the currently developed product in Fig. 6d is not sufficiently
high compared with several previous studies (Wei et al.,
2019; Sabaghy et al., 2020) obtaining r values above 0.7 for
the temporal analysis of satellite remote sensing soil mois-
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Figure 6. Comparison results between the currently developed 1 km SSM product and the SMAP–Sentinel combined 1 km SSM
(SPL2SMAP_S_V3). (a) SPL2SMAP_S_V3 SSM images over the study area at about 06:00 LT synthesized by six continuous dates from 26
to 31 May 2018. (b) The SSM image at 01:30 LT of 29 May 2018 from the currently developed product. (c) Spatial uncertainty (RMSD)
map of the SPL2SMAP_S_V3 product against SMAP radiometer-based SSM retrievals at the 36 km pixel scale over the study area for
the years 2017, 2018, and 2019. (d) Same as (c) but for the validation of the currently developed SSM product. The black numbers in
each of the geographic–climate regions indicate averaged uncertainty (RMSD, unit: vol vol−1) of the region. (e) Validation results of the
SPL2SMAP_S_V3 product against in situ soil moisture measurements over the study area for the years 2017, 2018, and 2019. The solid
black line is the 1 : 1 line. (f) Same as (e) but for the validation of the currently developed SSM product.
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Figure 7. Cumulative distribution frequency of our proposed SSM product against the original 36 km SSM product for different seasons.
The period between October 2011 and June 2012 is excluded in the current statistics.

ture. However, we should note that these previous studies
have conducted analyses respectively at the temporal and the
spatial dimensions. Based on their results, the spatial analy-
sis typically derived lower r values (< 0.4) compared to that
at the temporal dimension. This is probably because the het-
erogeneity degree of remote sensing pixels can vary signifi-
cantly across different sites. Since the evaluation in Fig. 5d
was deployed at the “spatiotemporal” integrated dimensions,
such an r value is expected. This is also close to the global
r value of 0.6 for the validation of the coarse-resolution NN-
SM product as reported in Yao et al. (2021).

4.2 Uncertainty of cloud gap-filling and validations of
LST

As mentioned in Sect. 2.2.1, LST gap-filled based on the
STDF method was used alone as one of the main input
datasets for SSM downscaling under cloudy weather. Al-
though such LST inputs contain clear-sky bias from the real
cloudy conditions, it performs better in driving the SSM
downscaling model compared with its bias-adjusted counter-
part (see Appendix B for details). The reason may be linked
to one of the basic theories behind our SSM downscaling

methodology, i.e., the UTFS theory (Carlson et al., 1994).
In the UTFS theory, clear-sky LST is employed to implic-
itly quantify the surface soil wetness degree as it correlates
with the dynamics of soil evaporative efficiency and soil ther-
mal inertia when vegetation cover density is fixed. Under
cloudy conditions, however, the satellite observed LST is
subjected not only to surface soil property but also to that
related to cloud insulation effect from solar incoming radi-
ation and ground longwave outgoing radiation. As a result,
the actual relationship between SSM and cloudy LST could
be much more complicated than the one that has been de-
scribed by the UTFS-based SSM downscaling model (i.e.,
Eq. 2). In comparison, LST generated by the STDF alone for
assumed clear-sky conditions, free from the interference of
cloud, would be a comparatively more competent input vari-
able for driving the UTFS-based SSM downscaling model
under non-rainy clouds. This is especially the case for thin
and short-period clouds with marginal direct feedbacks on
surface soil wetness.

However, we admit that the STDF-filled LST under
rainy clouds is also not suitable for our study pur-
pose. This may explain the slightly higher RMSD for
SSM under cloudy conditions based on STDF-filled LST

Earth Syst. Sci. Data, 14, 2613–2637, 2022 https://doi.org/10.5194/essd-14-2613-2022



P. Song et al.: 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions 2627

Figure 8. Spatial distributions of percentage of day numbers with available estimates for the currently developed 1 km SSM product and
the original 36 km PM data during 2003–2019. The four different periods (i.e., January–March, April–June, July–September, October–
December) of a year are treated respectively. The period between October 2011 and June 2012 is excluded.

