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Abstract. Dams and reservoirs are among the most widespread human-made infrastructures on Earth. Despite
their societal and environmental significance, spatial inventories of dams and reservoirs, even for the large ones,
are insufficient. A dilemma of the existing georeferenced dam datasets is the polarized focus on either dam
quantity and spatial coverage (e.g., GlObal geOreferenced Database of Dams, GOODD) or detailed attributes for
a limited dam quantity or region (e.g., GRanD (Global Reservoir and Dam database) and national inventories).
One of the most comprehensive datasets, the World Register of Dams (WRD), maintained by the International
Commission on Large Dams (ICOLD), documents nearly 60 000 dams with an extensive suite of attributes.
Unfortunately, the WRD records provide no geographic coordinates, limiting the benefits of their attributes
for spatially explicit applications. To bridge the gap between attribute accessibility and spatial explicitness, we
introduce the Georeferenced global Dams And Reservoirs (GeoDAR) dataset, created by utilizing the Google
Maps geocoding application programming interface (API) and multi-source inventories. We release GeoDAR in
two successive versions (v1.0 and v1.1) at https://doi.org/10.5281/zenodo.6163413 (Wang et al., 2022). GeoDAR
v1.0 holds 22 560 dam points georeferenced from the WRD, whereas v1.1 consists of (a) 24 783 dam points
after a harmonization between GeoDAR v1.0 and GRanD v1.3 and (b) 21 515 reservoir polygons retrieved from
high-resolution water masks based on a one-to-one relationship between dams and reservoirs. Due to geocoding
challenges, GeoDAR spatially resolved ∼ 40 % of the records in the WRD, which, however, comprise over
90 % of the total reservoir area, catchment area, and reservoir storage capacity. GeoDAR does not release the
proprietary WRD attributes, but upon individual user requests we may provide assistance in associating GeoDAR
spatial features with the WRD attribute information that users have acquired from ICOLD. Despite this limit,
GeoDAR, with a dam quantity triple that of GRanD, significantly enhances the spatial details of smaller but
more widespread dams and reservoirs and complements other existing global dam inventories. Along with its
extended attribute accessibility, GeoDAR is expected to benefit a broad range of applications in hydrologic
modeling, water resource management, ecosystem health, and energy planning.
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1 Introduction

Since around the 1950s, the world has seen an unprecedented
boom in large dam construction as a response to the ever-
growing human demands for water and energy (Chao et al.,
2008; Wada et al., 2017). Today, dams and their impounded
reservoirs are ubiquitous across many global basins, provid-
ing multiple services that range from hydropower and flood
control to water supply and navigation (Belletti et al., 2020;
Biemans et al., 2011; Boulange et al., 2021; Döll et al., 2009;
Grill et al., 2019). These benefits were, however, often gained
at the cost of fragmenting river systems, submerging arable
lands, displacing population, and disturbing climate regimes
(Carpenter et al., 2011; Crétaux et al., 2015; Degu et al.,
2011; Grill et al., 2019; Latrubesse et al., 2017; Nilsson and
Berggren, 2000; Tilt et al., 2009; Vörösmarty et al., 2003;
Wang et al., 2017).

Despite such environmental and societal significance, our
spatial inventory of global dams and reservoirs, even for the
large ones (such as those with a surface area > 1 km2), has
been insufficient. We still lack a thorough and authoritative
dataset that documents both geographic coordinates (latitude
and longitude) and standard attributes (e.g., purpose, reser-
voir storage capacity, and hydropower capacity) of the ex-
isting large dams. One of the most comprehensive datasets,
the World Register of Dams (WRD), is regularly updated
by the International Commission on Large Dams (ICOLD;
https://www.icold-cigb.org, last access: 13 March 2019), a
non-governmental organization dedicated to the global shar-
ing of professional dam or reservoir information. The re-
cent version of the ICOLD WRD documents nearly 60 000
“large” dams, defined as those with a wall higher than 15 m
or between 5 and 15 m but with a reservoir storage greater
than 3×106 m3 (mcm). These WRD records are considered
to be “complete” to the extent of contributions from willing
nations and water authorities (Wada et al., 2017).

While the ICOLD WRD provides more than 40 attributes
(e.g., reservoir storage capacity, dam height, and reservoir
purpose), the dam locations are, unfortunately, either not
georeferenced or inaccessible to the public. Despite the avail-
ability of many essential attributes, missing geographic coor-
dinates have severely limited the applications of the WRD,
including for hydrological modeling and hydropower plan-
ning (Yassin et al., 2019), which require the dam records
to be spatially explicit. This dilemma may be partially re-
solved by using georeferenced regional registers such as
the United States National Inventory of Dams (US NID;
https://nid.sec.usace.army.mil, last access: 20 March 2021).
Nevertheless, such regional registers are not always publicly
available, especially in developing nations, where dam con-
struction is still booming (Zarfl et al., 2015).

Other global dam and reservoir datasets that are georefer-
enced, however, often lack essential attributes. An example

is the recently published GlObal geOreferenced Database of
Dams (GOODD V1) (Mulligan et al., 2020), which contains
38 667 dam points digitized from Google Earth imagery and
their associated catchments delineated from digital elevation
models (DEMs). Despite this dam quantity, GOODD pro-
vides no other attribute information. Another inventory, the
Global River Obstruction Database (GROD) (Whittemore et
al., 2020; Yang et al., 2022), located more than 30 500 flow
obstructions along rivers wider than 30 m as mapped in the
Global River Width from Landsat (GRWL) database (Allen
and Pavelsky, 2018). The current attributes are mainly lim-
ited to obstruction types such as locks, weirs, and multiple
types of dams. In addition, GRWL was tailored for the forth-
coming Surface Water and Ocean Topography (SWOT) satel-
lite mission, which was designed to observe river reaches
wider than 50–100 m (Biancamaria et al., 2016). While these
rivers are sufficiently captured by GRWL, the obstruction
infrastructure identified along the river mask in GRWL ex-
cludes many large dams on rivers narrower than 30 m. In
the US, for instance, there are about 9020 NID-registered
large dams according to ICOLD criteria, but only ∼ 9 %
of them intersect with GRWL (calculated with variable dis-
tance tolerance being the maximum river widths (attribute
“width_max”) of the GRWL lines).

Among the few global dam or reservoir datasets that pro-
vide both georeferenced locations and essential attributes
are the United Nations Food and Agricultural Organization
(FAO) AQUASTAT (Li et al., 2011) and the Global Reservoir
and Dam database (GRanD) (Lehner et al., 2011). GRanD
was constructed by harmonizing AQUASTAT and a wide
range of regional gazetteers and inventories. Its latest ver-
sion, v1.3, contains 7320 dams as well as their reservoir
boundaries and over 50 attributes, with a cumulative stor-
age capacity of 6881 km3. Since its publication, GRanD has
been applied extensively by a variety of studies, although its
focus is on the world’s largest dams (e.g., > 0.1 km3), and
its quantity (7320 dams) is a fraction of the ∼ 59000 dams
documented in the WRD. A spatially resolved inclusion of
additional large dams, such as those in compliance with the
ICOLD definition, has been increasingly desired by the hy-
drology community and encouraged by growing collabo-
rations from multiple disciplines such as biogeochemistry,
ecology, energy planning, and infrastructure management
(Belletti et al., 2020; Boulange et al., 2021; Grill et al., 2019;
Lin et al., 2019; Wada et al., 2017).

Here, we present the initial versions of the Georeferenced
global Dams And Reservoirs dataset, or GeoDAR. We built
GeoDAR by leveraging multi-source dam and reservoir in-
ventories and the Google Maps geocoding application pro-
gramming interface (API). Our goal is to tackle the limita-
tions of existing datasets by offering a dam inventory that is
both spatially resolved and has an extended ability to access
important attributes. As summarized in Table 1, GeoDAR
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includes two successive versions. GeoDAR v1.0 is essen-
tially a georeferenced subset of the ICOLD WRD. It contains
22 560 dam points, each indexed by an identifier (ID) that is
associated with a unique WRD record, allowing for potential
retrieval of all its 40+ proprietary attributes from ICOLD.
GeoDAR v1.1 consists of (a) nearly 25 000 dam points which
harmonized v1.0 and GRanD for an expanded inclusion of
the largest dams and (b) the reservoir boundaries for most
(87 %) of the dam points based on a one-to-one relationship
between dams and reservoirs. Due to geocoding challenges,
GeoDAR v1.0 spatially resolved about 40 % of the dams
in the WRD. However, these georeferenced locations were
quality controlled, and after the harmonization with GRanD,
v1.1 captures a total storage capacity of 7384 km3, a mag-
nitude comparable to the full storage capacity of the WRD.
While GeoDAR v1.1 can be considered to be a version that
supersedes v1.0, the latter was, in principle, georeferenced
independently from GRanD. We opted to release both ver-
sions so users have the flexibility to decide whichever works
better for their cases and potentially improve the harmoniza-
tion.

Due to proprietary restrictions, neither GeoDAR version
releases any WRD attributes. Instead, we offer an option
for users if they need to acquire the attributes: upon indi-
vidual request we may assist the user who has purchased
the WRD (https://www.icold-cigb.org/GB/world_register/
world_register_of_dams.asp, last access: 13 March 2019) to
associate the GeoDAR ID with the ICOLD “International
Code”, through which WRD attributes can be linked to each
GeoDAR feature (see Sects. 3.3 and 6 for more details). Even
without the proprietary WRD attributes, GeoDAR offers one
of the most extensive and spatially resolved global inventory
of dams and reservoirs, which may benefit a variety of appli-
cations in hydrology, hydropower planning, and ecology.

2 Methods

2.1 Definitions and overview

We aim to georeference (i.e., acquire the latitude and longi-
tude of) each dam listed in the ICOLD WRD by using the
nominal location (e.g., a descriptive address for a dam or
reservoir) available in the WRD attributes. Examples of the
attributes that are important for georeferencing include the
names of the dam and reservoir, the administrative divisions
the dam is affiliated with, and the name of the impounded
river. Using such attribute information, spatial coordinates of
a dam may be either (a) queried from an existing register
or inventory where dam records were already georeferenced
and verified or (b) estimated through a geocoding service that
can convert nominal locations to numeric spatial coordinates.
Our preference was the former when possible to optimize the
georeferencing accuracy.

The schematic procedure of GeoDAR production is illus-
trated in Fig. 1. We started by removing duplicate records

from the ∼ 59 000 dams listed in the original ICOLD WRD
(accessed in March 2019). Here “duplicates” are defined as
the dams that are either (a) repeatedly recorded with iden-
tical (or highly similar) attribute information or (b) differ-
ent dam structures but associated with the same reservoir.
Examples of the second scenario include a reservoir’s pri-
mary and secondary or auxiliary dams such as the Boon-
ton Dam and the Parsippany Dike (40.884◦ N, 74.408◦W)
in New Jersey and multiple controls for one reservoir such as
Veersedam and Zandkreekdam for Veerse Meer (51.549◦ N,
3.678◦ E) in the Netherlands. Although “duplicates” in this
scenario refer to different dam bodies, including them could
lead to double or multiple counting of the storage capacity of
the same reservoir, and similar to the production of GRanD,
our goal was to link one reservoir to one dam (if possible).
After removing the identified duplicates, the cleaned WRD
contains 56 815 unique dams or reservoirs. These dams have
an accumulative storage capacity of 7328 km3 based on the
original WRD attribute values (which are occasionally miss-
ing or erroneous) or 7720 km3 after replacement or correc-
tion by Wada et al. (2017) and GRanD (see Sect. 2.4). Un-
less otherwise described, the ICOLD WRD mentioned in the
following text refers to the version after duplicate removal.
We acknowledge that owing to the challenges of lacking ex-
plicit spatial information and occasional attribute errors in
the WRD, our duplicate removal is not perfect and may have
misidentified or missed some duplicate dams.

We then compared the unique ICOLD WRD records
against a collection of georeferenced dam registers we ac-
quired from regional water authorities and agencies. When
the attribute information of a WRD dam matched that in
a regional register, the spatial coordinates from the latter
were “borrowed” to the WRD record. We term this pro-
cess “geo-matching”, which resulted in the georeferencing
of 13 190 WRD dams. For the remaining dams in the WRD,
we applied the alternative approach, “geocoding”, which
transforms a nominal location (such as the dam or reser-
voir address formulated by ICOLD attribute information)
to a pair of spatial coordinates. The tool we used to im-
plement geocoding was the Google Maps geocoding API
(http://developers.google.com/maps, last access: 14 Febru-
ary 2022). The geocoding process successfully retrieved the
spatial coordinates of another 9338 WRD dams. The com-
bined output from both geo-matching and geocoding were
next collated with the spatial coordinates and reservoir stor-
age capacities of 133 WRD dams larger than 10 km3 as doc-
umented in Wada et al. (2017). These processes resulted in
GeoDAR v1.0, a total of 22 560 georeferenced WRD dam
points with an accumulative storage capacity of 6441 km3

(accounting for more than 80 % of that in the ICOLD WRD).
The Venn diagram in Fig. 2a provides an overview of the log-
ical relations among the georeferencing sources and methods
for GeoDAR v1.0.

To further improve our spatial inventory of the world’s
largest dams, we performed a harmonization between the
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Table 1. GeoDAR product versions and components.

Version Description Component Acquisition sources Count Storage capacity Reservoir polygon
and methods (km3) area (km2)

v1.0 Georeferenced
ICOLD

Dam points Geo-matched via regional
registers

13 149 1308.2 –

Geocoded via Google Maps
API

9278 1232.4 –

Supplemented by Wada et
al. (2017)

133 3900.0 –

Total 22 560 6440.6 –

v1.1 Harmonized
ICOLD and
GRanD

Dam points GeoDAR v1.0 alone
(excluding overlap with
GRanD v1.3)

17 480 507.2 –

GRanD v1.3 and GeoDAR
v1.0 (overlap between the
two)

5080 6006.0 –

GRanD v1.3 and other
ICOLD (not georeferenced
in GeoDAR v1.0)

1414 603.0 –

GRanD v1.3 alone (exclud-
ing overlap with the ICOLD
WRD)

809 267.7 –

Total 24 783 7383.8 –

Reservoir
polygons

GRanD v1.3 reservoirs 7120 6717.7 446 525.2

HydroLAKES v1.0 7184 259.8 13 661.9

UCLA Circa 2015 Lake In-
ventory

7211 238.5 36 126.6

Total 21 515 7216.1 496 313.8

Figure 1. Schematic flowchart of GeoDAR production. Text in roman indicates applied or produced datasets, and text in italics indicates
methods or procedures.

dam points in GeoDAR v1.0 and GRanD v1.3. The harmo-
nization aimed at merging both datasets, removing duplicates
in the overlapped portion between them, and when possi-
ble associating new dams supplemented by GRanD with the
corresponding WRD records. This process identified another

2223 dam points, including 1414 associated with the WRD
but not georeferenced in GeoDAR v1.0. With removal of du-
plicates, this harmonization led to a total number of 24 783
georeferenced dam points, with an accumulative storage ca-
pacity of 7384 km3. An overview of this harmonization pro-
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Figure 2. Venn diagrams illustrating the logical relations among
georeferencing data sources and methods for GeoDAR. (a) Geo-
DAR v1.0 and (b) GeoDAR v1.1 (dams only). Boxes indicate the
final subsets in each GeoDAR version, and the arrows point to the
georeferencing sources or methods. Topology of the shapes illus-
trates logical relations among the data and methods (shape sizes
were not drawn to scale of the data volumes).

cess is illustrated by the Venn diagram in Fig. 2b. Finally,
the reservoir polygons for each of the georeferenced dams
were retrieved as thoroughly as possible from three global
water body datasets: GRanD v1.3 reservoirs (Lehner et al.,
2011), HydroLAKES v1.0 (Messager et al., 2016), and the
Landsat-based UCLA Circa 2015 Lake Inventory (Sheng et
al., 2016). These nearly 25 000 dam points and their associ-
ated reservoir polygons constitute GeoDAR v1.1. Details of
production processes, including quality assurance and qual-
ity control (QA/QC), are included in the following method
sections.

