Articles | Volume 14, issue 4
https://doi.org/10.5194/essd-14-1869-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1869-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations
Department of Geography and Geospatial Sciences, Kansas State
University, Manhattan, Kansas, USA
Blake A. Walter
Department of Geography and Geospatial Sciences, Kansas State
University, Manhattan, Kansas, USA
Fangfang Yao
Cooperative Institute for Research in Environmental Sciences (CIRES),
University of Colorado Boulder, Boulder, Colorado, USA
Chunqiao Song
Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing, China
Meng Ding
Department of Geography and Geospatial Sciences, Kansas State
University, Manhattan, Kansas, USA
Abu Sayeed Maroof
Department of Geography and Geospatial Sciences, Kansas State
University, Manhattan, Kansas, USA
Jingying Zhu
Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing, China
Chenyu Fan
Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing, China
Jordan M. McAlister
Department of Geography, Oklahoma State University, Stillwater,
Oklahoma, USA
Safat Sikder
Department of Geography and Geospatial Sciences, Kansas State
University, Manhattan, Kansas, USA
Yongwei Sheng
Department of Geography, University of California, Los Angeles (UCLA),
Los Angeles, California, USA
George H. Allen
Department of Geography, Texas A&M University, College Station,
Texas, USA
Jean-François Crétaux
Laboratoire d'Études en Géophysique et Océanographie
Spatiales (LEGOS), Centre National d'Études Spatiales (CNES), Toulouse,
France
Yoshihide Wada
International Institute for Applied Systems Analysis (IIASA),
Laxenburg, Austria
Related authors
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Chunqiao Song, Chenyu Fan, Jingying Zhu, Jida Wang, Yongwei Sheng, Kai Liu, Tan Chen, Pengfei Zhan, Shuangxiao Luo, Chunyu Yuan, and Linghong Ke
Earth Syst. Sci. Data, 14, 4017–4034, https://doi.org/10.5194/essd-14-4017-2022, https://doi.org/10.5194/essd-14-4017-2022, 2022
Short summary
Short summary
Over the last century, many dams/reservoirs have been built globally to meet various needs. The official statistics reported more than 98 000 dams/reservoirs in China. Despite the availability of several global-scale dam/reservoir databases, these databases have insufficient coverage in China. Therefore, we present the China Reservoir Dataset (CRD), which contains 97 435 reservoir polygons. The CRD reservoirs have a total area of 50 085.21 km2 and total storage of about 979.62 Gt.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Tingfeng Wu, Boqiang Qin, Anning Huang, Yongwei Sheng, Shunxin Feng, and Céline Casenave
Geosci. Model Dev., 15, 745–769, https://doi.org/10.5194/gmd-15-745-2022, https://doi.org/10.5194/gmd-15-745-2022, 2022
Short summary
Short summary
Most hydrodynamic models were initially developed based in marine environments. They cannot be directly applied to large lakes. Based on field observations and numerical experiments of a large shallow lake, we developed a hydrodynamic model by adopting new schemes of wind stress, wind waves, and turbulence for large lakes. Our model can greatly improve the simulation of lake currents. This study will be a reminder to limnologists to prudently use ocean models to study lake hydrodynamics.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Cited articles
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams,
Science, 361, 585–587, https://doi.org/10.1126/science.aat0636, 2018.
Belletti, B., Leaniz, C. G. D., Jones, J., Bizzi, S., Börger, L.,
Segura, G., Castelletti, A., van der Bund, W., Aarestrup, K., Barry, J.,
Belka, K., Berkhuysen, A., Birnie-Gauvin, K., Bussettini, M., Carolli, M.,
Consuegra, S., Dopico, E., Feierfeil, T., Fernández, S., Garrido, P. F.,
Garcia-Vazquez, E., Garrido, S., Giannico, G., Gough, P., Jepsen, N., Jones,
P. E., Kemp, P., Kerr, J., King, J., Łapińska, M., Lázaro, G.,
Lucas, M. C., Marcello, L., Martin, P., McGinnity, P., O'Hanley, J., Amo, R.