(0.056 vol vol−1) compared to that under real clear-sky con-
ditions (0.053 vol vol−1), as shown in Table 2. In reality, the
actual negative influence of cloud on the final SSM prod-
uct may be even more serious than indicated from the above
RMSD difference (i.e., 0.056–0.053= 0.003 vol vol−1) due

to the portion of clear/cloudy-weather-mixed spatial win-
dows during the fitting process of the downscaling model.
In these windows, uncertainty in cloud gap-filled LST may
affect accuracy of the fitted model coefficients and thus de-
teriorate the final SSM estimates in clear-sky pixels within
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the same window. Consequently, the above RMSD differ-
ence has been more or less underestimated. Despite all of
the above, in our study area of China we regard the STDF-
filled LST as a more optimal proxy of heat flux for estimating
SSM under cloudy conditions, compared to the bias-adjusted
LST. On the other hand, future efforts are encouraged to
further clarify the mechanical relationships between STDF-
filled and/or bias-adjusted LST and soil wetness degree under
cloudy conditions.

Different from a number of previous studies (Jiménez et
al., 2017; Dowling et al., 2021; Yang et al., 2019) validating
satellite thermal-infrared-based LST based on longwave ra-
diation observations made at footprint-level observation sta-
tions (e.g., flux towers), our study has used 0 cm top ground
temperatures as the primary benchmark for this validation
campaign instead. Similar to that for SSM validation, the
most crucial motivation driving such an experimental design
is the significantly intensive distribution of the meteorolog-
ical stations compared to the very limited number of active
and effective flux towers available in China. It is noted that
these measurement devices at all of the meteorological sta-
tions are required to have been instrumented under open en-
vironmental conditions with a relatively lower fraction of tall
trees and water bodies in order to conduct efficient monitor-
ing at the physics of near-surface air. This can also be re-
flected in Fig. 4c, which reveals no stations built within forest
cover. Moreover, as we only focus on the midnight scenario
when the states of all land observations are “most stable”
during one diurnal cycle, uncertainties due to the possible
temperature inconsistency between bare ground surfaces and
high tree surfaces, as well as due to the temporal mismatch
(from about 01:30 to 02:00 LT), should have marginal effects
on our results. We have carried out an extra test that can con-
firm this discussion, with the detailed procedures described
in Appendix C.

4.3 Major novelty, unique profit, and future prospect of
the developed product

Compared with the widely known active–passive microwave
combined SSM product (e.g., the SPL2SMAP_S_V3) and
other PM–optical-data combined counterparts which were
also published recently but at the monthly scale (Meng et al.,
2021), the major novelty of the currently developed prod-
uct mainly lies in the fact that it has achieved progress in
all of the three crucial dimensions of satellite remote sens-
ing, including the temporal revisit cycle (daily), the spa-
tial resolution (1 km), and the quasi-complete coverage un-
der all-weather conditions. To our knowledge, this has rarely
been achieved by previously developed satellite soil moisture
products at regional scales. For the realization of the above-
mentioned progress, we have fused the SSM downscaling
framework with other techniques including cloud gap-filling
of thermal-infrared LST, MWS-based temporal filtering of
vegetation indices, and reconstructions of seams between

neighboring PM swaths in low latitudes. The final SSM esti-
mates under cloudy conditions and intersected with the PM
seam gaps were specially validated against the rest of the es-
timates under clear-sky conditions and in the regions covered
by PM observations, respectively (Table 2). The comparable
performances among all treatment groups herein confirm that
the accuracy of the product is stable and consistent among
all-weather conditions.