2.2 Geo-matching regional registers

The ICOLD WRD was a collective contribution from more
than 100 member nations, some of which also release de-
tailed and publicly accessible dam registers that have been
georeferenced. These regional and local registers, with reli-
able spatial coordinates already provided for each dam, were
our preferred sources for georeferencing the WRD. Since
this type of register is not available for most countries, we
searched several water authority and project websites and
collected seven georeferenced regional registers or invento-
ries that are open-access. Their names, sources, and numbers
of documented dams are summarized in Table 2.

These seven registers and inventories cover Brazil,
Canada, the United States, 31 European countries (includ-
ing part of Russia), South Africa, and part of Southeast Asia
(Cambodia and Myanmar), with a total dam count of more
than 126 000. Besides spatial coordinates, each of these reg-
isters also provides attributes for their documented dams,
which were required by the geo-matching process. While
other dam inventories could be available, our geo-matching
effort for GeoDAR v1.0 was focused on these collected ones.
However, we referred to additional registers or inventories
from China, India, and Japan (Table 2) for the validation
of our WRD geocoding (see “Validation”). For these addi-
tional regional registers, it was either inconvenient to bulk-
download the dam records, or we were legally restricted from
releasing their dam coordinates. Therefore, we only used
these registers for the purpose of validation.

The procedure of geo-matching is illustrated in Fig. 3.
Given each regional register, our goal was to find its match-
ing records from the subset of the ICOLD WRD for the same
region, by cross-checking value similarities for several key
attributes between the two datasets. On one hand, the com-
pared attributes must be mutually available in both datasets.
On the other hand, the attributes should cover various themes
so that in combination, they are able to disambiguate records
that represent different dams but may coincide in certain at-
tributes. Taking both requirements into account, the key at-
tributes used include the dam and reservoir names, multiple
levels of administrative or political divisions for the dam, and
the dam’s completion year. The river on which the dam was
constructed was also considered for all regions except Cam-
bodia as the register does not contain such an attribute. For
each of the key attributes, we considered values in the WRD
and the regional register agreeing with each other if the sim-
ilarity score between the value sequences exceeded ∼ 85 %
(meaning that there are more than eight pairs of identical el-
ements, with consideration of their orders, between two 10-
character sequences). This similarity threshold tolerated mi-
nor variations in spelling that may occur among different data
sources. If an agreement was not reached between the two
full sequences (e.g., “Maharashtra Pradesh” and “Maharash-
tra”), the similarity was then tested at the level of the main
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Table 2. Regional registers or inventories for geo-matching and the validation of geocoding.

Region Register or source Dam count

Regional register ICOLD WRD Geo-matched

Geo-matching

Brazil RSB (SNISB, 2017) 23 630 1345 668 (50 %)
Cambodia ODC (2015) 73 7 3 (43 %)
Canada CanVec (NRC, 2017) 843 648 435 (67 %)
Europe MARS (2017) 5043 6671 3981 (60 %)
Myanmar ODM (2018) 254 33 14 (42 %)
South Africa LRD (DWS, 2019) 5592 1105 842 (76 %)
United States NID (USACE, 2018) 91 213 8862 7247 (82 %)

Total 126 648 18 671 13 190 (71 %)

Geocoding validation

China NPCGIS (2021) Not counted 23 783 –
India NRLD (2019) 5723 5074 –
Japan JDF (2021) 2349 3089 –

Register or source abbreviations are as follows: Relatório de Segurança de Barragens (RSB; Dams Safety Report of Brazil),
Open Development Cambodia (ODC), Managing Aquatic ecosystems and water Resources under multiple Stress project
(MARS), Open Development Myanmar (ODM), List of Registered Dams (LRD) of South Africa, National Inventory of
Dams (NID) of the US, National Platform for Common Geospatial Information Services (NPCGIS) of China, National
Register of Large Dams (NRLD) of India, and Japan Dam Foundation (JDF). Regional inventories were collected with
partial reference to the Global Dam Watch website (http://globaldamwatch.org, last access: 1 March 2022; Mulligan et al.,
2021). Statistics for regional registers are based on records with valid geographic coordinates, and statistics for the ICOLD
WRD are based on records after duplicate removal. See full registers, references, and download links in the reference list.

subsets of the sequences in order to increase the matching
success.

One of the geo-matching challenges was that the levels of
political or administrative divisions are not always compara-
ble or consistent between the WRD and the regional regis-
ters. In the WRD, the divisions were provided at the levels
of country, state/province, and the nearest town/city, which
are inconsistent with some of the registers. For example, the
register for Brazil (Dams Safety Report in 2017) provides
the finest division at the county level, whereas the European
inventory (from the MARS (Managing Aquatic ecosystems
and water Resources under multiple Stress) project) docu-
ments no divisions below the national level. To improve the
feasibility in division comparison, we performed a “reverse
geocoding” for each georeferenced regional register using
the Google Maps geocoding API. Opposite to regular (or
“forward”) geocoding, which converts a nominal location
to numeric spatial coordinates, this reverse geocoding con-
verted the spatial coordinates of each dam documented in the
register to a parsed address that contains administrative di-
visions at consecutive levels. These multi-level divisions and
subdivisions were appended to the original regional registers
(Fig. 3), thus enabling a more flexible and complete compar-
ison with the WRD attributes and thus an increased success
rate of geo-matching.

We considered a WRD record to match a regional record if
their agreements on the key attributes warranted reasonable
confidence that the two records are the same dam. In princi-

ple, high confidence would require a unanimous agreement
on all key attributes. However, this ideal scenario was often
unnecessary and sometimes impossible. One of the reasons is
that the key attributes do not always have valid values. In the
WRD, for instance, the values of “nearest town” for nearly all
(> 99 %) US dams are missing. While this attribute is avail-
able for many other dams, the nearest town/city is not neces-
sarily the division administrating or containing the dam. An-
other reason is that our collected multi-source datasets were
not collated by a universal standard. As a result, inherent dis-
crepancies of the attribute definitions and/or values may exist
among the datasets. One example is the dam’s “completion
year”, which could be ambiguous between the year when the
dam construction was concluded and the year when the dam
operation was initiated or commissioned. These two defini-
tions do not necessarily lead to the same year. To address
such inconsistencies, we defined a baseline scenario that re-
quired any pair of matched WRD and regional records to
agree on the following:

– dam or reservoir name;

– country and state/province if values are valid; and

– at a minimum, either (a) completion year or river if the
town/city values disagree or are invalid or (b) town/city
when completion years and rivers do not both disagree.

In compliance with this baseline, we implemented an auto-
mated QA to filter out any matching errors and optimize the
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Figure 3. Schematic procedure of geo-matching regional registers. Text in roman indicates applied or produced datasets, and text in italics
indicates methods or procedures.

matching accuracy for each WRD record. In brief, any match
that did not meet the baseline scenario was removed, and
the remaining geo-matched pairs were ranked to three dis-
crete QA levels (M1, M2, and M3) according to the qual-
ity of attribute agreements (see definitions in Table S1 in
the Supplement). As the QA rank increases (from M3 to
M1), agreements on the key attributes improved from the
baseline to the ideal scenario (i.e., a unanimous agreement).
If a WRD record was matched to multiple records in the
regional register, the QA selected the match with the best
rank. This way, each georeferenced WRD record was only
matched to the best-ranking regional record. Users may refer
to the provided QA ranks as a measure of the reliability of
each geo-matched location. It is worth noting that our geo-
matching purpose was to acquire the spatial coordinates of
any matched WRD record from the regional register rather
than collating or correcting any existing attribute values. In
other words, some of the WRD and regional records may
actually refer to the same dams but were matched unsuc-
cessfully due to major discrepancies between their attribute
values. This led to a conservative success rate in our auto-
mated geo-matching. More technical details about QA are
given in our Python scripts at https://github.com/surf-hydro/
georeferencing-ICOLD-dams-and-reservoirs (last access:
13 March 2021).

Following the automated QA, we performed a manual QC
to reassure the accuracy of the geo-matching results. We
went through each geo-matched WRD record to examine
whether its attributes (e.g., dam or reservoir name, admin-
istrative locations, river name, construction year, and storage
capacity) indeed agreed with those of the regional source. If
an evident discrepancy was identified, the “match” was re-
moved or corrected in the final product. Although we made
every endeavor to be as rigorous as possible, remnant match-
ing errors may still exist due to the challenges of incomplete-
ness and possible errors in the attribute information (refer to
Sect. 4 for accuracies). For occasional cases that a dam was
matched correctly to the register attributes but misplaced due
to poorer quality of the spatial coordinates in the register, we
tried to adjust or, if possible, correct the register’s spatial co-
ordinates using the best possible resources (such as Google
Maps and other open-source documents). If we were unable

to observe any water infrastructure at the location of a correct
match, we took a conservative action and removed the match.
We admit that this might mistakenly delete some of the struc-
tures (e.g., small run-of-the-river hydropower stations, weirs,
and diversions) that are too small to be visible from Google
Map imagery. Our manual QC identified ∼ 4 % error in the
geo-matched WRD records, most of which came from QA
rank M3. After removing these errors, the geo-matching pro-
cess concluded with a total of 13 190 WRD records georefer-
enced (Fig. 3), including 3238, 6987, and 2965 for QA ranks
M1, M2, and M3, respectively (Table S1 in the Supplement).
The success rate, i.e., the number of geo-matched dams as a
percentage of the number of WRD records, varies from about
40 % in Southeast Asia to about 80 % in South Africa and
the US (Table 2), with an overall success of 71 % in all geo-
matched regions (Fig. 3).

2.3 Geocoding via Google Maps

The subset of the ICOLD WRD that was not geo-matched in-
cludes the remaining 5481 (29 %) dams in the geo-matched
regions and the entire 38 144 dams in the other regions of
the world (Fig. 2a). For these dams, we applied the Google
Maps geocoding API, a sophisticated cloud-based geocod-
ing service, to retrieve the spatial coordinates of each dam as
thoroughly and accurately as possible. To do so, we designed
a recursive geocoding procedure that implemented three pri-
mary steps on each dam: forward geocoding, reverse geocod-
ing, and QA filtering. The purpose of each of the steps and
their logical relations are illustrated in Fig. 4.

The forward geocoding (see Sect. 2.1 for definition) used
the text address of each dam as the input, which we format-
ted by concatenating the WRD attribute values, to output the
latitude and longitude of the dam. The WRD attributes used
for address formatting include dam name, reservoir name,
state/province, and country. “Nearest town” was excluded
because it is not always the township administrating the dam
or reservoir. Together with the spatial coordinates, the for-
ward geocoding also returned a Google Maps address asso-
ciated with the coordinates, which was parsed to individual
components including feature name, street name, and polit-
ical divisions. These output address components, in return,
provided valuable information for QA: if the geocoded coor-
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Figure 4. Schematic procedure of geocoding using Google Maps API. Text in roman indicates applied or produced datasets, and text in
italics indicates methods or procedures. The dashed line arrow indicates that this step is not always necessary.

dinates are correct, the associated output address components
should agree well with those of the WRD input. However, we
noticed that address components from forwarding geocod-
ing are often limited in terms of division levels. To comple-
ment this limitation, we also utilized reverse geocoding (see
Sect. 2.2 for definition) to convert the coordinates from for-
ward geocoding to an updated address (sometimes with more
complete division levels). The address components from both
forward and reverse geocoding were combined and are here-
after referred to as the “output address”.

Similar to geo-matching, we employed a QA filter to ap-
proach the optimal geocoding result. This process first ar-
ranged the attributes of each WRD record to several address
formats as they could result in different geocoding outputs.
The address arrangements are listed in Table S2 in the Sup-
plement, and their preference order is rationalized in the Sup-
plement. Each of these WRD addresses was used iteratively
for both forward and reverse geocoding (as described above).
Their geocoded spatial coordinates were then ranked to five
discrete QA levels based on how well the input and output
addresses agree with each other (C1 to C5 in Table S3 in the
Supplement). The iteration could be terminated if the highest
QA rank was achieved; otherwise, the coordinates that ren-
dered the best possible QA rank were used as the geocoding
result.

As explained in Table S3 in the Supplement, the compared
address components include the name of the feature and its
affiliated political divisions from town/city to country levels.
Consistent with geo-matching, we considered a component
to be agreed on if the similarity of its values from both input
and output addresses exceeds∼ 85 %. Since the nearest town
in the WRD was not used for forward geocoding, we treated
it as an “independent reference” for validating the township
component in the output address. Although the town or city
near the dam (from the WRD) does not always coincide
with that administrating the dam (from the geocoding out-
put), their occasional agreement would strengthen our confi-
dence of the geocoded coordinates if other components were
also well matched between the WRD input and the geocod-
ing output. For this reason, we opted to include the town-
ship comparison as a supplementary criterion in the geocod-
ing QA process. The highest QA rank (C1) corresponds to

a unanimous agreement on all address components. How-
ever, the minimum rank (C5) only required the agreement on
the feature name, which is a more flexible baseline in com-
parison with that for geo-matching. This was because some
of the large reservoirs, particularly those on or near politi-
cal boundaries, have shared or ambiguous divisions, and the
ambiguity might be further amplified by the output coordi-
nates, which could fall in anywhere from the dam to across
the reservoir water surface. In addition, some of the outputs,
regardless of agreement on the address components, are not
dams or reservoirs. We therefore included another baseline
filter which aimed to remove such errors by analyzing the
feature type information in the geocoding output (see scripts
in “Code availability”). Although the QA process was de-
signed to be automated, we still manually enforced hundreds
of the initial outputs, many of which had returned feature
names in native languages, to pass the baseline filters. As a
result, our QA process yielded more than 16 000 geocoded
WRD records, each with the optimal spatial coordinates and
the corresponding QA rank.

To complement the QA process, we then conducted a rig-
orous QC to correct and/or remove the remaining geocod-
ing errors. We considered a geocoding error to be a location
where (a) no dam or reservoir could be visibly verified from
Google Earth or Esri images, or (b) the WRD attribute in-
formation is inconsistent with the feature or division labels
on Google Maps. In such cases, we usually first attempted
to re-geocode the dam manually (such as by directly using
the Google Maps interface) before deleting this error. It is
important to clarify that the georeferenced coordinates, al-
though referred to as ”dam points” in our data product, do not
always fall on the dam bodies. While the geo-matched coor-
dinates from regional registers are usually on or close to the
dams, the geocoded coordinates, depending on the address
input (Table S2 in the Supplement) and the available Google
Maps information, could be located on the associated reser-
voir. Note that the latter case was not considered an error,
but for improved locations, we manually adjusted some of
the georeferenced coordinates more towards the dams. Due
to China’s GPS shift problem (e.g., misalignment between
the street maps and satellite imagery on Google Maps), the
geocoded points across mainland China often exhibit system-
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atic offsets of roughly 500 m or more from their actual dam or
reservoir features. For such Chinese dams, we tried to reduce
their geocoding offsets by manually relocating the coordinate
points to their correct dams or reservoirs. Our QC process
ended up removing about 42 % of the originally geocoded
dams, most of which stemmed from relatively low QA ranks
(see statistics in Table S3 in the Supplement). The com-
plete geocoding procedure resulted in 9338 georeferenced
and quality-controlled WRD records, with an overall success
rate of 21 %.

2.4 Supplementation with other global inventories

The outputs from both geo-matching and geocoding, a to-
tal of 22 528 georeferenced ICOLD WRD records (Fig. 2a),
were further supplemented or harmonized by two global
dam or reservoir inventories to improve our inclusion of the
world’s largest dams. We considered this process necessary
for two reasons. First, our georeferencing process, particu-
larly geocoding via Google Maps API, did not warrant an
exhaustive inclusion of the largest dams. This is particularly
evident for regions where the address and label information
in Google Maps is either lacking or difficult to pass the au-
tomated QA due to language ambiguity or naming discrep-
ancies. Second, through cross-referencing we noted that the
attribute values of reservoir storage capacity (as well as reser-
voir surface area) provided in the ICOLD WRD are occa-
sionally erroneous (also noted by Mulligan et al., 2020), e.g.,
by a factor of 1000, probably caused by unit confusion in
WRD compilation. As part of the supplementation and har-
monization process, we also reduced the errors in WRD by
verifying storage capacities of some of the largest reservoirs
and replacing the WRD capacity values by those of the two
global inventories.