O. d., Parasiewicz, P., Pusch, M., Rincon, G., Rodriguez, C., Royte, J.,
Schneider, C. T., Tummers, J. S., Vallesi, S., Vowles, A., Verspoor, E.,
Wanningen, H., Wantzen, K. M., Wildman, L., and Zalewski, M.: More than one
million barriers fragment Europe's rivers, Nature, 588, 436–441,
https://doi.org/10.1038/s41586-020-3005-2, 2020.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT mission
and its capabilities for land hydrology, Surv. Geophys., 37, 307–337,
https://doi.org/10.1007/s10712-015-9346-y, 2016.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke,
J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge
and irrigation water supply during the 20th century, Water Resour. Res., 47,
W03509, https://doi.org/10.1029/2009WR008929, 2011.
Boulange, J., Hanasaki, N., Yamazaki, D., and Pokhrel, Y.: Role of dams in
reducing global flood exposure under climate change, Nat. Commun., 12, 417,
https://doi.org/10.1038/s41467-020-20704-0, 2021.
Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J.-F., and Cottam, A.: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry, Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, 2019.
Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.: State of the
world's freshwater ecosystems: physical, chemical, and biological changes,
Annu. Rev. Environ. Resour., 36, 75–99,
https://doi.org/10.1146/annurev-environ-021810-094524, 2011.
Chao, B. F., Wu, Y. H., and Li, Y. S.: Impact of artificial reservoir water
impoundment on global sea level, Science, 320, 212–214,
https://doi.org/10.1126/science.1154580, 2008.
Chen, T., Song, C., Ke, L., Wang, J., Liu, K., and Wu, Q.: Estimating
seasonal water budgets in global lakes by using multi-source remote sensing
measurements, J. Hydrol., 593, 125781,
https://doi.org/10.1016/j.jhydrol.2020.125781, 2021.
Cooley, S. W., Ryan, J. C., and Smith, L. C.: Human alteration of global
surface water storage variability, Nature, 591, 78–81,
https://doi.org/10.1038/s41586-021-03262-3, 2021.
Crétaux, J. F., Abarca-del-Rio, R., Berge-Nguyen, M., Arsen, A., Drolon,
V., Clos, G., and Maisongrande, P.: Lake volume monitoring from space, Surv.
Geophys., 37, 269–305, https://doi.org/10.1007/s10712-016-9362-6, 2016.
Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V.,
Berge-Nguyen, M., Gennero, M. C., Nino, F., Del Rio, R. A., Cazenave, A.,
and Maisongrande, P.: SOLS: A lake database to monitor in the near real time
water level and storage variations from remote sensing data, Adv. Space.
Res., 47, 1497–1507, https://doi.org/10.1016/j.asr.2011.01.004, 2011.
Crétaux, J. F., Biancamaria, S., Arsen, A., Berge-Nguyen, M., and
Becker, M.: Global surveys of reservoirs and lakes from satellites and
regional application to the Syrdarya river basin, Environ. Res. Lett., 10,
015002, https://doi.org/10.1088/1748-9326/10/1/015002, 2015.
Dams in Japan, Japan Dam Foundation (JDF):
http://damnet.or.jp/Dambinran/binran/TopIndex_en.html, last
access: May 2021.
Degu, A. M., Hossain, F., Niyogi, D., Pielke, R., Shepherd, J. M., Voisin,
N., and Chronis, T.: The influence of large dams on surrounding climate and
precipitation patterns, Geophys. Res. Lett., 38, L04405,
https://doi.org/10.1029/2010GL046482, 2011.
Department of Water and Sanitation (DWS) of South Africa: List of Registered
Dams (LRD), DWS [data set], http://www.dwaf.gov.za/DSO/Publications.aspx, 2019.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Fang, W., Wang, C., Chen, X., Wan, W., Li, H., Zhu, S., Fang, Y., Liu, B.,
and Hong, Y.: Recognizing global reservoirs from Landsat 8 images: a deep
learning approach, IEEE J. Sel. Top. Appl., 12,
3701–3701, https://doi.org/10.1109/JSTARS.2019.2929601, 2019.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large
reservoir storage from satellite remote sensing, Water Resour. Res., 48,
W09504, https://doi.org/10.1029/2012WR012063, 2012.
