Data description paper 19 Jan 2022
Data description paper | 19 Jan 2022
Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product
George Z. Xian et al.
Related subject area
Antroposphere – Land Cover and Land Use
Harmonized in situ datasets for agricultural land use mapping and monitoring in tropical countries
NESEA-Rice10: high-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019
Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning
The dataset of walled cities and urban extent in late imperial China in the 15th–19th centuries
GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery
Land-use harmonization datasets for annual global carbon budgets
An update and beyond: key landscapes for conservation land cover and change monitoring, thematic and validation datasets for the African, Caribbean and Pacific regions
A historical reconstruction of cropland in China from 1900 to 2016
Dataset of 1 km cropland cover from 1690 to 1999 in Scandinavia
The RapeseedMap10 database: annual maps of rapeseed at a spatial resolution of 10 m based on multi-source data
GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery
A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine
Mid-19th-century building structure locations in Galicia and Austrian Silesia under the Habsburg Monarchy
A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data
High-resolution global map of smallholder and industrial closed-canopy oil palm plantations
Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States
A 30 m resolution dataset of China's urban impervious surface area and green space, 2000–2018
A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps
Early-season mapping of winter wheat in China based on Landsat and Sentinel images
Key landscapes for conservation land cover and change monitoring, thematic and validation datasets for sub-Saharan Africa
Earth transformed: detailed mapping of global human modification from 1990 to 2017
A cultivated planet in 2010 – Part 1: The global synergy cropland map
Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform
Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016
ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products
Audrey Jolivot, Valentine Lebourgeois, Louise Leroux, Mael Ameline, Valérie Andriamanga, Beatriz Bellón, Mathieu Castets, Arthur Crespin-Boucaud, Pierre Defourny, Santiana Diaz, Mohamadou Dieye, Stéphane Dupuy, Rodrigo Ferraz, Raffaele Gaetano, Marie Gely, Camille Jahel, Bertin Kabore, Camille Lelong, Guerric le Maire, Danny Lo Seen, Martha Muthoni, Babacar Ndao, Terry Newby, Cecília Lira Melo de Oliveira Santos, Eloise Rasoamalala, Margareth Simoes, Ibrahima Thiaw, Alice Timmermans, Annelise Tran, and Agnès Bégué
Earth Syst. Sci. Data, 13, 5951–5967, https://doi.org/10.5194/essd-13-5951-2021, https://doi.org/10.5194/essd-13-5951-2021, 2021
Short summary
Short summary
This paper presents nine standardized crop type reference datasets collected between 2013 and 2020 in seven tropical countries. It aims at participating in the difficult exercise of mapping agricultural land use through satellite image classification in those complex areas where few ground truth or census data are available. These quality-controlled datasets were collected in the framework of the international JECAM initiative and contain 27 074 polygons documented by detailed keywords.
Jichong Han, Zhao Zhang, Yuchuan Luo, Juan Cao, Liangliang Zhang, Fei Cheng, Huimin Zhuang, Jing Zhang, and Fulu Tao
Earth Syst. Sci. Data, 13, 5969–5986, https://doi.org/10.5194/essd-13-5969-2021, https://doi.org/10.5194/essd-13-5969-2021, 2021
Short summary
Short summary
The accurate planting area and spatial distribution information is the basis for ensuring food security at continental scales. We constructed a paddy rice map database in Southeast and Northeast Asia for 3 years (2017–2019) at a 10 m spatial resolution. There are fewer mixed pixels in our paddy rice map. The large-scale and high-resolution maps of paddy rice are useful for water resource management and yield monitoring.
David L. A. Gaveau, Adrià Descals, Mohammad A. Salim, Douglas Sheil, and Sean Sloan
Earth Syst. Sci. Data, 13, 5353–5368, https://doi.org/10.5194/essd-13-5353-2021, https://doi.org/10.5194/essd-13-5353-2021, 2021
Short summary
Short summary
Severe burning struck Indonesia in 2019. Drawing on new satellite imagery, we present and validate new 2019 burned-area estimates for Indonesia.