With improvement achieved at the three dimensions,
unique profit of the currently developed product can be taken
by subsequent studies and various industrial applications. For
example, the capability of this product can be investigated
on capturing the short-term anomaly of local hydrological
signals as well as improved monitoring on drought disas-
ters, which used to be investigated mainly at a coarser res-
olution by PM SSM (Scaini et al., 2015; Champagne et al.,
2011; Albergel et al., 2012). For another, taking advantage
of its all-weather daily time series, the product can be uti-
lized together with precipitation data to isolate and quantify
the anthropic influence on regional water resources from the
natural hydrological dynamics. Examples of such anthropic
signals include agricultural irrigation activities, as well as
finer-scale information on agricultural crops which was pre-
viously interpreted based on PM-driven techniques (Song et
al., 2018). In addition, we should realize the important role
of soil moisture as a constraint for the accurate estimation
of surface evapotranspiration and runoff (Zhang et al., 2020,
2019). Therefore, the profit of this product can be further en-
hanced if coupled with land–atmosphere-coupled models to
produce new insights into water-cycle processes of the earth
surface at a finer spatiotemporal scale.

There are still some limitations on our current product to
be further improved. First, there may exist the “mosaic ef-
fect” at the original PM (36 km) pixel edge. As mentioned
in Sect. 2.2.2, we have used a parameter of “spatial square
window (ws)” in Eq. (3) to minimize this negative effect.
However, it is still difficult to utterly avoid such a negative
effect. This is a challenge for all existing SSM downscaling
methods (Molero et al., 2016; Stefan et al., 2020; Peng et al.,
2016), especially considering the large spatial scale of our
study and all uncertainties discussed in Sects. 4.1 and 4.2.
Moreover, other negative influences can be imposed by po-
tential imperfections identified from the original PM product,
e.g., from PM SSM retrievals in the QTP region with com-
plicated topography, melt snow, or partially frozen soils that
cannot be completely screened out by the original product
flag in winter. For these extreme conditions, the accuracy of
the downscaled SSM may need further validation campaigns
like field surveys and experiments, based on which the data
quality flag can be better built for the product’s future ver-
sion.

The methodological framework proposed in this paper has
the prospect to be universally applied in other regions of the
world to serve for better monitoring of the global surface
wetness in the following studies. If applied at continental and
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global scales, however, the current process for gap-filling of
PM seams may require further attention and improvement.
In this study, SSM in regions intersected with PM seam gaps
was estimated using TB observations from PM swaths at
neighboring dates (see Eq. 5). Although the errors in the PM
seam gaps over China as reported by Table 2 are only slightly
larger compared to the PM-covered regions, they cannot be
ignorable completely and may leave extra concern on the uni-
versality of this technique, especially in the low-latitudinal
tropical regions where the effect of PM seam gaps is more
apparent than in our study area. Moreover, another imper-
fection of this data product lies in the gap period between
AMSR-E and AMSR-2. Considering the different systematic
error patterns of various PM SSM products, we did not gen-
erate downscaled SSM based on other PM products (e.g., the
SMOS SSM product) during this period but just left the pe-
riod as null values. We suggest a more rigorous and universal
inter-calibration framework on different PM SSM products
to be developed in the future for a long-term, consistent 1 km
downscaled SSM dataset.

5 Data availability

The published SSM dataset is available under the Cre-
ative Commons Attribution 4.0 International License at the
following link: https://doi.org/10.11888/Hydro.tpdc.271762
(Song and Zhang, 2021b). This dataset covers all of China’s
terrestrial area at a daily revisit frequency (about 01:30 LT)
and a 1 km spatial resolution from January 2003 to Octo-
ber 2011 and from July 2012 to December 2019.

6 Conclusions

This paper describes the main technical procedures of a
recently developed remote sensing surface soil moisture
(SSM) product over China covering the most recent 10 years
and more. Based on a combination of passive microwave
SSM downscaling theory and other related remote sens-
ing techniques, the product achieves multi-dimensional dis-
tinctive features including 1 km resolution, daily revisit cy-
cle, and quasi-complete all-weather coverage. These were
rarely satisfied completely by other existing remote sens-
ing SSM products at regional scales. Validations were con-
ducted against measurements from 2000+ automatic soil
moisture observation stations over China. Overall, an average
ubRMSD of 0.054 vol vol−1 across different stations is re-
ported for the currently developed product. The mostly pos-
itive Gdown values show this product has significantly im-
proved spatial representativeness against the 36 km PM SSM
data (a major source for downscaling). Meanwhile, it gener-
ally preserves the retrieval accuracy of the 36 km data prod-
uct. Moreover, additional validation results show that the cur-
rently developed product surpasses the widely used SMAP–
Sentinel combined global 1 km SSM product, with a correla-

tion coefficient of 0.55 achieved against that of 0.40 for the
latter product. At the regional scale, time series patterns of
our developed data product are highly correlated with those
of the widely recognized SMAP radiometer-based SSM for
all geographic settings. The methodological framework for
product generation shows promise in being applied at the
continental and global scales in the future, and the product
has the potential to benefit various research and industrial
fields related to hydrological processes and water resource
management.