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F.,
Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Macedo, H. E.,
Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M.
E., Meng, J., Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J.,
Petry, P., Liermann, C. R., Saenz, L., Salinas-Rodriguez, S., Schelle, P.,
Schmitt, R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van
Soesbergen, A., and Zarfl, C.: Mapping the world's free-flowing rivers,
Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.
Habets, F., Molenat, J., Carluer, N., Douez, O., and Leenhardt, D.: The
cumulative impacts of small reservoirs on hydrology: a review, Sci. Total
Environ., 643, 850–867, https://doi.org/10.1016/j.scitotenv.2018.06.188,
2018.
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d'Horta,
F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A., Ribas, C. C.,
Norgaard, R. B., Filizola, N., Ansar, A., Flyvbjerg, B., and Stevaux, J. C.:
Damming the rivers of the Amazon basin, Nature, 546, 363–369,
https://doi.org/10.1038/nature22333, 2017.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from
spaceborne elevation data, Eos T. Am. Geophys. Un.,
89, 93–104, https://doi.org/10.1029/2008eo100001, 2008.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J.,
Nilsson, C., Robertson, J. C., Rodel, R., Sindorf, N., and Wisser, D.:
High-resolution mapping of the world's reservoirs and dams for sustainable
river-flow management, Front. Ecol. Environ., 9, 494–502,
https://doi.org/10.1890/100125, 2011.
Li, B., Yan, Q., and Zhang, L.: Flood monitoring and analysis over the
middle reaches of Yangtze River basin using MODIS time-series imagery, in:
2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver,
British Columbia, Canada, 24–29 July 2011, 807–810,
https://doi.org/10.1109/IGARSS.2011.6049253, 2011.
Li, Y., Gao, H., Zhao, G., and Tseng, K. H.: A high-resolution bathymetry
dataset for global reservoirs using multi-source satellite imagery and
altimetry, Remote Sens. Environ., 244, 111831,
https://doi.org/10.1016/j.rse.2020.111831, 2020.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global reconstruction of naturalized river flows at 2.94 million
reaches, Water Resour. Res., 55, 6499–6516,
https://doi.org/10.1029/2019WR025287, 2019.
Lin, P., Pan, M., Wood, E. F., Yamazaki, D., and Allen, G. H.: A new
vector-based global river network dataset accounting for variable drainage
density, Sci. Data, 8, 28, https://doi.org/10.1038/s41597-021-00819-9, 2021.
Liu, K., Song, C., Wang, J., Ke, L., Zhu, Y., Zhu, J., Ma, R., and Luo, Z.:
Remote sensing-based modeling of the bathymetry and water storage for
channel-type reservoirs worldwide, Water Resour. Res., 56, e2020WR027147,
https://doi.org/10.1029/2020WR027147, 2020.
Lyons, E. A. and Sheng, Y.: LakeTime: Automated seasonal scene selection for
global lake mapping using Landsat ETM+ and OLI, Remote Sensing, 10, 54,
https://doi.org/10.3390/rs10010054, 2018.
Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribution of small
seasonal reservoirs in semi-arid regions and associated evaporative losses,
Environ. Res Commun., 2, 061002, https://doi.org/10.1088/2515-7620/ab92af,
2020.
Managing Aquatic ecosystems and water Resources under multiple Stress
project (MARS): MARS GeoDatabase (MARSgeoDB) version 2 [data set],
http://www.mars-project.eu/index.php/databases.html (last access: 4 February 2021), 2017.
Map World (Tianditu), National Platform for Common Geospatial Information
Services (NPCGIS): https://map.tianditu.gov.cn, last access: July 2021.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.:
Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016.
Mulligan, M., van Soesbergen, A., and Saenz, L.: GOODD, a global dataset of
more than 38,000 georeferenced dams, Sci. Data, 7, 31,
https://doi.org/10.1038/s41597-020-0362-5, 2020.