2.4.1 Supplementation with Wada et al. (2017): forming
GeoDAR v1.0

Wada et al. (2017) compiled a list of all 144 large dams with
a reservoir storage capacity larger than 10 km3 in the world.
Among them, 139 dams were provided with spatial coordi-
nates. We verified each of the dam locations and made mi-
nor adjustments to further assure the quality. The attributes
of these 139 dams were then manually compared with those
in the ICOLD WRD. We found that 133 of them were
unique records also documented in the WRD, but 32 of them
were georeferenced unsuccessfully in our geo-matching or
geocoding procedure. Therefore, we borrowed the spatial co-
ordinates of these 32 large dams in Wada et al. (2017) to sup-
plement what we had georeferenced. The coordinates of the
other 101 large dams, which we georeferenced successfully
(41 from geo-matching and 60 from geocoding), were also
overwritten by those in Wada et al. (2017) to double-assure
and improve their spatial accuracies. This supplementation is
illustrated by the Venn diagram in Fig. 2a.

We next compared the storage capacities of each of the
133 dams in Wada et al. (2017) with those in the WRD and
identified 21 of them exhibiting substantial discrepancies be-
tween the two datasets (including 3 dams without capacity
values in the WRD). We then collated their storage capacities
with other documents (e.g., regional inventories, GRanD, and
Wikipedia) and concluded that WRD may supersede Wada
et al. (2017) in the accuracy of storage capacity for 5 of the
21 dams. Except these five dams, the original WRD capaci-
ties were replaced by those in Wada et al. (2017). More de-
tailed data collation and verification for Wada et al. (2017)
are given in Table S4 in the Supplement (full spreadsheet
available at https://doi.org/10.5281/zenodo.6163413; Wang
et al., 2022). The entire supplementation process, includ-
ing adding new dams, updating existing dam coordinates,
and correcting reservoir storage capacities, increased the to-
tal storage capacity of our georeferenced dams by 15 %, and
70 % of the capacity increase comes from the 32 added large
dams. For improved clarity, it is worth reiterating that all
dams supplemented by Wada et al. (2017) were also docu-
mented in the ICOLD WRD. The combined results of geo-
matching and geocoding, after the supplementation from
Wada et al. (2017), define GeoDAR v1.0, which contains
22 560 georeferenced records in the ICOLD WRD.

2.4.2 Harmonization with GRanD: forming GeoDAR
v1.1

While GeoDAR v1.0 largely exceeds GRanD in dam count, a
visual comparison of their spatial distributions revealed that
the latter is often complementary to (instead of completely
duplicated by) the former in many regions of the world. This
motivated us to perform a systematic harmonization between
the two datasets. The merged version, which we entitled Geo-
DAR v1.1, combines the merits of GRanD in documenting
the world’s largest dams and GeoDAR v1.0 in providing ex-
tensive spatial details of smaller but more widespread dams.

We assumed that GRanD, by having collated multiple
data sources, is superior to GeoDAR v1.0 in the accu-
racies of both spatial locations and attribute values (par-
ticularly reservoir storage capacity) of the world’s largest
dams. While this may be true for most cases, we identified
at least 88 dams in GRanD with possible location errors.
With the help of several references such as regional reg-
isters (Table 2), the recently published Dataset of Georef-
erenced Dams in South America (DDSA) (Paredes-Beltran
et al., 2021), Google Maps, and other literature and open-
access documents, we were able to correct the locations of
76 of these dams and absorbed the corrected coordinates to
the harmonization. The other 12 GRanD dams, including 3
duplicates with other dams and 9 we were unable to cor-
rect the locations for, were excluded from the harmonization.
What was also excluded are another five dams in GranD that
were subsumed or replaced by newer dams. For user conve-
nience, we released these ∼ 90 GranD dams together with
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the identified issues and suggested coordinates (if possible)
in Table S5 in the Supplement (full spreadsheet available at
https://doi.org/10.5281/zenodo.6163413; Wang et al., 2022).
Using the adjusted GRanD data (7303 points), the harmo-
nization (Fig. 5) aimed at (a) improving spatial coordinates
of the dam points in GeoDAR v1.0, (b) adding WRD dams
that are not georeferenced in GeoDAR v1.0 but are included
by GRanD, (c) reducing storage capacity errors in the geo-
referenced WRD, and (d) absorbing the remaining GRanD
dams that are not documented in the WRD. Detailed pro-
cessing for each of the objectives is given below.

First, when a dam in GeoDAR v1.0 also exists in GRanD,
the spatial coordinates of the former were replaced by
those of the latter. We implemented a two-step procedure to
identify the overlapping dams between GeoDAR v1.0 and
GRanD. Step 1 was based on attribute association, while
Step 2 utilized spatial query. Specifically, Step 1 detected
the matching records between the WRD and GRanD by as-
sessing their agreements on dam or reservoir names, admin-
istrative divisions, impounded rivers, and completion years.
The similarity for reservoir storage capacity was also uti-
lized in our manual QC. This step was essentially the same
as “geo-matching”, which was used to link WRD records to
regional registers for GeoDAR v1.0 (Sect. 2.2). The associ-
ation results, after a meticulous QC, identified ∼ 4670 dams
in GRanD that were georeferenced in GeoDAR v1.0. For the
remaining GRanD dams, Step 2 utilized their reservoir poly-
gons to spatially intersect with the dam points in GeoDAR
v1.0. A distance tolerance of∼ 5 km was applied to assist the
spatial association and account for possible offsets in Geo-
DAR v1.0. As part of the QC, the attribute values of each
pair (one from GRanD and the other from the WRD) were
manually compared to determine whether they are indeed the
same dam. This step identified another 400 or so overlapping
dams between the two datasets. In total, we found that Geo-
DAR v1.0 overlaps 5080 out of the 7303 dams in GRanD,
and their spatial coordinates were updated to be consistent
with those in GRanD.

Second, for the remaining 2223 dams in GRanD that do
not overlap GeoDAR v1.0, we assumed that at least part of
them could be matched to the WRD records not georefer-
enced in GeoDAR v1.0. Therefore, we performed another
round of attribute association between the remaining sub-
sets of GRanD and the WRD. After QC, this process iden-
tified another 1414 WRD dams that are included by GRanD.
These additional WRD dams, with a total storage capacity of
603 km3, were then added to our inventory using the spatial
coordinates in GRanD. As a result of the first two objectives,
GeoDAR v1.1 georeferenced 23 974 (42 %) out of the 56 815
dams in the ICOLD WRD, including 6494 that overlap with
GRanD.

Third, to reduce the impact of possible attribute errors in
the ICOLD WRD, we next merged the values of reservoir
storage capacity from both the WRD and GRanD to a single
updated attribute, where the original values in the WRD or

Wada et al. (2017) were overwritten by those of the overlap-
ping dams in GRanD (if the GRanD values are valid). This
correction led to a minor increase of 86 km3 (1.2 %) in the to-
tal reservoir storage capacity. Eventually, the remaining 809
dams in GRanD, which were not found in the WRD, were ap-
pended to our georeferenced WRD so that the final inventory
absorbed the entirety of GRanD (excluding 17 dams we were
unable to utilize; Table S5 in the Supplement). It is worth
noting that similar to geo-matching (Sect. 2.2), our attribute
association could be conservative, meaning that some of the
dams appended from GRanD might be documented in the
remaining WRD (the subset not georeferenced successfully).
The complete harmonization process, combining the above
three steps, led to a total of 24 783 georeferenced dams in
GeoDAR v1.1 (Fig. 2b).

2.5 Retrieving reservoir boundaries

Reservoir polygons of the georeferenced dam points were
retrieved as thoroughly as possible from three global water
body datasets: GRanD reservoirs (Lehner et al., 2011), Hy-
droLAKES v1.0 (Messager et al., 2016), and UCLA Circa
2015 Lake Inventory (Sheng et al., 2016). These three water
body datasets exhibit an increasing spatial resolution: from
7000+ polygons in GRanD reservoirs provided exclusively
for GRanD’s dam points to millions of water body polygons,
including both natural lakes and reservoirs, in the other two
datasets. While HydroLAKES documents 1.4 million water
bodies larger than 0.1 km2 (10 ha), the Landsat-based UCLA
Circa 2015 Lake Inventory further reduced the minimum size
to only 0.004 km2 (0.4 ha), resulting in another 7.7 million
water bodies on the global continental surface. Accordingly,
we implemented a hierarchical procedure, where the three
water body datasets were applied in ascending order of spa-
tial resolution to retrieve the reservoir boundaries with an
overall decreasing size.

Specifically, GRanD v1.3 provides 7162 valid reservoir
polygons for the 7303 dam points (after coordinate correc-
tions) used for harmonization. These GRanD polygons were
first assigned to their associated dam points in GeoDAR v1.1
through GRanD IDs. Reservoirs of the remaining 17 556 dam
points in GeoDAR v1.1, including the 76 GRanD dams with
corrected locations (Table S5 in the Supplement), were next
retrieved from HydroLAKES when possible. To avoid dupli-
cates in the reservoirs retrieved from different data sources,
we only used the subset of HydroLAKES that is spatially
independent from (i.e., not intersecting with) GRanD reser-
voirs. Different from reservoir assignment using GRanD,
there was no common attribute ID to pair HydroLAKES
polygons with the remaining dam points, so their reservoir
retrieval relied completely on spatial association. One major
challenge in dam–reservoir spatial association was the ambi-
guity caused by the offsets between our georeferenced dam
points and their actual reservoir polygons (see Sect. 2.3).
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Figure 5. Schematic procedure of harmonizing GeoDAR v1.0 and GRanD v1.3 to form GeoDAR v1.1 Text in roman indicates applied or
produced datasets, and text in italics indicates methods or procedures.

To tackle this challenge, we designed a procedure con-
taining three rounds of iteration to progressively optimize
reservoir-dam association. This procedure was based on two
assumptions, both conditional on a reasonable spatial toler-
ance. We started with 500 m to be roughly consistent with
the Google street map offsets for China. The first assumption
was that larger reservoirs are more likely to be documented
than smaller ones, in both the ICOLD WRD and Google
Maps. Therefore, the first round of iteration assigned each
of the dams to the largest water body within the tolerance.
This assignment might, however, lead to a situation where
multiple dams were assigned to the same reservoir. To untan-
gle this situation, the remaining iterations assumed Tobler’s
first law of geography (Tobler, 1970): “everything is related
to everything else, but near things are more related than dis-
tant things” (p. 236). Accordingly, for any water body mis-
takenly associated with multiple dams, the second round of
iteration reassigned the water body to its closest dam, and
the other dam(s) within the tolerance, as a result, was/were
left unpaired. To reduce the number of such “orphan” dams,
a final, third round of iteration assigned the remaining un-
paired dams to the next closest water body that was within
the spatial tolerance and had not been previously associated
with any dams. If this led to multiple dams associated with
one reservoir again, only the dam with the closest proximity
to the reservoir was kept. Through experimentation, we opted
to implement this three-iteration procedure twice, first using
a conservative 500 m tolerance to maximize the accuracy for
most associations and then a 1 km tolerance to further mini-
mize the number of orphan dams.

This multi-iteration procedure retrieved roughly 7600
reservoir polygons from HydroLAKES. For the remaining
dam points left unpaired, we applied the same association
procedure to continue retrieving their reservoirs from the
high-resolution UCLA Circa 2015 Lake Inventory. Similarly,
only the subset that does not intersect with the retrieved Hy-
droLAKES polygons was considered in order to avoid dupli-
cates in the retrieved reservoirs from different datasets. The
use of the UCLA Circa 2015 Lake Inventory retrieved an-
other 6700 or so reservoirs.

We followed the automated reservoir retrieval by a man-
ual QC to visually confirm that each retrieved reservoir poly-
gon was matched to the correct dam point, and if not, we
corrected the association as thoroughly as possible. This vi-
sual QC was particularly necessary for lake-dense regions,
including the case of cascade reservoirs immediately down-
stream or upstream to each other. While some of the dams,
such as barrages, diversion infrastructure, and dams under
construction, do not have visible impoundments (Lehner et
al., 2011), we tried to be as meticulous as possible to ver-
ify the orphan dams and recover any missing reservoirs. For
instance, we were able to manually retrieve 10 reservoirs (in-
cluding 4 completed after 2000) from the UCLA Circa 2015
Lake Inventory for the ∼ 70 dams in GRanD v1.3 without
reservoir polygons. We also assigned reservoirs to 68 of the
76 GRanD dams with our corrected spatial coordinates. Al-
though no new reservoirs were digitized (all original poly-
gons retrieved from the three water masks), we modified the
geometries of some of the reservoirs when necessary. For ex-
ample, we truncated or split a polygon if we saw its original
extent intruding to another reservoir and dissolved several
polygons into a multipart feature if they cover the same reser-
voir surface. We also replaced hundreds of reservoirs initially
retrieved from GRanD and HydroLAKES by the polygons in
the UCLA inventory to improve the boundary accuracy and
completeness.

3 Product components and usage

We here provide a detailed documentation of the components
and structure of the GeoDAR versions (v1.0 and v1.1). To fa-
cilitate the description, the two GeoDAR versions and their
component statistics are explained in Table 1, and spatial dis-
tributions of the dam points and reservoir polygons are visu-
alized in Figs. 6 and 7.

3.1 GeoDAR v1.0: dams

GeoDAR v1.0 is a collection of 22 560 dam points georefer-
enced exclusively for the ICOLD WRD (Fig. 6a). Among
them, 13 149 or 58 % were retrieved from geo-matching
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regional dam registers, 9278 or 41 % from Google Maps
geocoding API, and the remaining 133 largest dams from
the spatial inventory in Wada et al. (2017) (Fig. 6b). WRD
storage capacities of most of these 133 large reservoirs were
replaced by the values in Wada et al. (2017) (see Sect. 2.4.1),
and unless stated otherwise, our following statistics on stor-
age capacities were calculated after this replacement.

The total reservoir storage capacity of these dams is
6441 km3, meaning that GeoDAR v1.0 georeferenced 40 %
of the 56 815 WRD records but included more than 80 % of
their cumulative reservoir storage capacity. The total storage
capacity of the 133 largest dams from Wada et al. (2017),
despite being limited in number, reaches 3900 km3 or 61 %
of the cumulative storage capacity in GeoDAR v1.0, and the
other ∼ 40 % capacity was split almost equally between the
remaining 22 000+ geo-matched and geocoded dams. Al-
though the registers used for geo-matching are regional, the
dams in GeoDAR v1.0, as shown in Fig. 6b, are distributed
in 151 out of the 165 countries or territories in the WRD,
largely owing to our geocoding efforts through Google Maps
API. Since the production of v1.0 was largely independent of
other global dam datasets such as GRanD, it can also be used
to cross-compare, supplement, and potentially improve other
dam datasets. Validation of our georeferencing accuracy for
v1.0 is provided in Sect. 4.