We show that > 3.11 million hectares (Mha) burned in 2019, double the official estimate from the Indonesian Ministry of Environment and Forestry. Our relatively more accurate estimates have important implications for carbon-emission calculations from forest and peatland fires in Indonesia.
Qiaofeng Xue, Xiaobin Jin, Yinong Cheng, Xuhong Yang, and Yinkang Zhou
Earth Syst. Sci. Data, 13, 5071–5085, https://doi.org/10.5194/essd-13-5071-2021, https://doi.org/10.5194/essd-13-5071-2021, 2021
Short summary
Short summary
We reconstructed the walled cities of China that extend from the 15th century to 19th century based on multiple historical documents. By restoring the extent of the city walls, it is helpful to explore the urban area in this period. The correlation and integration of the lifetime and the spatial data led to the creation of the China City Wall Areas Dataset (CCWAD). Based on the proximity to the time of most of the city walls, we produce the China Urban Extent Dataset (CUED) from CCWAD.
Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu
Earth Syst. Sci. Data, 13, 4799–4817, https://doi.org/10.5194/essd-13-4799-2021, https://doi.org/10.5194/essd-13-4799-2021, 2021
Short summary
Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Zoltan Szantoi, Andreas Brink, and Andrea Lupi
Earth Syst. Sci. Data, 13, 3767–3789, https://doi.org/10.5194/essd-13-3767-2021, https://doi.org/10.5194/essd-13-3767-2021, 2021
Short summary
Short summary
The ever-evolving landscapes in the African, Caribbean and Pacific regions should be monitored for land cover changes. The Global Land Monitoring Service of the Copernicus Programme, and in particular the Hot Spot Monitoring activity, developed a satellite-imagery-based workflow to monitor such areas. Here, we present a total of 852 025 km2 of areas mapped with up to 32 land cover classes. Thematic land cover and land cover change maps, as well as validation datasets, are presented.
Zhen Yu, Xiaobin Jin, Lijuan Miao, and Xuhong Yang
Earth Syst. Sci. Data, 13, 3203–3218, https://doi.org/10.5194/essd-13-3203-2021, https://doi.org/10.5194/essd-13-3203-2021, 2021
Short summary
Short summary
We reconstructed the annual, 5 km × 5 km resolution cropland percentage map that covers mainland China and spans from 1900 to 2016. Our results are advantageous, as they reconcile accuracy, temporal coverage, and spatial resolutions. We further examined the cropland shift pattern and its driving factors in China using the reconstructed maps. This work will greatly contribute to the field of global ecology and land surface modeling.
Xueqiong Wei, Mats Widgren, Beibei Li, Yu Ye, Xiuqi Fang, Chengpeng Zhang, and Tiexi Chen
Earth Syst. Sci. Data, 13, 3035–3056, https://doi.org/10.5194/essd-13-3035-2021, https://doi.org/10.5194/essd-13-3035-2021, 2021
Short summary
Short summary
The cropland area of each administrative unit based on statistics in Scandinavia from 1690 to 1999 is allocated into 1 km grid cells. The cropland area increased from 1690 to 1950 and then decreasd in the following years, especially in southeastern Scandinavia. Comparing global datasets with this study, the spatial patterns show considerable differences. Our dataset is validated using satellite-based cropland cover data and results in previous studies.
Jichong Han, Zhao Zhang, Yuchuan Luo, Juan Cao, Liangliang Zhang, Jing Zhang, and Ziyue Li
Earth Syst. Sci. Data, 13, 2857–2874, https://doi.org/10.5194/essd-13-2857-2021, https://doi.org/10.5194/essd-13-2857-2021, 2021
Short summary
Short summary
Large-scale and high-resolution maps of rapeseed are important for ensuring global energy security. We generated a new database for the rapeseed planting area (2017–2019) at 10 m spatial resolution based on multiple data. Also, we analyzed the rapeseed rotation patterns in 25 representative areas from different countries. The derived rapeseed maps are useful for many purposes including crop growth monitoring and production and optimizing planting structure.
Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, Shuai Xie, and Jun Mi
Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, https://doi.org/10.5194/essd-13-2753-2021, 2021
Short summary
Short summary
Over past decades, a lot of global land-cover products have been released; however, these still lack a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a novel global 30 m landcover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib on the Google Earth Engine computing platform.
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, https://doi.org/10.5194/essd-13-2437-2021, 2021
Short summary
Short summary
In this study, the first 30 m resolution terrace map of China was developed through supervised pixel-based classification using multisource, multi-temporal data based on the Google Earth Engine platform. The classification performed well with an overall accuracy of 94 %. The terrace mapping algorithm can be used to map large-scale terraces in other regions globally, and the terrace map will be valuable for studies on soil erosion, carbon cycle, and ecosystem service assessments.
Dominik Kaim, Marcin Szwagrzyk, Monika Dobosz, Mateusz Troll, and Krzysztof Ostafin
Earth Syst. Sci. Data, 13, 1693–1709, https://doi.org/10.5194/essd-13-1693-2021, https://doi.org/10.5194/essd-13-1693-2021, 2021
Short summary
Short summary
We present a dataset of mid-19th-century building structure locations in former Galicia and Austrian Silesia (parts of the Habsburg Monarchy), located in present-day Czechia, Poland, and Ukraine. It consists of two kinds of building structures: residential and farm-related buildings. The dataset may serve as an important input in studying long-term socio-economic processes and human–environmental interactions or as a valuable reference for continental settlement reconstructions.
Robert Pazúr, Nica Huber, Dominique Weber, Christian Ginzler, and Bronwyn Price
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-60, https://doi.org/10.5194/essd-2021-60, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
We mapped the distribution of cropland and grassland across Switzerland where the agricultural land is considerably spatially heterogeneous due to strong variability in topography and climate, thus presenting challenges to mapping. The resulting map has high accuracy in lowlands as well as in mountainous areas. Thus, we believe that the presented mapping approach and resulting map will provide a solid ground for further research in agricultural land cover and landscape structure.
Adrià Descals, Serge Wich, Erik Meijaard, David L. A. Gaveau, Stephen Peedell, and Zoltan Szantoi
Earth Syst. Sci. Data, 13, 1211–1231, https://doi.org/10.5194/essd-13-1211-2021, https://doi.org/10.5194/essd-13-1211-2021, 2021
Short summary
Short summary
Decision-making for sustainable vegetable oil production requires accurate global oil crop maps. We used high-resolution satellite data to train a deep learning model that accurately classified industrial and smallholder oil palm, the main oil-producing crop. Our results outperformed previous studies and proved the suitability of deep learning for land use mapping. The global oil palm area was 21±0.42 Mha for 2019; however, young and sparse plantations were not included in this estimate.
Johannes H. Uhl, Stefan Leyk, Caitlin M. McShane, Anna E. Braswell, Dylan S. Connor, and Deborah Balk
Earth Syst. Sci. Data, 13, 119–153, https://doi.org/10.5194/essd-13-119-2021, https://doi.org/10.5194/essd-13-119-2021, 2021
Short summary
Short summary
Fine-grained geospatial data on the spatial distribution of human settlements are scarce prior to the era of remote-sensing-based Earth observation. In this paper, we present datasets derived from a large, novel building stock database, enabling the spatially explicit analysis of 200 years of land development in the United States at an unprecedented spatial and temporal resolution. These datasets greatly facilitate long-term studies of socio-environmental systems in the conterminous USA.
Wenhui Kuang, Shu Zhang, Xiaoyong Li, and Dengsheng Lu
Earth Syst. Sci. Data, 13, 63–82, https://doi.org/10.5194/essd-13-63-2021, https://doi.org/10.5194/essd-13-63-2021, 2021
Short summary
Short summary
We propose a hierarchical principle for remotely sensed urban land use and land cover change for mapping intra-urban structure and component dynamics. China’s Land Use/cover Dataset (CLUD) is updated, delineating the imperviousness and green surface conditions in cities from 2000 to 2018. The newly developed datasets can be used to enhance our understanding of urbanization impacts on ecological and regional climatic conditions and on urban dwellers' environments.