Mulligan, M., Lehner, B., Zarfl, C., Thieme, M., Beames, P., van Soesbergen,
A., Higgins, J., Januchowski-Hartley, S. R., Brauman, K. A., De Felice, L.,
Wen, Q., de Leaniz, C. G., Belletti, B., Mandle, L., Yang, X., Wang, J., and
Mazany-Wright, N.: Global Dam Watch: curated data and tools for management
and decision making, Environ. Res. Infrastruct. Sustain., 1, 033003,
https://doi.org/10.1088/2634-4505/ac333a, 2021.
National Register of Large Dams (NRLD): Government of India, Central Water Commission, Central Dam Safety Organization, New Delhi, 300 pp., June 2019.
Natural Resources Canada (NRC): CanVec 1M Man-Made Features – Dam version 1.0.1, NRC [data set], Data catalogue date: 7 April 2017, originally accessed from http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/0c78d7fe-100b-5937-b74e-7590a03a6244.html, last access: September 2017.
Nilsson, C. and Berggren, K.: Alterations of riparian ecosystems caused by
river regulation, Bioscience, 50, 783–792,
https://doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2, 2000.
Open Development Cambodia (ODC): Hydropower dams 1993–2014, ODC [data set],
https://data.opendevelopmentmekong.net/en/dataset/hydropower-2009-2014 (5 September 2019),
2015.
Open Development Myanmar (ODM): Myanmar Dams, ODM [data set],
https://data.opendevelopmentmekong.net/en/dataset/myanmar-dams (last access: 5 September 2019), 2018.
Paredes-Beltran, B., Sordo-Ward, A., and Garrote, L.: Dataset of Georeferenced Dams in South America (DDSA), Earth Syst. Sci. Data, 13, 213–229, https://doi.org/10.5194/essd-13-213-2021, 2021.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015.
Sheng, Y., Song, C., Wang, J., Lyons, E. A., Knox, B. R., Cox, J. S., and
Gao, F.: Representative lake water extent mapping at continental scales
using multi-temporal Landsat-8 imagery, Remote Sens. Environ., 185, 129–141,
https://doi.org/10.1016/j.rse.2015.12.041, 2016.
Shin, S., Pokhrel, Y., and Miguez-Macho, G.: High-resolution modeling of
reservoir release and storage dynamics at the continental scale, Water
Resour. Res., 55, 787–810, https://doi.org/10.1029/2018WR023025, 2019.
Sistema Nacional de Informações sobre Segurança de Barragens
(SNISB, Brazilian National Dam Safety Information System): Relatório de
Segurança de Barragens 2017 (Dams Safety Report 2017), SNISB [data set],
http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2017 (last access: 31 August 2019),
2017.
Tilt, B., Braun, Y., and He, D.: Social impacts of large dam projects: A
comparison of international case studies and implications for best practice,
J. Environ. Manage., 90, S249–S257, 2009.
Tobler, W. R.: Computer Movie Simulating Urban Growth in Detroit Region,
Econ. Geogr., 46, 234–240, https://doi.org/10.2307/143141, 1970.
United States Army Coprs of Engineers (USACE): National Inventory of Dams
(NID), USACE [data set], https://nid.usace.army.mil (last access: 20 March 2021), 2018.
Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P.,
and Syvitski, J. P. M.: Anthropogenic sediment retention: major global
impact from registered river impoundments, Global Planet. Change, 39, 169–190,
https://doi.org/10.1016/S0921-8181(03)00023-7, 2003.
Wada, Y., Reager, J. T., Chao, B. F., Wang, J., Lo, M. H., Song, C., Li, Y.
W., and Gardner, A. S.: Recent changes in land water storage and its
contribution to sea level variations, Surv. Geophys., 38, 131–152,
https://doi.org/10.1007/s10712-016-9399-6, 2017.
Wang, J., Sheng, Y., and Wada, Y.: Little impact of the Three Gorges Dam on
recent decadal lake decline across China's Yangtze Plain, Water Resour.