3.2 GeoDAR v1.1: dams and reservoirs

GeoDAR v1.1 consists of (a) 24 783 dam points (Fig. 6a)
representing a full harmonization between GeoDAR v1.0 and
GRanD v1.3 and (b) 21 515 reservoir polygons (Fig. 7) based
on a one-dam-to-one-reservoir relationship. In these nearly
25 000 dam points, 17 480 or 71 % come from GeoDAR v1.0
alone, 6494 or 26 % are shared by the ICOLD WRD and
GRanD, and the other 809 or 3 % are from GRanD alone
(Table 1, Fig. 6c). Among the 6494 shared dams, 5080 were
georeferenced in both GeoDAR v1.0 and GRanD, and the
remaining 1414 were introduced through the harmonization
with GRanD. This resulted in a total of 23 974 georeferenced
WRD records (42 % of all WRD records) in GeoDAR v1.1.
In addition to the expanded number of georeferenced WRD
dams, GRanD supplemented another 809 dams which are ex-
clusive of the WRD. The total 2223 dams added by GRanD,
notated as “GRanD v1.3 & other ICOLD” and “GRanD v1.3
only” in Fig. 6c, are distributed worldwide and complement
v1.0, particularly in regions such as Africa and central Asia,
where geocoding using Google Maps was challenging. After
this ICOLD–GRanD harmonization, the spatial coverage of
the dam points in GeoDAR v1.1 increased to 155 out of the
165 countries in the WRD (also see Table S6 in the Supple-
ment).

As described in Sect. 2.4.2, we substituted the reservoir
storage capacities in GRanD for the original capacity values
of their overlapping WRD dams. As a result, the total reser-
voir storage capacity in GeoDAR v1.1 reaches 7384 km3,

which compares to ∼ 95 % of the cumulative capacity in the
entire ICOLD WRD (see Sect. 5.1 for more comparisons
with ICOLD). As reported in Table 1, 81 % (6006 km3) of
the total storage capacity in GeoDAR v1.1 is explained by
the 5080 large dams georeferenced in both GeoDAR v1.0 and
GRanD. The 17 480 smaller dams from GeoDAR v1.0 alone
contribute only 7 % (507 km3) of the total storage capac-
ity, which is roughly comparable to the subset from GRanD
alone (268 km3) or the subset from GRanD and other ICOLD
records (603 km3). These capacity contributions suggest that
compared to GRanD, the major improvement of GeoDAR
lies in the increased number of relatively small dams rather
than the increase in total storage capacity of the dams (see
Sect. 5.2 for more comparisons with GRanD).

Different from GeoDAR v1.0, version 1.1 also includes
reservoir polygons for 21 515 or 87 % of the georeferenced
dam points (Fig. 7). Reservoir polygons for the remaining
13 % of the dam points were retrieved unsuccessfully due
to a combination of factors, including limited spatial resolu-
tions of the applied water masks, missing water occurrence
in the masks (when the reservoir water levels are too low),
and the fact that some of the dams have no evident water im-
poundments at all. Nevertheless, the retrieved reservoir poly-
gons have a cumulative area of 496 314 km2, accounting for
98 % of the total reservoir area of all georeferenced dams in
GeoDAR v1.1 (reservoir areas without polygons are based
on documented attributes). These retrieved reservoirs corre-
spond to a cumulative storage capacity of 7216 km3, also ac-
counting for nearly 98 % of the total storage capacity in v1.1.
These statistics indicate that the reservoirs whose boundaries
were retrieved unsuccessfully were mostly small in area and
storage.

The numbers of reservoir polygons retrieved from each of
the three water body datasets are comparable (about 7100–
7200 each), but the total reservoir storage capacity and area
generally decrease with the increasing spatial resolution of
the water body datasets (Table 1). As a result, the mean reser-
voir polygon size decreased from 63 km2 for those retrieved
from GRanD to 2 km2 from HydroLAKES and 5 km2 from
the UCLA Circa 2015 Lake Inventory. This result is over-
all consistent with the design of our hierarchical procedure
(Sect. 2.5), where smaller reservoirs were successively re-
trieved with the help of finer water masks. It is important
to note that the retrieved polygons do not always represent
the maximum water extents of the reservoirs because wa-
ter boundaries in the retrieval sources were not necessar-
ily mapped in the maximum inundation periods. For exam-
ple, the UCLA Circa 2015 Lake Inventory was produced
using Landsat images acquired during “lake-steady” peri-
ods (Lyons and Sheng, 2018) and thus represents the aver-
age seasonal extent of each water body (Sheng et al., 2016).
Despite not always being the largest water extents, our re-
trieved reservoir polygons enhanced the spatial details of
global reservoir locations, using which users can further ex-
pand or refine the water boundaries to their specific needs.
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Figure 6. Georeferenced dam points in GeoDAR. (a) A total of 24 783 dam points in v1.1 superimposed by 22 560 dam points by in v1.0.
(b) Georeferencing methods and data sources for v1.0. (c) Data sources for v1.1.

3.3 Attributes and usage

The GeoDAR dataset, including dam points for v1.0 and both
dam points and reservoir polygons for v1.1, is provided as
three separate shapefiles. For user convenience, we also du-
plicated the two dam point shapefiles in the comma-separated
values (csv) format. The file names and attributes are ex-
plained in Table 3. Although most of our dam points were
georeferenced using WRD records, our published GeoDAR
complies with the legal codes of ICOLD and does not di-
rectly release any attribute from the WRD. The attributes we
provide in GeoDAR, as listed in Table 3, are limited to our

georeferencing methods, QA/QC, validation, and other infor-
mation (such as spatial coordinates and part of the reservoir
storage capacities) that is already open-source or has been
permitted for use by the original producers.

Although WRD attributes are not directly available in
GeoDAR, we suggest two possible ways for users to acquire
at least some of the essential attributes. Upon the user’s rea-
sonable request and on a case-by-case basis, we may pro-
vide assistance in decrypting the association between Geo-
DAR IDs (Table 3) and ICOLD’s international codes, and
using the international codes, the user can link each of the
dam or reservoir features in GeoDAR to the entire 40 or so
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Table 3. Attributes in the data products of GeoDAR.

Attribute Description and values

v1.0 dams (file name: GeoDAR_v10_dams; format: comma-separated values (csv) and point shapefile)

id_v10 Dam ID for GeoDAR version 1.0 (type: integer). Note this is not the same as the International Code in the ICOLD WRD but is linked to
the International Code via encryption.

lat Latitude of the dam point in decimal degree (type: float) on datum World Geodetic System (WGS) 1984.

lon Longitude of the dam point in decimal degree (type: float) on WGS 1984.

geo_mtd Georeferencing method (type: text). Unique values include “geo-matching CanVec”, “geo-matching LRD”, “geo-matching MARS”,
“geo-matching NID”, “geo-matching ODC”, “geo-matching ODM”, “geo-matching RSB”, “geocoding (Google Maps)”, and “Wada et
al. (2017)”. Refer to Table 2 for abbreviations.

qa_rank Quality assurance (QA) ranking (type: text). Unique values include “M1”, “M2”, “M3”, “C1”, “C2”, “C3”, “C4”, and “C5”. Refer to
Tables S1 and S3 in the Supplement for explanation.

rv_mcm Reservoir storage capacity in millions of cubic meters (type: float). Values are only available for large dams in Wada et al. (2017). Capacity
values of other WRD records are not released due to ICOLD’s proprietary restriction.

val_scn Validation result (type: text). Unique values include “correct”, “register”, “mismatch”, “misplacement”, and “Google Maps”. Refer to
Table 4 for value explanation.

val_src Main validation source(s) (type: text). Values include “CanVec”, “Google Maps”, “JDF”, “LRD”, “MARS”, “NID”, “NPCGIS”, “NRLD”,
“ODC”, “ODM”, “RSB”, “Wada et al. (2017)”, and other miscellaneous references. Refer to Table 2 for abbreviations.

qc Roles and name initials of co-authors and participants during data quality control (QC) and validation.

v1.1 dams (file name: GeoDAR_v11_dams; format: comma-separated values (csv) and point shapefile)

id_v11 Dam ID of GeoDAR version 1.1 (type: integer). Note this is not the same as the International Code in the ICOLD WRD but is linked to the
International Code via encryption.

id_v10 v1.0 ID of this dam or reservoir (as in id_v10) if it is also included in v1.0 (type: integer).

id_grd_v13 GRanD ID of this dam if also included in GRanD v1.3 (type: integer).

lat Latitude of the dam point in decimal degree (type: float) on WGS 1984. Value may be different from that in v1.0.

lon Longitude of the dam point in decimal degree (type: float) on WGS 1984. Value may be different from that in v1.0.

geo_mtd Same as the value of geo_mtd in v1.0 if this dam is included in v1.0.

qa_rank Same as qa_rank in v1.0 if this dam is included in v1.0.

val_scn Same as val_scn in v1.0 if this dam is included in v1.0.

val_src Same as val_src in v1.0 if this dam is included in v1.0.

rv_mcm_v10 Same as rv_mcm in v1.0 if this dam is included in v1.0.

rv_mcm_v11 Reservoir storage capacity in millions of cubic meters in this version (type: float). Due to ICOLD’s proprietary restriction, provided values
are limited to dams in Wada et al. (2017) and GRanD v1.3. If a dam is in both Wada et al. (2017) and GRanD v1.3, the value from the latter
(if valid) takes precedence.

har_src Source(s) to harmonize the dam points. Unique values include “GeoDAR v1.0 alone”, “GRanD v1.3 and GeoDAR 1.0”, “GRanD v1.3 and
other ICOLD”, and “GRanD v1.3 alone”. Refer to Table 1 for more details.

pnt_src Source(s) of the dam point spatial coordinates. Unique values include “GeoDAR v1.0”, “original GRanD”, “adjusted GRanD” (meaning
the original dam point location in GRanD has been adjusted to improve the accuracy), and “corrected GRanD” (meaning the original point
in GRanD was misplaced and has been corrected; also see Table S5).

qc Roles and name initials of co-authors and participants during data QC, validation, and other manual operations.

v1.1 reservoirs (file name: GeoDAR_v11_reservoirs; format: polygon shapefile)

plg_src Source of the retrieved reservoir polygon (type: text). Unique values include “GRanD v1.3 reservoirs”, “HydroLAKES v1.0”, and “UCLA
Circa 2015 Lakes”. Refer to Table 1 for more details.

plg_a_km2 Area of the retrieved reservoir polygon in square kilometers (calculated using the cylindrical equal area projection on WGS 1984).

All other attributes in v1.1 dams.

Note: missing or inapplicable values are flagged by “-999” for numeric-type attributes.
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Figure 7. Reservoir polygons and their retrieval data sources in GeoDAR v1.1. For display, GRanD polygons are superimposed by Hydro-
LAKES polygons and then by the UCLA Circa 2015 Lake Inventory.

proprietary attributes in the WRD. This is also based on the
premise that the user needs to acquire the WRD attribute data
from ICOLD themselves and that the user agrees not to re-
lease the GeoDAR–WRD association or the WRD attributes
to the public. Alternatively, since we imposed no usage re-
strictions on our spatial features (dam points and reservoir
polygons), users are free to integrate them with other datasets
and tools, such as remote sensing observations and modeling,
to acquire the needed attributes, particularly those not yet
documented in the ICOLD WRD. Acquisition methods have
been exemplified for at least the following attributes: reser-
voir hypsometry and bathymetry (Li et al., 2020; Yigzaw et
al., 2018); surface evaporation loss (Mady et al., 2020; Zhan
et al., 2019; Zhao and Gao, 2019a); operation rules (Shin
et al., 2019; Yassin et al., 2019); completion years (Zhang
et al., 2019); storage capacities (Liu et al., 2020); and the
changes in water area (Pekel et al., 2016; Yao et al., 2019;
Zhao and Gao, 2019b), level (Crétaux et al., 2011; Schwatke
et al., 2015), and storage or volume (Busker et al., 2019; Cré-
taux et al., 2016; Gao et al., 2012; Zhang et al., 2014).

4 Validation

In addition to the QA/QC during data production, we per-
formed a posterior validation to further assess the accu-
racy of the georeferenced ICOLD WRD records. The vali-
dation sample consists of about 1400 dam points (Fig. 8),
which were selected worldwide from GeoDAR v1.0 and rep-
resent the results of our geo-matching and geocoding be-
fore GRanD harmonization. The collection of the validation
points followed a stratified sampling method (Table 4). From
the subset of GeoDAR v1.0 produced by geo-matching, we
randomly selected about 40 dam points per geo-matching
region (Brazil, Canada, Europe, South Africa, and United

States), with the exception of Southeast Asia (Cambodia and
Laos), where all 17 geo-matched WRD dams were included
for validation. We allowed the sample to occasionally over-
lap with GRanD because dams in GeoDAR v1.0 were georef-
erenced independently from GRanD, and those shared with
GRanD reflect our georeferencing accuracy for the world’s
largest dams. However, for each regional sample, we lim-
ited the number of GRanD-overlapping dams to no more
than 30 % of the entire regional sample size if possible. This
was to comply with the size ratio between GRanD and Geo-
DAR v1.0 (about 1 : 3) so that our validation still empha-
sized smaller, newly georeferenced dams. We also randomly
selected 40 out of the 133 large WRD dams supplemented
by Wada et al. (2017), considering that they are part of Geo-
DAR v1.0, and the supplementation was based on attribute
association similar to regional geo-matching. In total, 260
dams were selected for validating the geo-matching accu-
racy. For each dam, we manually checked whether its spatial
coordinates in GeoDAR v1.0 are consistent with those docu-
mented in the geo-matching source (see source references in
Table 2).

From the remaining subset of GeoDAR v1.0 produced by
geocoding, we followed the same stratified sampling scheme
and selected 220 to 250 dam points each for China, India, and
Japan. Another 450 dam points were sampled from the other
regions of the world (Table 4). Compared to geo-matching,
which was based on attribute association with georeferenced
regional registers, the geocoding process was more compli-
cated and relied largely on the geographic information repos-
itory in Google Maps and its embedded geocoding algo-
rithms. To increase our confidence in the geocoding results,
we therefore purposefully enlarged the sample size for each
validation region. As described in Sect. 2.2, three additional
georeferenced inventories for China, India, and Japan were
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Table 4. Validation statistics for GeoDAR v1.0.

Region Main reference Sample size Accuracy Error source

Geo-matching 260 252 (96.9 %) –
Brazil RSB 40 38 (95.0 %) Register
Canada CanVec 41 38 (92.7 %) Register, mismatch
Europe MARS 41 40 (97.6 %) Register
South Africa LRD 40 40 (100 %) –
Southeast Asia ODC, ODM 17 (all) 15 (88.2 %) Register
United States NID 41 41 (100 %) –
Global Wada et al. (2017) 40 40 (100 %) –

Geocoding 1153 1095 (95.0 %) –
China NPCGIS 250 247 (98.8 %) Misplacement
India NRLD 220 215 (97.7 %) Misplacement
Japan JDF 233 (all) 210 (90.1 %) Misplacement, Google Maps
Others Google Maps 450 423 (94.0 %) Misplacement

Total 1413 1347 (95.3 %) –

Note: “Error source” lists error scenarios in decreasing order of frequency. “Mismatch” indicates geo-matching errors due to incorrect
association between the WRD and the source or reference register. “Register” indicates geo-matching errors due to inaccurate spatial
coordinates in the source register (despite correct association). “Misplacement” indicates geocoding errors where the WRD attribute
information disagrees with the Google Maps label. “Google Maps” indicates geocoding errors due to endogenous feature labeling
mistakes in Google Maps (despite the WRD attribute information and the Google Maps label agreeing with each other). See Table 2
(column “Register or source”) for reference details.

used exclusively for the purpose of geocoding validation (re-
fer to Table 2 for register details). For the remaining regions
of the world, the validation was based on a meticulous man-
ual comparison between the WRD information of each sam-
pled dam point and the associated Google Maps label, in-
cluding the dam or reservoir name, administrative divisions,
the nearest town/city, and the impounded river name if pos-
sible. When necessary, we also referred to other auxiliary in-
formation including open-source gazetteers and other litera-
ture. In total, we collected 1153 dam points for validating the
accuracy of geocoding, including all ∼ 230 Japanese dams
in GeoDAR v1.0. The distribution of all sampled validation
dams is shown in Fig. 8.