Appendix A: Evaluation of different PM SSM
products

We have made evaluations of the various AMSR-based SSM
products (as shown in Table 1) covering the most recent
10 years or longer, based on our soil moisture observation
network all over China. The SMAP radiometer-based SSM
dataset, as described in Sect. 2.1.4, was also evaluated as a
reference. The evaluation period covers the years of 2017,
2018, and 2019. All AMSR-based 25 km grids were re-set
to the SMAP 36 km grid system using the nearest resam-
pling method. Only grids that contain as many as or more
than four soil moisture measurement stations were employed,
in which the grid-based PM SSM estimate was compared
with the average measurements from all interior stations. Fi-
nally, 53 grids were selected, as shown by the green color in
Fig. A1g. For AMSR-based products, only the midnight de-
scending datasets were evaluated, whilst for the SMAP prod-
uct, our evaluation only focused on its descending mode in
the early morning.

As shown in Fig. A1a–f, the selected SSM product in
the current study, i.e., the NN-SM product, has an unbiased
RMSD of 0.074 vol vol−1 and a correlation coefficient of
0.49. This obviously outperforms the other three traditional
AMSR-based SSM products (i.e., JAXA-AMSR, LPRM-
AMSR, and UMT-AMSR products) and is only inferior to
the SMAP SSM retrievals, whilst the later only covers the
latest period since 2015. As far as CCI data are concerned,
it has a similar performance against the selected NN-SM in
general. Nevertheless, the region marked by the red circle in
Fig. A1c indicates that CCI estimates have a considerably
larger proportion of overestimated anomalies. But overall,
the primary reason that we have abandoned CCI but selected
NN-SM is because the latter can provide a higher coverage
fraction of valid pixels in our study region, as has been stated
in Sect. 2.1.1.
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Figure A1. (a–f) Comparison of different PM SSM products (as
reported in Table 1) against the in situ SSM measurements in China.
(g) Locations of the 36 km EASE-Grid projection-based pixels used
for this comparison campaign.

Appendix B: Evaluation of the influence of bias
adjustment for reconstructed “clear-sky” LST under
cloudy conditions

In Sect. 2.2.2, we have emphasized that the gap-filled LST
for cloudy pixels reflects the theoretical surface tempera-
ture of that pixel under hypothetical clear-sky conditions.
As this cloud gap-filled LST would suffer from a possible

bias against the real surface temperature under cloudy condi-
tions (Dowling et al., 2021), we made an additional experi-
ment regarding further improvement of this cloud gap-filled
LST. The follow-up step for bias adjustment of this hypothet-
ical clear-sky LST (but actually under cloudy conditions), as
expounded in Sect. 4.2 of Dowling et al. (2021), was con-
ducted herein using remote sensing and in situ LST data over
China but only in 2018. We illustrate the validation results
for bias-adjusted and non-bias-adjusted LST under cloudy
conditions in Fig. B1b and c, respectively. Similar to Fig. 3,
validation results for clear-sky LST of that year are also dis-
played (Fig. B1a) for comparison. The results generally show
that the follow-up step is effective in reducing the bias of the
originally gap-filled clear-sky LST under cloudy conditions
(from −1.7 to 0.4 K).