Qiangyi Yu, Liangzhi You, Ulrike Wood-Sichra, Yating Ru, Alison K. B. Joglekar, Steffen Fritz, Wei Xiong, Miao Lu, Wenbin Wu, and Peng Yang
Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, https://doi.org/10.5194/essd-12-3545-2020, 2020
Short summary
Short summary
SPAM makes plausible estimates of crop distribution within disaggregated units. It moves the data from coarser units such as countries and provinces to finer units such as grid cells and creates a global gridscape at the confluence between earth and agricultural-production systems. It improves spatial understanding of crop production systems and allows policymakers to better target agricultural- and rural-development policies for increasing food security with minimal environmental impacts.
Jie Dong, Yangyang Fu, Jingjing Wang, Haifeng Tian, Shan Fu, Zheng Niu, Wei Han, Yi Zheng, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020, https://doi.org/10.5194/essd-12-3081-2020, 2020
Short summary
Short summary
For the first time, we produced a 30 m winter wheat distribution map in China for 3 years during 2016–2018. Validated with 33 776 survey samples, the map had perfect performance with an overall accuracy of 89.88 %. Moreover, the method can identify planting areas of winter wheat 3 months prior to harvest; that is valuable information for production predictions and is urgently necessary for policymakers to reduce economic loss and assess food security.
Zoltan Szantoi, Andreas Brink, Andrea Lupi, Claudio Mammone, and Gabriel Jaffrain
Earth Syst. Sci. Data, 12, 3001–3019, https://doi.org/10.5194/essd-12-3001-2020, https://doi.org/10.5194/essd-12-3001-2020, 2020
Short summary
Short summary
Larger ecological zones and wildlife corridors in sub-Saharan Africa require monitoring, as social and economic demands put high pressure on them. Copernicus’ Hot-Spot Monitoring service developed a satellite-imagery-based monitoring workflow to map such areas. Here, we present a total of 560 442 km2 from which 153 665 km2 is mapped with eight land cover classes while 406 776 km2 is mapped with up to 32 classes. Besides presenting the thematic products, we also present our validation datasets.
David M. Theobald, Christina Kennedy, Bin Chen, James Oakleaf, Sharon Baruch-Mordo, and Joe Kiesecker
Earth Syst. Sci. Data, 12, 1953–1972, https://doi.org/10.5194/essd-12-1953-2020, https://doi.org/10.5194/essd-12-1953-2020, 2020
Short summary
Short summary
We developed a global, high-resolution dataset and quantified recent rates of land transformation and current patterns of human modification for 2017, globally. Briefly, we found that increased human activities and land use modification have caused 1.6 × 106 km2 of natural land to be lost between 1990 and 2015 and the rate of loss has increased over that time. While troubling, we believe these findings are invaluable to underpinning global and national discussions of conservation priorities.
Miao Lu, Wenbin Wu, Liangzhi You, Linda See, Steffen Fritz, Qiangyi Yu, Yanbing Wei, Di Chen, Peng Yang, and Bing Xue
Earth Syst. Sci. Data, 12, 1913–1928, https://doi.org/10.5194/essd-12-1913-2020, https://doi.org/10.5194/essd-12-1913-2020, 2020
Short summary
Short summary
Global cropland distribution is critical for agricultural monitoring and food security. We propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of cropland area, which is independent of training samples. The synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics.
Xiao Zhang, Liangyun Liu, Changshan Wu, Xidong Chen, Yuan Gao, Shuai Xie, and Bing Zhang
Earth Syst. Sci. Data, 12, 1625–1648, https://doi.org/10.5194/essd-12-1625-2020, https://doi.org/10.5194/essd-12-1625-2020, 2020
Short summary
Short summary
The amount of impervious surface is an important indicator in the monitoring of the intensity of human activity and environmental change. In this study, a global 30 m impervious surface map was developed by using multisource, multitemporal remote sensing data based on the Google Earth Engine platform. The accuracy assessment indicated that the generated map had more optimal measurement accuracy compared with other state-of-art impervious surface products.