As reported in Table 4, our geo-matching accuracy ranges
from 88 % to 100 % among different regions, with an overall
accuracy of 97 %. Causes of the identified geo-matching er-
rors (see the last column in Table 4) were not always mistakes
in our attribute association between the WRD and the geo-
referenced registers but sometimes inaccurate spatial coordi-
nates provided by the georeferenced registers themselves. An
example is Skutvik Dam (completion year 1991) in Norway
(Fig. 8), where coordinates are documented to be 68.025◦ N
and 15.345◦ E in MARS. However, inspected from high-
resolution Google Maps imagery, no dam or reservoir could
be conclusively verified at or near this coordinate point, ex-
cept for three surrounding lakes that are all over 2 km away
and labeled with other names (Vanbassenget, Lanstøvatnet,
and Stenslandsvatnet). The documented coordinates for this
dam are probably inaccurate.

The accuracies of our geocoded samples range from 90 %
for Japan to 98 %–99 % for India and China, with an overall

accuracy of 95 %. As shown in Table 4, most of the errors
were related to the misplacement of the dam or reservoir to
another feature, typically a free-flowing river reach, which
shares the name and administrative divisions with the dam
or reservoir. One example is Nambiar Dam near the city of
Tirunelveli in the state of Tamil Nadu, southern India (Fig. 8).
The correct coordinates, according to NRLD, are 8.374◦ N
and 77.738◦ E, where Google Maps labeled “Nambi Dam”
instead of Nambiar Dam. Probably because of this spelling
inconsistency, our geocoded coordinates were misplaced on
a reach of the Nambi(y)ar River (8.435◦ N, 77.569◦ E; la-
beled as “Nambiyar”) about 20 km upstream from the dam.
Although our recursive geocoding procedure (Sect. 2.3) em-
bedded an automated filter that examines the type of the fea-
ture at each returned point, this filter was designed to only
eliminate the coordinates where feature types are clearly dis-
parate from a dam or reservoir (such as commercial and res-
idential buildings). Our experiments showed that dams and
reservoirs and free-flowing river reaches could both be cat-
egorized as “establishment” or “natural feature”, and a fea-
ture type that is more specific to dams and reservoirs was
hardly seen. Thus, to avoid over-filtering, we allowed a cer-
tain ambiguity in the geocoded feature types and then relied
on manual QC to correct or remove mistaken coordinates as
thoroughly as possible. The misplacement of dams to their
upstream and downstream river reaches is a major cause of
the relatively low geocoding accuracy in Japan. Through ex-
perimentations, we noticed that Google Maps labeling for
some of the Japanese dams that are homonymous to their
impounded rivers were either lacking or more adapted to the
Japanese language. The latter further challenged our geocod-
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ing accuracy using English-based ICOLD information. For
one of the errors in Japan, we verified from the JDF regis-
ter that Google Maps mislabeled Myojin Dam in Horoshima
Prefecture (34.587◦ N, 132.505◦ E) as “Nabara Dam”, whose
correct location is 3 km downstream (34.563◦ N, 132.517◦ E;
Fig. 8). As a result, our georeferenced coordinates for Nabara
Dam were wrong, although our geocoding process was cor-
rect. However, given what we have observed, such endoge-
nous labeling errors in Google Maps are probably rare.

Integrating the validations for both geo-matching and
geocoding, our overall georeferencing accuracy is 95.3 % in
terms of dam count or 99.0 % in terms of total storage ca-
pacity based on the sampled 1413 dams. While these statis-
tics can be considered to be an accuracy measure of our data
product, the identified errors in the validation sample have
been corrected wherever possible or otherwise removed in
our released GeoDAR v1.0 and v1.1 (for simplicity, our re-
ported statistics for QC have considered this additional cor-
rection). To reflect the accuracy of GRanD harmonization,
we also randomly sampled another ∼ 100 dams in v1.0 that
were associated with GRanD in v1.1 and identified no asso-
ciation errors among them.

5 Comparisons with existing global datasets

To better understand the improvements and potential applica-
tions of GeoDAR, we compare it with three major global dam
and reservoir datasets: the complete ICOLD WRD, GRanD
(v1.3), and GOODD (V1). To recap the pros and cons of
each dataset, ICOLD WRD documents over 56 000 unique
dam records with a broad suite of attributes, but the pro-
vided records are not georeferenced. GOODD depicts the
spatial details of more than 38 000 dam points and their
catchments but does not include any other attribute. GRanD
is georeferenced and provides multiple essential attributes,
but the records are limited to 7320 large dams. Accordingly,
our comparison first emphasized the aspects of dam quan-
tity, reservoir area, and if applicable the spatial pattern and
distribution of the dams. These aspects are openly available
from the spatial features (i.e., dam points and reservoir poly-
gons) in GeoDAR. Considering that each GeoDAR feature is
also linked to a WRD or GRanD record which contains de-
tailed attributes, our comparison also includes two important
attributes, i.e., reservoir storage capacity and catchment area,
to help inform the extended capability of GeoDAR once it is
linked to the WRD attributes.

5.1 Comparison with the ICOLD WRD

Despite our efforts to integrate multi-source registers and
the Google Maps geocoding API, georeferencing the ICOLD
WRD, particularly smaller dams in poorly documented re-
gions, has proven to be challenging. This challenge was re-
flected by the proportion of the WRD that was spatially re-
solved in GeoDAR. As compared in Table 5, GeoDAR v1.0

included 40 % of the 56 815 records in the entire WRD. Al-
though limited in number, these georeferenced dams were
a compromise between geocoding quality and thoroughness
(see Sect. 2.2 and 2.3) and account for ∼ 84 % of the total
reservoir storage capacity in the WRD. The larger propor-
tion in terms of storage capacity indicates that most of the
sizable dams in the WRD have been spatially resolved. This
message is also corroborated by Fig. 9. Nearly 70 % of the
12 412 WRD dams larger than 10 mcm, for example, have
been georeferenced in GeoDAR v1.0 (Fig. 9a). While 80 %
of the 21 849 WRD dams smaller than 1 mcm were not geo-
referenced, these smaller dams account for just 1 % of the
total WRD storage capacity (Fig. 9b). After harmonization
with GRanD, the proportion of the WRD georeferenced in
GeoDAR v1.1 increased to 42 % by count or 92 % by stor-
age capacity (Table 5), and these percentages represent our
best result for georeferencing the WRD. By absorbing the re-
maining dams in GRanD as well, v1.1 has a total dam count
equivalent to 44 % of the WRD and a cumulative storage ca-
pacity less than 5 % below that of the full WRD (Table 5,
Fig. 9b). Compared to v1.0, the margin between the distri-
bution curves of GeoDAR v1.1 and the WRD, particularly
for relatively large dams, was further reduced (Fig. 9a). As a
result, the number of dams larger than 10 mcm in GeoDAR
v1.1 exceeds 80 % of that in the WRD, and the number of
dams larger than 1 mcm reaches 60 % of that in the WRD.

The spatial coverage of GeoDAR, in comparison with the
WRD, was summarized for each of the 165 countries with
registered WRD records (Fig. 10). Our comparison focused
on GeoDAR v1.1 as it represents an improved version of
our spatial dam inventory. Among these 165 countries, the
median of GeoDAR v1.1 coverage by dam count, i.e., the
number of dams in GeoDAR v1.1 as a proportion of the
number of dams in the WRD, is 62 %, with the first and
third quartiles being 35 % and 89 %, respectively. As shown
in Fig. 10a, better coverages tend to occur in North Amer-
ica, Europe, Russia, Australia, and part of South America
and Africa, whereas poorer coverages are seen in East Asia,
South Asia, and part of the Middle East. The coverages in
China and India, for example, are only about 22 %–26 % due
to a large quantity of WRD records for these two countries
(23 749 in China excluding Taiwan and 5074 in India) but
relatively limited information on Google Maps. Compared
with dam counts, GeoDAR’s coverage for reservoir storage
capacity is higher overall (Fig. 10b). Among the 158 coun-
tries with documented reservoir storage capacities, the me-
dian coverage in GeoDAR reaches 98 %, with the first and
third quartiles being 87 % and 100 %, respectively. If we ex-
clude the 809 dams supplemented by GRanD alone and only
consider the WRD portion of GeoDAR v1.1, the coverage
becomes overall lower but by a limited extent (Fig. S1 in
the Supplement). Among these countries, the median cover-
age of WRD dams by GeoDAR v1.1 is 59 % (with 33 % and
83 % as the first and third quartiles) in terms of dam count
and 96 % (85 % and over 99 % as first and third quartiles)
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Figure 8. Validation sample and results for GeoDAR v1.0. The validation sample consists of 1413 georeferenced ICOLD dams, including
260 dams from geo-matching and 1153 dams from geocoding. The dam points labeled as georeferencing errors are displayed at their corrected
locations if possible. See Table 4 for detailed validation statistics.

Table 5. Summative comparisons among the ICOLD WRD, GRanD, and GeoDAR.

Statistics ICOLD GRanD GeoDAR

Full WRD v1.3 v1.0 (WRD) v1.1 (WRD) v1.1 (WRD ∪ GRanD)

Dam count 56 815 7320 22 560 23 974 24 783
Storage capacity (km3) 7720.2 6881.0 6513.2 7116.2 7383.8
Reservoir area (km2) 530 928.5 475 543.9 – 476 602.5 496 313.8
Catchment area (103 km2) 150 114.6 116 455.9 – 140 389.4 147 958.1

Note: we applied the following adjustment throughout Sect. 5 to improve consistency in data comparison. When a dam is documented in both
GRanD and the WRD, the attribute values in GRanD (if valid) took precedence (meaning that WRD values were replaced by GRanD values). This
explains the minor difference (∼ 1 %) between the total storage capacity of GeoDAR v1.0 in this table (6513.2 km3) and that in Table 1
(6440.6 km3). If a WRD record is still missing the reservoir area attribute but has a reservoir polygon, the polygon area was used in calculating area
statistics for the WRD. Reservoir area statistics for GeoDAR v1.1 were based on the retrieved polygons only. Statistics for GRanD are based on the
entire original records in v1.3.

in terms of reservoir storage capacity, suggesting that a sub-
stantial proportion of the WRD had been georeferenced in
many countries before the additional supplementation from
GRanD. More detailed comparisons (among ICOLD, GranD
v1.3, and GeoDAR v1.3) for each of the 165 countries are
given in Table S6 in the Supplement.

Catchment areas of the reservoirs often indicate the stream
order of the impounded river and thus the scales of flow
and sediment alterations by the dam. Locating dams with
an improved representation of catchment areas, particularly
smaller ones, has been increasingly needed by hydrologic
modeling and watershed management (Grill et al., 2019; Lin
et al., 2019). To evaluate how GeoDAR spatially resolved the
WRD in this aspect, we directly used the values of “catch-
ment area” provided in the attributes. As many records in the
WRD are missing catchment areas, we combined the avail-
able values in both the WRD and GRanD, and when a dam
has catchment areas in both datasets, we preferred the value
in GRanD. As reported in Table 5, the subset of the WRD
georeferenced in GeoDAR v1.1 has a total catchment area of

140×106 km2, which covers 94 % of the total catchment area
in the WRD. The remaining 6 % gap was largely closed by
the inclusion of the remaining non-WRD dams from GRanD.
It is worth mentioning that these statistics do not take into ac-
count the dams without documented catchment areas. While
it is possible to retrieve catchment boundaries for GeoDAR
dams (e.g., using DEM as per Mulligan et al., 2020), acquir-
ing accurate catchment areas of the other WRD dams (which
have not been georeferenced) is prohibited due to unknown
locations. Therefore, our comparison was only based on the
attribute values that are already available. This explains why
GeoDAR georeferenced fewer than half of the WRD records
by count but included more than 90 % of the total catch-
ment area. Similar to the pattern of reservoir storage capac-
ity, higher proportions of the WRD catchment area covered
by GeoDAR are skewed towards the dams with larger catch-
ment areas (Fig. 11a). For example, the number of dams with
a catchment area larger than 10 km2 in GeoDAR equals 89 %
of that in the WRD, and the coverage increases to 95 % for
the dams with a catchment area larger than 100 km2.
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Figure 9. Comparison among GeoDAR, the ICOLD WRD, and GRanD by reservoir storage capacity. (a) Frequency (count) distribution.
(b) Cumulative (integral) storage capacities. Statistics were based on 80 equal-size bins (except the initial bin) on a logarithmic scale between
the minimum and maximum storage capacities (i.e., 0 to 2.05× 105 mcm).

Figure 10. GeoDAR (v1.1) as a proportion of the ICOLD WRD for each country or territory. (a) By dam count and (b) by reservoir storage
capacity. Statistics for Taiwan and Greenland were computed separately from mainland China and Denmark (the same for Figs. 14 and S1 in
the Supplement).

Although GeoDAR does not include reservoir catchment
boundaries, it does provide reservoir polygons for 87 % of
the georeferenced dam points. As reported in Sect. 3.2, the
remaining 13 % of the dam points without reservoir poly-
gons, if inferred from their available attribute values, yield
a reservoir area that is only ∼ 2 % of the total reservoir area
of all GeoDAR dams. For this reason, we focus on the re-
trieved reservoir polygons for comparing how GeoDAR v1.1
represents the reservoir areas in the entire ICOLD WRD.
Among the 21 515 polygons, 20 718 (96 %) are associated
with georeferenced WRD dams. These retrieved WRD reser-
voirs have a total area of 476 603 km2, accounting for 90 %
of the cumulative reservoir area in the WRD (Table 5). Af-
ter supplementation of the remaining polygons (for dams in
GRanD alone), the total reservoir area reached 496 314 km2,
equivalent to 93 % of the cumulative reservoir area in the
WRD. Like other attributes, the values of reservoir area are
not always available in WRD records. If a WRD record is
missing its area attribute value but has a reservoir polygon,
we used the area of the reservoir polygon as the de facto
reservoir area in calculating WRD statistics (see note for Ta-

ble 5), and the other WRD records still missing reservoir ar-
eas probably contribute a minuscule fraction of the aggre-
gated area. This way, we are essentially comparing the areas
of the mapped reservoir polygons in GeoDAR v1.1 with the
documented reservoir areas in the WRD. Since our retrieved
reservoir polygons are not always at the maximum inunda-
tion extents, the comparison includes the uncertainties due to
water mapping and errors in the WRD attributes. If we re-
placed the attribute reservoir areas by our polygon areas, the
coverage increased from 93 % to nearly 96 % (dotted curve in
Fig. 11b), indicating a global mean bias (underestimation) of
about 2 %–3 % in our reservoir polygons. Keeping these lim-
itations and uncertainties in mind, we showed in the distribu-
tion curves (Fig. 11b) that the number of GeoDAR reservoir
polygons accounts for 68 % of all WRD records that have
reservoir area values (either documented or de facto), and
consistent with the distributions of other attributes, higher
coverages for reservoir area tend to occur for larger reser-
voirs. For example, GeoDAR retrieved 8263 reservoirs larger
than 1 km2, which account for 73 %–80 % of those in the
WRD. The coverage increases to 87 %–92 % for reservoirs
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Figure 11. Comparison among GeoDAR, the ICOLD WRD, and GRanD by reservoir catchment area and reservoir area. (a) Frequency
(count) distributions by reservoir catchment area. Statistics were based on 40 bins between the minimum and maximum catchment areas
(i.e., 0 to 4.04×106 km2). (b) Frequency distribution by reservoir area. Statistics are based on 80 bins between the minimum and maximum
reservoir areas (i.e., 0 to 6.72×104 km2). All bins (except the initial one) are of equal size on a logarithmic scale. Considering that catchment
areas are often missing in the WRD, a smaller bin size was used to generate smoother distribution curves. Reservoir areas for GeoDAR were
based on mapped polygons, whereas reservoir areas for the WRD were based on attribute values when available (see note for Table 5). For
comparison, the dotted curve in panel (b) shows an alternative distribution where the polygons took precedence in presenting reservoir areas
for the WRD.

larger than 10 km2, although the reservoir polygon number
decreases to 2570.