In the subsequent step, we substituted the original non-
bias-adjusted LST under cloudy conditions with its bias-
adjusted counterpart and used the latter as the input for SSM
downscaling. The general validation results of the down-
scaled SSM are illustrated in Fig. B2 (similar to that pre-
sented in Fig. 4a and b). Contrary to the above-analyzed
Fig. B1, the bias-adjusted cloudy LST with better gap-filling
accuracies, however, obtained inferior performance in SSM
downscaling. This final validation result, to some degree,
confirms our assumption in Sect. 2.2.2 that the reconstructed
cloudy LST but for the hypothesized clear-sky conditions is
the better proxy of surface moisture dynamics. But overall, as
all LST estimates discussed herein are for the midnight sce-
nario (when the energy interaction between atmosphere and
land surface is relatively weak), the RMSD difference for dif-
ferent weather conditions in Fig. B1 is expectedly marginal.
As a consequence, the difference in ubRMSD of SSM in
Fig. B2 can hardly be identified as “very significant”. There-
fore, we encourage further tests on this conclusion in specific
future studies to confirm its universality, especially for situa-
tions of the “morning to noon” time window.
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Figure B1. Validation of the clear-sky LST (a), reconstructed LST under cloudy conditions but with no passive-microwave-based bias
adjustment (b), and the reconstructed LST under cloudy conditions with passive-microwave-based bias adjustment (c) based on the 0 cm
ground temperature measurements at meteorological stations.

Figure B2. The statistical distribution of ubRMSD at different sta-
tions for SSM estimates driven by two respective kinds of cloudy
LST inputs.

Appendix C: Uncertainty test between 0 cm ground
temperature observations and flux-tower-derived
thermal-infrared LST

We herein utilized four flux towers to calculate their
footprint-level (about 500–1000 m) thermal-infrared LST
based on longwave radiation measurements, plus broad-
band emissivity data derived from the MODIS MYD21A1
product (MYD21A1N.V061). The four towers are all
characterized by moderate or low vegetation (grassland)
and are dispersedly located at different eco-regions of
China, namely the towers of Changling, Huailai, Yakou,
and Naqu (see the inset map in Fig. C1b). Data from
Changling are derived from the FLUXNET community
(FLUXNET2015 Dataset – FLUXNET; Pastorello et al.,
2020) in 2010. Data from the other three towers are derived
from the National Tibetan Plateau Data Center, with data
DOIs of https://doi.org/10.11888/Meteoro.tpdc.271094
(Liu et al., 2021) for Huailai in 2018,
https://doi.org/10.11888/Meteoro.tpdc.270781
(Liu et al., 2019) for Yakou in 2018, and
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Figure C1. (a) Comparison of LST between 01:00–01:30 and 01:30–02:00 LT for the four selected flux towers. (b) Comparison of flux-
tower-derived LST averaged for 01:00–02:00 LT at the four towers and corresponding nighttime 0 cm ground temperature at proximal mete-
orological stations. The inset map shows the location of the four flux towers. (c) Monthly NDVI time series for 1 km pixels containing each
of the four flux towers.

https://doi.org/10.11888/Meteoro.tpdc.270910 (Ma, 2020)
for Naqu in 2016. These data have been preprocessed by
their providers to record the dynamics of those variables at a
half-hour interval. The algorithm for calculating LST based
on flux-tower-derived longwave radiation is inherited from
Wang and Liang (2009). We first compared the flux-tower-
derived nighttime LST estimates between 01:00–01:30 and
01:30–02:00 LT. As shown by Fig. C1a, the very slight
RMSD of 0.72 K suggests that LST is generally stable
between 01:00 and 02:00 LT at night. In Fig. C1b, we also
found marginal bias and RMSD within 1 K between average
flux-tower-derived LST of 01:00–02:00 LT and the corre-
sponding 0 cm ground temperature at close meteorological
sites (within 1 km and at 02:00 LT).

In Fig. C1c we demonstrate time series for monthly aver-
age NDVI (derived as in Sect. 2.2.1) at the 1 km pixels con-
taining each of the four sites from 2003–2019. Clearly, there
are very rare cases with NDVI values exceeding 0.5, corrob-
orating the “open environmental conditions” met by the me-
teorological stations. In view of the above, it is feasible for

our study to have used the 0 cm ground temperature at pixels
of such moderate to low vegetation cover as the evaluation
benchmark of the satellite-derived thermal-infrared LST.
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