Yidi Xu, Le Yu, Wei Li, Philippe Ciais, Yuqi Cheng, and Peng Gong
Earth Syst. Sci. Data, 12, 847–867, https://doi.org/10.5194/essd-12-847-2020, https://doi.org/10.5194/essd-12-847-2020, 2020
Short summary
Short summary
The first annual oil palm area dataset (AOPD) for Malaysia and Indonesia from 2001 to 2016 was produced by integrating multiple satellite datasets and a change-detection algorithm (BFAST). This dataset reveals that oil palm plantations have expanded from 5.69 to 19.05 M ha in the two countries during the past 16 years. The AOPD is useful in understanding the deforestation process in Southeast Asia and may serve as land-use change inputs in dynamic global vegetation models.
Yuchuan Luo, Zhao Zhang, Yi Chen, Ziyue Li, and Fulu Tao
Earth Syst. Sci. Data, 12, 197–214, https://doi.org/10.5194/essd-12-197-2020, https://doi.org/10.5194/essd-12-197-2020, 2020
Short summary
Short summary
For the first time, we generated a 1 km gridded-phenology product for three staple crops in China during 2000–2015, called ChinaCropPhen1km. Compared with the phenological observations from the agricultural meteorological stations, the dataset had high accuracy, with errors of retrieved phenological date of less than 10 d. The well-validated dataset is sufficiently reliable for many applications, including improving the agricultural-system or earth-system modeling over a large area.
Cited articles
Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use and land cover classification system for use with remote sensor data, Geol.
Surv. Prof. Paper, 964, 1–28, 1976.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program, Geocarto Int., 26, 341–358, 2011.
Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q., Dwyer, J. L.,
Vogelmann, J. E., Loveland, T. R., Woodcock, C. E., Stehman, S. V., Zhu, Z.,
Pengra, B. W., Smith, K., Horton, J. A., Xian, G., Auch, R. F., Sohl, T. L.,
Sayler, K. L., Gallant, A. L., Zelenak, D., Reker, R. R., and Rover, J.:
Lessons learned implementing an operational continuous United States
national land change monitoring capability: The Land Change Monitoring,
Assessment, and Projection (LCMAP) approach, Remote Sens. Environ.,
238, 111356, https://doi.org/10.1016/j.rse.2019.111356, 2020.
Bullock, E. L., Woodcock, C. E., and Holden, C. E.: Improved change
monitoring using an ensemble of time series algorithms, Remote Sens. Environ., 238, 111165, https://doi.org/10.1016/j.rse.2019.04.018, 2020.
Card, D. H.: Using known map category marginal frequencies to improve estimates of thermatic map accuracy, Photogramm. Eng. Rem. S., 48, 431–439, 1982.
Chen, J., Liao, A., Cao, X., Chen, L., Chen, Z., He, C., Han, G., Peng, S.,
Lu, M., and Zhang, W.: Global land cover mapping at 30 m resolution: A
POK-based operational approach, ISPRS J. Photogramm., 103, 7–27, 2015.
Chen, T. and Guestrin, C.: XGBoost, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 13–17 August 2016, 785–794, 2016.
Cohen, W. B., Yang, Z., and Kennedy, R.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 2. TimeSync –
Tools for calibration and validation, Remote Sens. Environ., 114,
2911–2924, 2010.
Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., and
Lymburner, L.: Analysis Ready Data: Enabling Analysis of the Landsat
Archive, Remote Sens., 10, 1363, https://doi.org/10.3390/rs10091363, 2018.
Erb, K. H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones, C.