5.2 Improved spatial density over GRanD

While GRanD emphasized dams larger than 100 mcm (or
0.1 km3), GeoDAR aimed to georeference WRD records
which, by definition, have a minimum storage capacity of
3 mcm or smaller if the dam is higher than 15 m (see Sect. 1).
This reduced storage threshold entailed a substantial in-
crease in the dam quantity in GeoDAR. As compared in Ta-
ble 5, GeoDAR v1.0, which was generated independently
from GRanD, is already more than triple the dam quantity
in GRanD (7320) and accounts for 95 % of the total reser-
voir storage capacity in GRanD (6881 Gt). With the harmo-
nization with GRanD, the number of dams in GeoDAR v1.1
reaches 339 % of that in GRanD, with a total reservoir stor-
age capacity also exceeding 7 % of that in GRanD. This com-
parison suggests that the improvement of GeoDAR is mainly
manifested as the increased dam quantity rather than reser-
voir storage capacity.

The increased dam quantity in GeoDAR is manifested as
a ubiquitous improvement of the spatial density of smaller
dams worldwide (Fig. 12). Since GeoDAR v1.1 has absorbed
GRanD v1.3, the global patterns for capacious reservoirs are
overall similar between the two datasets. What is notice-
ably different are the proliferated density of thousands of
smaller reservoirs, particularly those beyond the main focus
of GRanD (such as those smaller than 100 mcm). The sub-
stantial increase in smaller dams and reservoirs is corrobo-
rated by the distribution curves in Fig. 9a, where the mode

storage capacity (i.e., the capacity corresponding to the peak
frequency) shifted from about 100 mcm in GRanD to about
3–5 mcm in GeoDAR (both v1.0 and v1.1). The area between
the distribution curves is largely explained by the addition
of ∼ 16 500 dams smaller than 100 mcm in GeoDAR v1.1
(Fig. 9a), which correspond to a total storage increase of
124 Gt or 95 % of the total storage of the dams smaller than
100 mcm in GRanD (Fig. 9b). It is important to note that the
added reservoirs in GeoDAR still comply with ICOLD’s def-
inition of “large dams” (see Sect. 1). Although their aggre-
gated storage is limited, these relatively small reservoirs are
geographically widespread, meaning that they are locally sig-
nificant for filling service gaps between more sporadic larger
dams. Examples include hundreds of smaller dams and reser-
voirs that provide irrigation from southern Europe (Fig. 13b)
to northwestern and central India (Fig. 13c), hydropower and
water usage in central and southern China (Fig. 13a), and
flood controls across the Mississippi River basin and south-
ern Texas in the US (Fig. 13d). The sheer number of these
added smaller dams and reservoirs accentuate the benefits
of an improved knowledge of their spatial locations, such as
what GeoDAR offers, for strategizing water and energy man-
agement and assessing fragmentation of the river ecosystems
(Belletti et al., 2020; Grill et al., 2019).

To assist regional applications, we further aggregated the
improvements of GeoDAR over GRanD into national scales.
As shown in Fig. 14, GeoDAR’s improvements in either dam
count or reservoir storage capacity pervade more than 120
countries, occupying 86 % of the continental landmass (ex-
cluding Antarctica). The increase in dam count occurs in 127
out of the 155 GeoDAR countries (Fig. 14a, Table S6 in the
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Figure 12. Global distribution of reservoir storage capacities of georeferenced dams. (a) GRanD v1.3 and (b) GeoDAR v1.1. Displayed
are 7312 out of the 7320 dams in GRanD v1.3 and 24 174 out of the 24 783 dams in GeoDAR v1.1 with documented or estimated reservoir
storage capacities.

Supplement). These countries include 18 countries without
GRanD records at all (such as Haiti, United Arab Emirates,
Yemen, and Bhutan), and the other 109 countries comprise
80 % of the 137 countries with GRanD records. There are
slightly fewer countries with a confirmed increase in reser-
voir storage capacity (Fig. 14b) because some of the added
WRD records are missing storage capacity values. The num-
ber of these countries is 117, including 15 without GRanD
records at all.

While GeoDAR’s improvements are widespread, the im-
provement levels are not geographically uniform (Fig. 14).
Globally speaking, the spatial patterns of number and capac-
ity increases are overall consistent, with the major hotspots
concurring with large or industrialized nations (e.g., US,
China, Brazil, India, and European countries) and less im-
pressive increases in smaller, drier, and/or less developed na-
tions (e.g., part of Africa and South America). This is reason-

able as bigger and/or more developed nations usually possess
a larger quantity of dam infrastructures and thus a greater po-
tential for GeoDAR to improve. However, this pattern also
reflects the disparities due to other factors, such as a possible
bias in the WRD (as it is a volunteered dataset, and not all
member nations contributed equally), the accessibility of re-
gional registers for geo-matching, and geocoding challenges
for different regions. The top five countries in terms of dam
count increase are the US (an increase of 6039 or 314 %),
China (4352 or 474 %), India (963 or 290 %), South Africa
(667 or 248 %), and Spain (575 or 219 %) (Table S6 in the
Supplement). These five countries cover 72 % of the global
dam count increase (17 463). Similarly, the top five countries
in terms of storage capacity increase are the US (123 km3

or 16 %), Canada (73 km3 or 8 %), Brazil (66 km3 or 12 %),
China (44 km3 or 7 %), and India (33 km3 or 12 %), which to-
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Figure 13. Regional distributions of reservoir storage capacities in GRanD v1.3 and GeoDAR v1.1. (a) China and its surrounding East and
Southeast Asia. (b) Europe. (c) India and its surrounding South Asia. (d) US and its surrounding North America. Graduated symbols for
GeoDAR (blue bubbles) are superimposed by symbols for GRanD (red bubbles).

gether comprise 68 % of the global storage capacity increase
(503 km3).

Certain regions with limited increases in dam count, such
as the Middle East, Southeast Asia, and southern Africa,
show more pronounced improvements in storage capacity.
This contrast indicates that, in addition to smaller dams
and reservoirs (e.g., < 100 mcm), GeoDAR also supple-
mented GRanD by including more capacious reservoirs. Ex-
amples are Dau Tieng Dam in Vietnam (storage capac-
ity 1580 mcm; location 11.323◦ N, 106.341◦ E), San Roque
Dam in the Philippines (990 mcm; 16.147◦ N, 120.685◦ E),
Mrica Dam in Indonesia (193 mcm; 7.392◦ S, 109.605◦ E),
Marib Dam in Yemen (398 mcm; 15.396◦ N, 45.244◦ E), and
the recently completed Lauca Dam in Angola (5482 mcm;
9.739◦ S, 15.127◦ E). GeoDAR also inventoried some large
hydroelectric projects that are under construction or con-
sideration. Examples are Bakhtiari Dam in Iran (expected
4845 mcm; 32.958◦ N, 48.761◦ E), Bekhme Dam in Iraq
(17 000 mcm; 36.701◦ N, 44.271◦ E), Diamer-Bhasha Dam

in Pakistan (10 000 mcm; 35.521◦ N, 73.739◦ E), and Myit-
sone Dam in Myanmar (13 282 mcm; 25.691◦ N, 97.516◦ E).

By further aggregating national statistics to each continent,
Fig. 14 echoes the fact that GeoDAR’s major improvement
lies in the quantity or spatial density of the dams rather than
their total reservoir storage capacity. However, this should
not overshadow the fact that improvements of both dam
count and storage capacity do exist in all continents. As sum-
marized in Fig. 14a, the continental improvement ascends
from 170 more dams with a 7 km3 total capacity in Ocea-
nia to a scale of 6000–7000 more dams with a 100–200 km3

capacity in North America or Asia. Because the total stor-
age capacity is disproportionally dominated by the largest
reservoirs, and GRanD has already included most of them,
the added storage capacity by GeoDAR relative to what has
existed in GRanD appears limited and descends from 9 %–
12 % in Asia and North America and 7 %–8 % in Oceania
and South America to 1 %–3 % in Africa and Europe. By
contrast, GeoDAR’s dam quantity ranges from being almost
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Figure 14. Country-level improvements in GeoDAR v1.1 over GRanD v1.3. (a) Increase in dam count and (b) increase in total reservoir
storage capacity for each country or territory. Aggregated statistics for dam count and storage capacity were also compared for each continent.
For convenience of comparison, both statistics are displayed in panel (a).

double that of GRanD in Oceania and Africa to being triple
to quadruple in the other continents.

A derivative benefit of the increased dam quantity is a
more complete representation of the regulated watersheds,
which is critical to improving discharge estimates. As re-
vealed by the distribution curves in Fig. 11a, GeoDAR im-
proved GRanD in the inclusion of reservoir catchment ar-
eas in two aspects. First, the exceedance of the number of
reservoir catchments is almost unanimous on all area lev-
els. This corresponds to a total increase in catchment area
by 32× 106 km2 or 27 % (Table 5). Second, the increase in
reservoir catchments is skewed towards smaller catchments,
signifying a more realistic inventory of human water regula-
tions in the basins of lower stream orders or closer to stream
headwaters. As shown in the distribution curves (Fig. 11a),
the average increasing rate is augmented from about 30 % for

catchments larger than 1000 km2 and about 80 % for catch-
ments between 10 and 1000 km2 to nearly 600 % for those
smaller than 10 km2. The mode of catchment areas decreases
from about 200–400 km2 in GRanD to 30–100 km2 in Geo-
DAR, with the latter much closer to the mode of the entire
WRD (15–50 km2). As a result, the number of dams with a
catchment size smaller than 25 km2, for example, which is
the channelization threshold for the high-resolution MERIT
Basins hydrography dataset (Lin et al., 2019; Yamazaki et
al., 2017), is 3570 or 27 % in GeoDAR in comparison to 695
or 10 % in GRanD. These small-catchment dams, once in-
tegrated into river networks, may substantially improve the
performance of routing models. Consistent with our com-
parison with the WRD (Sect. 5.1), these statistics are only
based on the records with valid catchment areas. Considering
that missing values more likely occur for dams with smaller
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Figure 15. Comparison among GRanD v1.3, GeoDAR v1.1, and the ICOLD WRD by dam or reservoir purpose. (a) Dam counts and (b) total
reservoir storage capacities for each main purpose. Dam purposes are based on attribute values provided in the WRD and GRanD. For a dam
with multiple purposes, its “main purpose” was considered to be the one with the highest order of priority. The main purpose in GRanD took
precedence if it differs from that in the WRD.

catchments, our reported improvement could be theoretically
conservative.

The increased dam count in GeoDAR also enabled the
retrieval of surface extents of another 14 000 or so smaller
reservoirs (Fig. 7). The added reservoir polygons, including
10 for the dams in GRanD that originally had no reservoirs
and 14 275 for GeoDAR v1.0 alone, have an average size of
1.4 km2 in comparison to 65 km3 in GRanD. They aggregate
to a total area of 19 880 km2, a scale comparable to 30 Lake
Meads. Although this area increase may appear substantial,
it only expanded the global reservoir area in GRanD by a
marginal proportion of 4 %. Similar to the pattern of storage
capacities, reservoir areas follow a quasi-Pareto distribution,
meaning that smaller reservoirs tend to dominate the popu-
lation (or number), whereas larger reservoirs dominate the
area and storage. This explains why the increase in relative
area is small, but the increase in absolute quantity is double
that of the entire reservoir polygons in GRanD. For exam-
ple, 95 % of the total reservoir area in GeoDAR comes from
only 12 % of the reservoir polygons larger than 10 km2, and
about 90 % of these large reservoirs are already included by
GRanD (Fig. 11b). This pattern again suggests that the core
value of GeoDAR is not to augment the global scale of reser-
voir area or storage but to amplify the local details of smaller
dams and reservoirs. Owing to the added details, the mode of
reservoir area is on the order of 1–10 km2 in GRanD but was
refined by 1 order of magnitude to 0.1–1 km2 in GeoDAR.

If we group the global dams by their documented main
purpose, we observe in Fig. 15 that GeoDAR improved
GRanD unanimously in both dam count and storage capac-
ity for all main purposes (Fig. 15). For the same reason as
explained above (i.e., the added reservoirs are small), the in-
creases in dam count appear more prominent than those in
storage capacity, and the increases in storage capacity from
GRanD to GeoDAR are overall more evident than those from
GeoDAR to the ICOLD WRD. The exception is the dams
with “others” or “unknown” purposes, whose total storage
capacity in GeoDAR is lower. This is because when GRanD
and WRD records conflict with each other in the GeoDAR
harmonization process, the attribute values in GRanD took
precedence only if they are available or valid (“others” or
“unknown” was considered to be an invalid reservoir pur-
pose). Assuming that reservoir operations vary by purpose,
this unanimous improvement of the spatial inventory for
all reservoir purposes, in conjunction with satellite-observed
water budget variations, can help us better generalize reser-
voir operation rules which are critical to improving water
management.

5.3 Spatially complementary to GOODD

The recently published GOODD (V1) dataset (Mulligan et
al., 2020) includes 38 667 dam points in the world, which
were digitized by scanning through Google Earth imagery
with support of regional inventories and the Shuttle Radar
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Figure 16. Comparisons between GRanD v1.3, GOODD V1, and GeoDAR v1.1 in selected regions of the world. (a–b) Cerrado, Brazil
(Mato Grosso State). (c–e) Northern China (Shandong Province). (f–h) Southwestern France (Aquitaine and Midi-Pyrenees). (i–k) Northern
Pakistan (northern highlands and foothills). GRanD points (red) are placed on top of GOODD (green), which is placed on top of GeoDAR
(yellow). Background image source: Esri imagery base map.
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Topography Mission Water Body Dataset (SWBD; Farr et
al., 2007). Despite lacking essential attributes, GOODD is
thus far the most comprehensive global inventory of dam lo-
cations and catchments. The digitization was performed dur-
ing 2007 to 2011 and was later updated in 2016. This means
that reservoirs postdating 2016 were not yet included in the
dataset. The completeness and accuracy of GOODD also de-
pend on the sizes of the dams or reservoirs. According to
Mulligan et al. (2020), the resolution and quality of available
Google Earth imagery during the digitization period were
low in some parts of the world (such as China), and an ex-
periment in the US showed that detectable dams and reser-
voirs from low-resolution imagery (e.g., Landsat Geocover
2000) may require a reservoir length greater than 500 m and
a dam width greater than 150 m. These minimum-size crite-
ria do not necessarily duplicate those of the ICOLD WRD,
which instead emphasize the reservoir storage capacity and
dam height (see Sect. 1).

Because of these digitizing limitations and criterion differ-
ence, the dam points in GeoDAR are spatially complemen-
tary to, rather than always duplicated by, those in GOODD
across many regions. Figure 16 identified four examples in
Cerrado Brazil, northern China, southwestern France, and
northern Pakistan, where a large proportion of the GeoDAR
dams were not digitized by GOODD. Some of the dams
that only appear in GeoDAR also comply with the minimum
size criteria of GOODD, and examples are those enlarged in
the right panels, except the Duber Khwar Dam in Pakistan
(35.119◦ N, 72.927◦ E; Fig. 16j), which was completed more
recently in 2014. Since the area of the Duber Khwar Reser-
voir (about 0.05 km2) is smaller than the resolution of Hy-
droLAKES (0.1 km2), and the dam completion year overlaps
with the image acquisition period of the UCLA Circa 2015
Lake Inventory (from May 2013 to August 2015; Sheng et
al., 2016), GeoDAR georeferenced the dam point but did not
successfully retrieve the reservoir polygon.