Res., 53, 3854–3877, https://doi.org/10.1002/2016WR019817, 2017.
Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: Georeferenced global Dams And Reservoirs dataset for bridging attributes and geolocations, in: Earth System Science Data (v1.1; v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6163413, 2022.
Whittemore, A., Ross, M. R. V., Dolan, W., Langhorst, T., Yang, X., Pawar,
S., Jorissen, M., Lawton, E., Januchowski-Hartley, S., and Pavelsky, T.: A
participatory science approach to expanding instream infrastructure
inventories, Earth's Future, 8, e2020EF001558,
https://doi.org/10.1029/2020EF001558, 2020.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy
map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A high-resolution global hydrography map based
on latest topography dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Yang, X., Pavelsky, T. M., Ross, M. R. V., Januchowski-Hartley, S. R.,
Dolan, W., Altenau, E. H., Belanger, M., Byron, D., Durand, M., Van Dusen,
I., Galit, H., Jorissen, M., Langhorst, T., Lawton, E., Lynch, R.,
Mcquillan, K. A., Pawar, S., and Whittemore, A.: Mapping flow-obstructing
structures on global rivers, Water Resour. Res., 58, e2021WR030386,
https://doi.org/10.1029/2021WR030386, 2022.
Yao, F., Wang, J., Wang, C., and Crétaux, J. F.: Constructing long-term
high-frequency time series of global lake and reservoir areas using Landsat
imagery, Remote Sens. Environ., 232, 111210,
https://doi.org/10.1016/j.rse.2019.111210, 2019.
Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., and Wheater, H.: Representation and improved parameterization of reservoir operation in hydrological and land-surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, 2019.
Yigzaw, W., Li, H. Y., Demissie, Y., Hejazi, M. I., Leung, L. R., Voisin,
N., and Payn, R.: A new global storage-area-depth data set for modeling
reservoirs in land surface and earth system models, Water Resour. Res., 54,
10372–10386, https://doi.org/10.1029/2017WR022040, 2018.
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner, K.: A
global boom in hydropower dam construction, Aquat. Sci., 77, 161–170,
https://doi.org/10.1007/s00027-014-0377-0, 2015.
Zhan, S., Song, C., Wang, J., Sheng, Y., and Quan, J.: A global assessment
of terrestrial evapotranspiration increase due to surface water area change,
Earth's Future, 7, 266–282, https://doi.org/10.1029/2018EF001066, 2019.
Zhang, S., Gao, H., and Naz, B. S.: Monitoring reservoir storage in South
Asia from multisatellite remote sensing, Water Resour. Res., 50, 8927–8943,
https://doi.org/10.1002/2014WR015829, 2014.
Zhang, W., Pan, H., Song, C., Ke, L., Wang, J., Ma, R., Deng, X., Liu, K.,
Zhu, J., and Wu, Q. H.: Identifying emerging reservoirs along regulated
rivers using multi-source remote sensing observations, Remote Sens.,
11, 25, https://doi.org/10.3390/rs11010025, 2019.
Zhao, G. and Gao, H.: Estimating reservoir evaporation losses for the United
States: Fusing remote sensing and modeling approaches, Remote Sens.
Environ., 226, 109–124, https://doi.org/10.1016/j.rse.2019.03.015, 2019a.
Zhao, G. and Gao, H.: Towards global hydrological drought monitoring using
remotely sensed reservoir surface area, Geophys. Res. Lett., 46,
13027–13035, https://doi.org/10.1029/2019GL085345, 2019b.
Short summary
Improved water infrastructure data on dams and reservoirs remain to be critical to hydrologic modeling, energy planning, and environmental conservation. We present a new global dataset, GeoDAR, that includes nearly 25 000 georeferenced dam points and their associated reservoir boundaries. A majority of these features can be linked to the register of the International Commission on Large Dams, extending the potential of registered attribute information for spatially explicit applications.
Improved water infrastructure data on dams and reservoirs remain to be critical to hydrologic...
Altmetrics
Final-revised paper
Preprint