To approximate how GeoDAR and GOODD complement
each other globally, we intersected both dam datasets with
the 30 m resolution UCLA Circa 2015 Lake Inventory. As
a result of manual snapping to the 30 arcsec HydroSHEDS
streamflow network (Lehner et al., 2008), some of the points
in GOODD ended up having substantial geographic offsets
from the actual dam or reservoir locations. For a pilot exper-
iment, we applied a 1 km tolerance (about 30 arcsec on the
Equator) when intersecting the UCLA Circa 2015 Lake In-
ventory with GOODD and kept a 500 m tolerance as used in
Sect. 2.5 for intersecting the lake inventory with GeoDAR.
The result shows that among the 55 000 or so water bod-
ies that intersect either dataset, 80 % intersect with GOODD
and the other 20 % with GeoDAR alone. These statistics im-
ply that GeoDAR may have an ability to expand the num-
ber of dams in GOODD by roughly 25 % (i.e., 20 % divided
by 80 %). Since we applied a larger tolerance for GOODD,
this estimated expansion by GeoDAR is likely conservative
(considering that the number of GOODD-intersecting reser-

voirs may be overestimated). If a 500 m tolerance is used for
both intersections, the expansion by GeoDAR will increase
to roughly 45 %. In addition to the expanded spatial cover-
age, GeoDAR indexed each georeferenced dam point to a
WRD and/or GRanD record and thus enabled access to mul-
tiple attributes, whereas GOODD carries no attribute infor-
mation except the delineated reservoir catchments. These re-
gional and global comparisons suggest that, even just with
the geometric dam points, GeoDAR is not a simple replica-
tion of GOODD but instead complements GOODD for an
improved spatial coverage and density of global dams.

6 Data availability

GeoDAR v1.0 (dam points) and v1.1 (both dam points and
reservoir polygons) are available for download from the
Zenodo repository https://doi.org/10.5281/zenodo.6163413
(Wang et al., 2022). The dam points are stored in both
csv and shapefile formats, and the reservoir polygons are
provided in shapefile. Their attributes and values are de-
scribed in Table 3 as well as on the repository website. The
data usage information is described in Sect. 3.3. Other ci-
tation courtesy and disclaimer information are given in the
“Disclaimer” section and on the repository website. All re-
leased datasets and information are available under the Cre-
ative Commons Attribution 4.0 International (CC-BY 4.0) li-
cense (https://creativecommons.org/licenses/by/4.0, last ac-
cess: 31 March 2022). Users who would like to link Geo-
DAR records to the proprietary WRD attributes they have
purchased in advance from ICOLD should contact the corre-
sponding author.

7 Code availability

Python scripts for geo-matching, geocoding, and reservoir
assignment are publicly available at https://github.com/
surf-hydro/georeferencing-ICOLD-dams-and-reservoirs
(last access: 13 March 2021). We request users who adapt or
use the scripts to cite Wang et al. (2022).

8 Summary and applications

We have produced a comprehensive and spatially resolved
dam and reservoir dataset, GeoDAR, which complementarily
improved the existing global inventories of large dams. We
demonstrated that the production of GeoDAR is not a direct
compilation or collation of existing dam datasets. Instead,
it involved a first known effort to georeference the ICOLD
WRD. This was jointly enabled by geo-matching (or table-
associating) multi-source regional registers and geocoding
descriptive attributes through the Google Maps API. This
georeferencing effort resulted in GeoDAR v1.0, which con-
tains 22 560 spatially resolved dam points, each associated
with a WRD record, with an overall accuracy of 95 %. Each
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of the georeferenced records was also labeled with a QA
score, providing users a reference to the qualities of individ-
ual dam locations. Our georeferencing process and accuracy
validation, as we have elaborated in substantive detail, have
important methodological value for future expansions of spa-
tial dam inventories using similar approaches, such as Geo-
Wiki and OpenStreetMap.

To further ensure the optimal inclusion of the world’s
largest dams, we harmonized the georeferenced WRD (or
GeoDAR v1.0) carefully with GRanD v1.3. Using the har-
monized dam points as spatial identifiers, most of their reser-
voir boundaries were then retrieved from high-resolution wa-
ter body datasets. This ICOLD–GRanD harmonization and
the subsequent reservoir retrieval resulted in GeoDAR v1.1,
our end product, which holds 24 783 dam points (including
23 974 linked to the WRD) and 21 515 reservoir polygons.
This product spatially resolved 44 % of the entire ICOLD
WRD by dam count and more than 90 % by reservoir storage
capacity. Since most of the world’s largest reservoirs (e.g.,
> 0.1 km3) are already included in GRanD, GeoDAR adds
limited improvements (by 4 %–27 %) to the total reservoir
area, storage capacity, and catchment area. However, by in-
cluding many smaller dams particularly in lower and middle
latitudes, GeoDAR is triple the size of GRanD in terms of
dam and reservoir quantity. For this reason, one of the major
improvements of GeoDAR is its unparalleled ability to cap-
ture relatively small dams, or in other words, to enhance the
spatial detail of global dam and reservoir distributions.

Besides an improved quantity and spatial detail, another
unique value of GeoDAR is its capability of bridging the lo-
cations of dams to a broad suite of attributes that are essen-
tial to scientific applications. A standing dilemma of exist-
ing global dam datasets is the divergence between the focus
on dam quantity or spatial detail and the provision of de-
tailed attributes for a limited dam quantity. This dilemma was
partially ameliorated by GeoDAR because its georeferenced
dams and reservoirs were explicitly indexed to WRD and/or
GRanD records where many attributes are available. Since
the original WRD is not georeferenced (or at least, their spa-
tial coordinates are not directly accessible), our perception
was that the task of georeferencing the WRD to enable a spa-
tially explicit application of the attribute information, even
at regional scales, falls on individual users. To avoid the du-
plication of efforts and to facilitate scientific applications, we
performed this comprehensive georeferencing on the entirety
of the ICOLD WRD as thoroughly as possible and hereby re-
leased the resultant dam coordinates and reservoir polygons
to the public as part of GeoDAR. We would like to reiterate
the disclaimer that GeoDAR does not directly contain nor do
we intend to release the original WRD attribute data, which
are proprietary to ICOLD. In other words, the association be-
tween GeoDAR IDs and WRD IDs exists but was purpose-
fully encrypted. However, if individual users need GeoDAR
records to be linked to the WRD attributes that they already
purchased from ICOLD, we can be contacted, and on a case-

by-case basis, we may provide this assistance given that the
users agree not to release the decryption key or the propri-
etary WRD attributes.

We envision that GeoDAR, with its enhanced spatial den-
sity and extended accessibility to essential attributes, will
benefit from a wide spectrum of disciplines and applications.
It is worth noting that although most dams in GeoDAR are
smaller than those in GRanD or AQUASTAT, they are still
compliant with ICOLD’s size criteria, which exclude count-
less tiny on-farm reservoirs and water storage tanks. Nev-
ertheless, we have suggested from regional examples that
GeoDAR partially complements some of the most extensive
global dam inventories such as GOODD, despite GOODD
owning a larger number of dams. In this sense, even just
with the 25 000 or so geometric dam points, GeoDAR con-
tributes yet another fundamental extension to global water
infrastructure databases. If these dam points are rectified to
high-resolution hydrographic networks (such as MERIT Hy-
dro; Lin et al., 2021; Yamazaki et al., 2019), GeoDAR, to-
gether with other existing dam and barrier datasets, can help
refine our understanding of how human water infrastructure
fragmented global rivers and their ecosystems (Belletti et al.,
2020; Grill et al., 2019; Yang et al., 2022), especially with a
more exhaustive inclusion of smaller and/or headwater catch-
ments.

Alongside the detailed dam points, GeoDAR’s reservoir
boundaries provide thus far the most comprehensive global
base maps for assessing reservoir dynamics and the im-
pacts of human water regulation. In combination with the
expanding constellation of satellite sensors (e.g., ICESat-2,
Sentinel-6, and the forthcoming SWOT), this high-resolution
base map will, for instance, enable a more complete and
accurate monitoring of water storage variation and surface
evaporation in global reservoirs (Biancamaria et al., 2016;
Chen et al., 2021; Cooley et al., 2021; Crétaux et al., 2016;
Zhao and Gao, 2019a). Tracking the spatiotemporal balance
between reservoir water storage and evaporative loss will
help strategize regional water management under a warming
climate (Crétaux et al., 2015). Since our knowledge and un-
derstanding improve as observations increase, the observed
water storage dynamics for an increased quantity of reser-
voirs will inevitably entail a more realistic generalization of
the reservoir operation rules. This is particularly true if the at-
tribute information such as reservoir purpose and storage ca-
pacity is also utilized. Considering that small but widespread
reservoirs have a strong cumulative impact on discharge (Ha-
bets et al., 2018; Lin et al., 2019), the improved opera-
tion rules and the fine details of reservoir storage changes
will benefit discharge estimations from hydrological models.
From another perspective, GeoDAR’s reservoir polygons can
also help refine surface water typology, either by directly us-
ing them to mask artificial impoundments from natural lakes
or by expanding the training pool to enhance machine learn-
ing algorithms so that additional reservoirs can be detected
(Fang et al., 2019). A refined water typology map will, in
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turn, assist other analysis tools in improving our assessments
of how human footprints alter surface hydrology and its re-
lated biodiversity and ecosystem health.

Supplement. The supplement related to this article is available
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any questions about data citation, please contact the corresponding
author Jida Wang. Authors of this paper claim no responsibility
or liability for any consequences related to the use, citation, or
dissemination of GeoDAR.
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Łapińska, M., Lázaro, G., Lucas, M. C., Marcello, L., Martin,
P., McGinnity, P., O’Hanley, J., Amo, R. O. d., Parasiewicz, P.,
Pusch, M., Rincon, G., Rodriguez, C., Royte, J., Schneider, C.
T., Tummers, J. S., Vallesi, S., Vowles, A., Verspoor, E., Wannin-
gen, H., Wantzen, K. M., Wildman, L., and Zalewski, M.: More
than one million barriers fragment Europe’s rivers, Nature, 588,
436–441, https://doi.org/10.1038/s41586-020-3005-2, 2020.

Earth Syst. Sci. Data, 14, 1869–1899, 2022 https://doi.org/10.5194/essd-14-1869-2022

https://doi.org/10.5194/essd-14-1869-2022-supplement
https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp
https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp
https://www.icold-cigb.org/GB/legal.asp
https://cloud.google.com/maps-platform
https://doi.org/10.1126/science.aat0636
https://doi.org/10.1038/s41586-020-3005-2


J. Wang et al.: GeoDAR 1897

Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The
SWOT mission and its capabilities for land hydrology, Surv.
Geophys., 37, 307–337, https://doi.org/10.1007/s10712-015-
9346-y, 2016.

Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R.
W. A., Heinke, J., von Bloh, W., and Gerten, D.: Impact
of reservoirs on river discharge and irrigation water supply
during the 20th century, Water Resour. Res., 47, W03509,
https://doi.org/10.1029/2009WR008929, 2011.

Boulange, J., Hanasaki, N., Yamazaki, D., and Pokhrel, Y.: Role of
dams in reducing global flood exposure under climate change,
Nat. Commun., 12, 417, https://doi.org/10.1038/s41467-020-
20704-0, 2021.

Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic,
M., Bisselink, B., Pekel, J.-F., and Cottam, A.: A global lake
and reservoir volume analysis using a surface water dataset
and satellite altimetry, Hydrol. Earth Syst. Sci., 23, 669–690,
https://doi.org/10.5194/hess-23-669-2019, 2019.

Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.: State
of the world’s freshwater ecosystems: physical, chemical, and
biological changes, Annu. Rev. Environ. Resour., 36, 75–99,
https://doi.org/10.1146/annurev-environ-021810-094524, 2011.

Chao, B. F., Wu, Y. H., and Li, Y. S.: Impact of artificial reservoir
water impoundment on global sea level, Science, 320, 212–214,
https://doi.org/10.1126/science.1154580, 2008.

Chen, T., Song, C., Ke, L., Wang, J., Liu, K., and Wu, Q.: Esti-
mating seasonal water budgets in global lakes by using multi-
source remote sensing measurements, J. Hydrol., 593, 125781,
https://doi.org/10.1016/j.jhydrol.2020.125781, 2021.

Cooley, S. W., Ryan, J. C., and Smith, L. C.: Human alteration
of global surface water storage variability, Nature, 591, 78–81,
https://doi.org/10.1038/s41586-021-03262-3, 2021.

Crétaux, J. F., Abarca-del-Rio, R., Berge-Nguyen, M., Arsen,
A., Drolon, V., Clos, G., and Maisongrande, P.: Lake vol-
ume monitoring from space, Surv. Geophys., 37, 269–305,
https://doi.org/10.1007/s10712-016-9362-6, 2016.

Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski,
V., Berge-Nguyen, M., Gennero, M. C., Nino, F., Del Rio, R.
A., Cazenave, A., and Maisongrande, P.: SOLS: A lake database
to monitor in the near real time water level and storage vari-
ations from remote sensing data, Adv. Space. Res., 47, 1497–
1507, https://doi.org/10.1016/j.asr.2011.01.004, 2011.

Crétaux, J. F., Biancamaria, S., Arsen, A., Berge-Nguyen, M.,
and Becker, M.: Global surveys of reservoirs and lakes from
satellites and regional application to the Syrdarya river basin,
Environ. Res. Lett., 10, 015002, https://doi.org/10.1088/1748-
9326/10/1/015002, 2015.

Dams in Japan, Japan Dam Foundation (JDF): http://damnet.or.jp/
Dambinran/binran/TopIndex_en.html, last access: May 2021.

Degu, A. M., Hossain, F., Niyogi, D., Pielke, R., Shepherd, J. M.,
Voisin, N., and Chronis, T.: The influence of large dams on sur-
rounding climate and precipitation patterns, Geophys. Res. Lett.,
38, L04405, https://doi.org/10.1029/2010GL046482, 2011.

Department of Water and Sanitation (DWS) of South Africa: List of
Registered Dams (LRD), DWS [data set], http://www.dwaf.gov.
za/DSO/Publications.aspx, 2019.

Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river
flow alterations due to water withdrawals and reservoirs, Hydrol.

Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-
2413-2009, 2009.

Fang, W., Wang, C., Chen, X., Wan, W., Li, H., Zhu, S., Fang, Y.,
Liu, B., and Hong, Y.: Recognizing global reservoirs from Land-
sat 8 images: a deep learning approach, IEEE J. Sel. Top. Appl.,
12, 3701–3701, https://doi.org/10.1109/JSTARS.2019.2929601,
2019.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R.,
Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth,
L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner,
M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shut-
tle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.

Gao, H., Birkett, C., and Lettenmaier, D. P.: Global
monitoring of large reservoir storage from satellite
remote sensing, Water Resour. Res., 48, W09504,
https://doi.org/10.1029/2012WR012063, 2012.

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., An-
tonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H.,
Macedo, H. E., Filgueiras, R., Goichot, M., Higgins, J., Hogan,
Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, C.,
Olden, J. D., Opperman, J. J., Petry, P., Liermann, C. R., Saenz,
L., Salinas-Rodriguez, S., Schelle, P., Schmitt, R. J. P., Snider,
J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and
Zarfl, C.: Mapping the world’s free-flowing rivers, Nature, 569,
215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019.

Habets, F., Molenat, J., Carluer, N., Douez, O., and Leen-
hardt, D.: The cumulative impacts of small reservoirs on
hydrology: a review, Sci. Total Environ., 643, 850–867,
https://doi.org/10.1016/j.scitotenv.2018.06.188, 2018.

Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker,
V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon,
J., Baker, P. A., Ribas, C. C., Norgaard, R. B., Filizola,
N., Ansar, A., Flyvbjerg, B., and Stevaux, J. C.: Damming
the rivers of the Amazon basin, Nature, 546, 363–369,
https://doi.org/10.1038/nature22333, 2017.

Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography de-
rived from spaceborne elevation data, Eos T. Am. Geophys. Un.,
89, 93–104, https://doi.org/10.1029/2008eo100001, 2008.

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J.,
Nilsson, C., Robertson, J. C., Rodel, R., Sindorf, N., and Wisser,
D.: High-resolution mapping of the world’s reservoirs and dams
for sustainable river-flow management, Front. Ecol. Environ., 9,
494–502, https://doi.org/10.1890/100125, 2011.

Li, B., Yan, Q., and Zhang, L.: Flood monitoring and anal-
ysis over the middle reaches of Yangtze River basin us-
ing MODIS time-series imagery, in: 2011 IEEE Interna-
tional Geoscience and Remote Sensing Symposium, Vancou-
ver, British Columbia, Canada, 24–29 July 2011, 807–810,
https://doi.org/10.1109/IGARSS.2011.6049253, 2011.

Li, Y., Gao, H., Zhao, G., and Tseng, K. H.: A high-resolution
bathymetry dataset for global reservoirs using multi-source satel-
lite imagery and altimetry, Remote Sens. Environ., 244, 111831,
https://doi.org/10.1016/j.rse.2020.111831, 2020.

Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R.,
David, C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Glea-
son, C. J., and Wood, E. F.: Global reconstruction of naturalized

https://doi.org/10.5194/essd-14-1869-2022 Earth Syst. Sci. Data, 14, 1869–1899, 2022

https://doi.org/10.1007/s10712-015-9346-y
https://doi.org/10.1007/s10712-015-9346-y
https://doi.org/10.1029/2009WR008929
https://doi.org/10.1038/s41467-020-20704-0
https://doi.org/10.1038/s41467-020-20704-0
https://doi.org/10.5194/hess-23-669-2019
https://doi.org/10.1146/annurev-environ-021810-094524
https://doi.org/10.1126/science.1154580
https://doi.org/10.1016/j.jhydrol.2020.125781
https://doi.org/10.1038/s41586-021-03262-3
https://doi.org/10.1007/s10712-016-9362-6
https://doi.org/10.1016/j.asr.2011.01.004
https://doi.org/10.1088/1748-9326/10/1/015002
https://doi.org/10.1088/1748-9326/10/1/015002
http://damnet.or.jp/Dambinran/binran/TopIndex_en.html
http://damnet.or.jp/Dambinran/binran/TopIndex_en.html
https://doi.org/10.1029/2010GL046482
http://www.dwaf.gov.za/DSO/Publications.aspx
http://www.dwaf.gov.za/DSO/Publications.aspx
https://doi.org/10.5194/hess-13-2413-2009
https://doi.org/10.5194/hess-13-2413-2009
https://doi.org/10.1109/JSTARS.2019.2929601
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1029/2012WR012063
https://doi.org/10.1038/s41586-019-1111-9
https://doi.org/10.1016/j.scitotenv.2018.06.188
https://doi.org/10.1038/nature22333
https://doi.org/10.1029/2008eo100001
https://doi.org/10.1890/100125
https://doi.org/10.1109/IGARSS.2011.6049253
https://doi.org/10.1016/j.rse.2020.111831


1898 J. Wang et al.: GeoDAR

river flows at 2.94 million reaches, Water Resour. Res., 55, 6499–
6516, https://doi.org/10.1029/2019WR025287, 2019.

Lin, P., Pan, M., Wood, E. F., Yamazaki, D., and Allen, G.
H.: A new vector-based global river network dataset ac-
counting for variable drainage density, Sci. Data, 8, 28,
https://doi.org/10.1038/s41597-021-00819-9, 2021.

Liu, K., Song, C., Wang, J., Ke, L., Zhu, Y., Zhu, J.,
Ma, R., and Luo, Z.: Remote sensing-based modeling of
the bathymetry and water storage for channel-type reser-
voirs worldwide, Water Resour. Res., 56, e2020WR027147,
https://doi.org/10.1029/2020WR027147, 2020.

Lyons, E. A. and Sheng, Y.: LakeTime: Automated seasonal scene
selection for global lake mapping using Landsat ETM+ and OLI,
Remote Sensing, 10, 54, https://doi.org/10.3390/rs10010054,
2018.

Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribu-
tion of small seasonal reservoirs in semi-arid regions and as-
sociated evaporative losses, Environ. Res Commun., 2, 061002,
https://doi.org/10.1088/2515-7620/ab92af, 2020.

Managing Aquatic ecosystems and water Resources under mul-
tiple Stress project (MARS): MARS GeoDatabase (MARS-
geoDB) version 2 [data set], http://www.mars-project.eu/index.
php/databases.html (last access: 4 February 2021), 2017.

Map World (Tianditu), National Platform for Common Geospatial
Information Services (NPCGIS): https://map.tianditu.gov.cn, last
access: July 2021.

Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt,
O.: Estimating the volume and age of water stored in global
lakes using a geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016.

Mulligan, M., van Soesbergen, A., and Saenz, L.: GOODD, a global
dataset of more than 38,000 georeferenced dams, Sci. Data, 7, 31,
https://doi.org/10.1038/s41597-020-0362-5, 2020.

Mulligan, M., Lehner, B., Zarfl, C., Thieme, M., Beames, P., van
Soesbergen, A., Higgins, J., Januchowski-Hartley, S. R., Brau-
man, K. A., De Felice, L., Wen, Q., de Leaniz, C. G., Belletti,
B., Mandle, L., Yang, X., Wang, J., and Mazany-Wright, N.:
Global Dam Watch: curated data and tools for management and
decision making, Environ. Res. Infrastruct. Sustain., 1, 033003,
https://doi.org/10.1088/2634-4505/ac333a, 2021.

National Register of Large Dams (NRLD): Government of India,
Central Water Commission, Central Dam Safety Organization,
New Delhi, 300 pp., June 2019.

Natural Resources Canada (NRC): CanVec 1M Man-
Made Features – Dam version 1.0.1, NRC [data set],
Data catalogue date: 7 April 2017, originally accessed
from http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/
0c78d7fe-100b-5937-b74e-7590a03a6244.html, last access:
September 2017.

Nilsson, C. and Berggren, K.: Alterations of ripar-
ian ecosystems caused by river regulation, Bio-
science, 50, 783–792, https://doi.org/10.1641/0006-
3568(2000)050[0783:AORECB]2.0.CO;2, 2000.

Open Development Cambodia (ODC): Hydropower dams 1993–
2014, ODC [data set], https://data.opendevelopmentmekong.net/
en/dataset/hydropower-2009-2014 (5 September 2019), 2015.

Open Development Myanmar (ODM): Myanmar Dams, ODM
[data set], https://data.opendevelopmentmekong.net/en/dataset/
myanmar-dams (last access: 5 September 2019), 2018.

Paredes-Beltran, B., Sordo-Ward, A., and Garrote, L.: Dataset of
Georeferenced Dams in South America (DDSA), Earth Syst. Sci.
Data, 13, 213–229, https://doi.org/10.5194/essd-13-213-2021,
2021.

Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A.
S.: High-resolution mapping of global surface wa-
ter and its long-term changes, Nature, 540, 418–422,
https://doi.org/10.1038/nature20584, 2016.

Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI –
an innovative approach for estimating water level time series over
inland waters using multi-mission satellite altimetry, Hydrol.
Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-
4345-2015, 2015.

Sheng, Y., Song, C., Wang, J., Lyons, E. A., Knox, B.
R., Cox, J. S., and Gao, F.: Representative lake water
extent mapping at continental scales using multi-temporal
Landsat-8 imagery, Remote Sens. Environ., 185, 129–141,
https://doi.org/10.1016/j.rse.2015.12.041, 2016.

Shin, S., Pokhrel, Y., and Miguez-Macho, G.: High-resolution
modeling of reservoir release and storage dynamics at
the continental scale, Water Resour. Res., 55, 787–810,
https://doi.org/10.1029/2018WR023025, 2019.

Sistema Nacional de Informações sobre Segurança de Barragens
(SNISB, Brazilian National Dam Safety Information System):
Relatório de Segurança de Barragens 2017 (Dams Safety Re-
port 2017), SNISB [data set], http://www.snisb.gov.br/portal/
snisb/relatorio-anual-de-seguranca-de-barragem/2017 (last ac-
cess: 31 August 2019), 2017.

Tilt, B., Braun, Y., and He, D.: Social impacts of large dam projects:
A comparison of international case studies and implications for
best practice, J. Environ. Manage., 90, S249–S257, 2009.

Tobler, W. R.: Computer Movie Simulating Urban
Growth in Detroit Region, Econ. Geogr., 46, 234–240,
https://doi.org/10.2307/143141, 1970.

United States Army Coprs of Engineers (USACE): National Inven-
tory of Dams (NID), USACE [data set], https://nid.usace.army.
mil (last access: 20 March 2021), 2018.

Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P.,
and Syvitski, J. P. M.: Anthropogenic sediment retention: ma-
jor global impact from registered river impoundments, Global
Planet. Change, 39, 169–190, https://doi.org/10.1016/S0921-
8181(03)00023-7, 2003.

Wada, Y., Reager, J. T., Chao, B. F., Wang, J., Lo, M. H., Song, C.,
Li, Y. W., and Gardner, A. S.: Recent changes in land water stor-
age and its contribution to sea level variations, Surv. Geophys.,
38, 131–152, https://doi.org/10.1007/s10712-016-9399-6, 2017.

Wang, J., Sheng, Y., and Wada, Y.: Little impact of the
Three Gorges Dam on recent decadal lake decline across
China’s Yangtze Plain, Water Resour. Res., 53, 3854–3877,
https://doi.org/10.1002/2016WR019817, 2017.

Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S.,
Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, G.
H., Crétaux, J.-F., and Wada, Y.: GeoDAR: Georeferenced global
Dams And Reservoirs dataset for bridging attributes and geolo-
cations, in: Earth System Science Data (v1.1; v1.0), Zenodo [data
set], https://doi.org/10.5281/zenodo.6163413, 2022.

Whittemore, A., Ross, M. R. V., Dolan, W., Langhorst, T., Yang,
X., Pawar, S., Jorissen, M., Lawton, E., Januchowski-Hartley,
S., and Pavelsky, T.: A participatory science approach to ex-

Earth Syst. Sci. Data, 14, 1869–1899, 2022 https://doi.org/10.5194/essd-14-1869-2022

https://doi.org/10.1029/2019WR025287
https://doi.org/10.1038/s41597-021-00819-9
https://doi.org/10.1029/2020WR027147
https://doi.org/10.3390/rs10010054
https://doi.org/10.1088/2515-7620/ab92af
http://www.mars-project.eu/index.php/databases.html
http://www.mars-project.eu/index.php/databases.html
https://map.tianditu.gov.cn
https://doi.org/10.1038/ncomms13603
https://doi.org/10.1038/s41597-020-0362-5
https://doi.org/10.1088/2634-4505/ac333a
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/0c78d7fe-100b-5937-b74e-7590a03a6244.html
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/0c78d7fe-100b-5937-b74e-7590a03a6244.html
https://doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2
https://doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2
https://data.opendevelopmentmekong.net/en/dataset/hydropower-2009-2014
https://data.opendevelopmentmekong.net/en/dataset/hydropower-2009-2014
https://data.opendevelopmentmekong.net/en/dataset/myanmar-dams
https://data.opendevelopmentmekong.net/en/dataset/myanmar-dams
https://doi.org/10.5194/essd-13-213-2021
https://doi.org/10.1038/nature20584
https://doi.org/10.5194/hess-19-4345-2015
https://doi.org/10.5194/hess-19-4345-2015
https://doi.org/10.1016/j.rse.2015.12.041
https://doi.org/10.1029/2018WR023025
http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2017
http://www.snisb.gov.br/portal/snisb/relatorio-anual-de-seguranca-de-barragem/2017
https://doi.org/10.2307/143141
https://nid.usace.army.mil
https://nid.usace.army.mil
https://doi.org/10.1016/S0921-8181(03)00023-7
https://doi.org/10.1016/S0921-8181(03)00023-7
https://doi.org/10.1007/s10712-016-9399-6
https://doi.org/10.1002/2016WR019817
https://doi.org/10.5281/zenodo.6163413


J. Wang et al.: GeoDAR 1899

panding instream infrastructure inventories, Earth’s Future, 8,
e2020EF001558, https://doi.org/10.1029/2020EF001558, 2020.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T.,
O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae,
S., and Bates, P. D.: A high-accuracy map of global
terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H.,
and Pavelsky, T. M.: MERIT Hydro: A high-resolution global hy-
drography map based on latest topography dataset, Water Resour.
Res., 55, 5053–5073, https://doi.org/10.1029/2019WR024873,
2019.

Yang, X., Pavelsky, T. M., Ross, M. R. V., Januchowski-
Hartley, S. R., Dolan, W., Altenau, E. H., Belanger, M., By-
ron, D., Durand, M., Van Dusen, I., Galit, H., Jorissen, M.,
Langhorst, T., Lawton, E., Lynch, R., Mcquillan, K. A., Pawar,
S., and Whittemore, A.: Mapping flow-obstructing structures
on global rivers, Water Resour. Res., 58, e2021WR030386,
https://doi.org/10.1029/2021WR030386, 2022.

Yao, F., Wang, J., Wang, C., and Crétaux, J. F.: Constructing long-
term high-frequency time series of global lake and reservoir ar-
eas using Landsat imagery, Remote Sens. Environ., 232, 111210,
https://doi.org/10.1016/j.rse.2019.111210, 2019.

Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri,
G., and Wheater, H.: Representation and improved param-
eterization of reservoir operation in hydrological and land-
surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764,
https://doi.org/10.5194/hess-23-3735-2019, 2019.

Yigzaw, W., Li, H. Y., Demissie, Y., Hejazi, M. I., Leung, L.
R., Voisin, N., and Payn, R.: A new global storage-area-
depth data set for modeling reservoirs in land surface and
earth system models, Water Resour. Res., 54, 10372–10386,
https://doi.org/10.1029/2017WR022040, 2018.

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner,
K.: A global boom in hydropower dam construction, Aquat. Sci.,
77, 161–170, https://doi.org/10.1007/s00027-014-0377-0, 2015.

Zhan, S., Song, C., Wang, J., Sheng, Y., and Quan, J.: A
global assessment of terrestrial evapotranspiration increase due
to surface water area change, Earth’s Future, 7, 266–282,
https://doi.org/10.1029/2018EF001066, 2019.

Zhang, S., Gao, H., and Naz, B. S.: Monitoring reservoir storage
in South Asia from multisatellite remote sensing, Water Resour.
Res., 50, 8927–8943, https://doi.org/10.1002/2014WR015829,
2014.

Zhang, W., Pan, H., Song, C., Ke, L., Wang, J., Ma, R.,
Deng, X., Liu, K., Zhu, J., and Wu, Q. H.: Identify-
ing emerging reservoirs along regulated rivers using multi-
source remote sensing observations, Remote Sens., 11, 25,
https://doi.org/10.3390/rs11010025, 2019.

Zhao, G. and Gao, H.: Estimating reservoir evaporation losses
for the United States: Fusing remote sensing and mod-
eling approaches, Remote Sens. Environ., 226, 109–124,
https://doi.org/10.1016/j.rse.2019.03.015, 2019a.

Zhao, G. and Gao, H.: Towards global hydrological
drought monitoring using remotely sensed reservoir
surface area, Geophys. Res. Lett., 46, 13027–13035,
https://doi.org/10.1029/2019GL085345, 2019b.

https://doi.org/10.5194/essd-14-1869-2022 Earth Syst. Sci. Data, 14, 1869–1899, 2022

https://doi.org/10.1029/2020EF001558
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1029/2021WR030386
https://doi.org/10.1016/j.rse.2019.111210
https://doi.org/10.5194/hess-23-3735-2019
https://doi.org/10.1029/2017WR022040
https://doi.org/10.1007/s00027-014-0377-0
https://doi.org/10.1029/2018EF001066
https://doi.org/10.1002/2014WR015829
https://doi.org/10.3390/rs11010025
https://doi.org/10.1016/j.rse.2019.03.015
https://doi.org/10.1029/2019GL085345

	Abstract
	Introduction
	Methods
	Definitions and overview
	Geo-matching regional registers
	Geocoding via Google Maps
	Supplementation with other global inventories
	Supplementation with Wada et al. (2017): forming GeoDAR v1.0
	Harmonization with GRanD: forming GeoDAR v1.1

	Retrieving reservoir boundaries

	Product components and usage
	GeoDAR v1.0: dams
	GeoDAR v1.1: dams and reservoirs
	Attributes and usage

	Validation
	Comparisons with existing global datasets
	Comparison with the ICOLD WRD
	Improved spatial density over GRanD
	Spatially complementary to GOODD

	Data availability
	Code availability
	Summary and applications
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