D., Marin-Spiotta, E., McCallum, I., Robertson, E., Seufert, V., Fritz, S.,
Valade, A., Wiltshire, A., and Dolman, A. J.: Land management: data
availability and process understanding for global change studies, Glob. Change Biol., 23, 512–533, 2017.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter,
S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Colin Prentice, I., Ramankutty, N., and Synder, P. K.: Global consequences of land use, Science, 309, 570–574, 2005.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P.: Solutions for a cultivated planet, Nature, 478, 337–342, 2011.
Franklin, S. E., Ahmed, O. S., Wulder, M. A., White, J. C., Hermosilla, T.,
and Coops, N. C.: Large Area Mapping of Annual Land Cover Dynamics Using
Multitemporal Change Detection and Classification of Landsat Time Series
Data, Can. J. Remote Sens., 41, 293–314, 2015.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 Global Land Cover: Algorithm
Refinements and Characterization of New Datasets, Remote Sens. Environ., 114, 168–182, 2010.
Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D.: The National Elevation Dataset, Photogramm. Eng. Rem. S., 68, 5–32, 2002.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji,
L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H.,
Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu,
L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song,
L.: Stable classification with limited sample: transferring a 30 m
resolution sample set collected in 2015 to mapping 10 m resolution global
land cover in 2017, Sci. Bull., 64, 370–373, 2019.
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B.,
Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global arifical
impervious areas (GAIA) between 1985 and 2018, Remote Sens. Environ., 236, 111510, https://doi.org/10.1016/j.rse.2019.111510, 2020.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-resolution global maps of 21st century forest cover change, Science, 342, 850–853, 2013.
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., and Hobart, G.
W.: Disturbance-Informed Annual Land Cover Classification Maps of Canada's
Forested Ecosystems for a 29-Year Landsat Time Series, Can. J. Remote Sens., 44, 67–87, 2018.
Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., and Xian, G.: A
comprehensive change detection method for updating the National Land Cover
Database to circa 2011, Remote Sens. Environ., 132, 159–175, 2013.
Kennedy, R. E., Yang, Z., Braaten, J., Copass, C., Antonova, N., Jordan, C.,
and Nelson, P.: Attribution of disturbance change agent from Landsat
time-series in support of habitat monitoring in the Puget Sound region, USA,
Remote Sens. Environ., 166, 271–285, 2015.
LCMAP: LCMAP Collection 1 Science Products, Earth Resources Observation and Science (EROS) Center [data set], https://doi.org/10.5066/P9W1TO6E, 2021 (data available at: https://earthexplorer.usgs.gov/, last access: 30 November 2021).
Li, X., Zhou, Y., Meng, L., Asrar, G. R., Lu, C., and Wu, Q.: A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States, Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, 2019.
Li, X., Zhou, Y., Zhu, Z., and Cao, W.: A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States, Earth Syst. Sci. Data, 12, 357–371, https://doi.org/10.5194/essd-12-357-2020, 2020.
NPS: Fire – Yellowstone National Park, available at:
https://www.nps.gov/yell/learn/nature/fire.htm#:~:text=Number_in_Yellowstone,human-caused_fires_were_suppressed.&text=The_number_of_fires_has,70-285_acres_in_Yellowstone_burned,
last access: 27 April 2021.
Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T.
A., Yang, Z., and Loveland, T. R.: Quality control and assessment of
interpreter consistency of annual land cover reference data in an
operational national monitoring program, Remote Sens. Environ., 238,
111261, https://doi.org/10.1016/j.rse.2019.111261, 2020b.
Picotte, J. J., Dockter, D., Long, J., Tolk, B., Davidson, A., and
Peterson, B.: LANDFIRE remap prototype mapping effort: Developing a new
framework for mapping vegetation classification, change, and structure,
Fire, 2, 35, https://doi.org/10.3390/fire2020035, 2019.
Stehman, S. V.: Estimating area from an accuracy assessment error matrix, Remote Sens. Environ., 132, 202–211, 2013.
Stehman, S. V., Pengra, B. W., Horton, J. A., and Wellington, D. F.:
Validation of the U.S. Geological Survey's Land Change Monitoring,
Assessment and Projection (LCMAP) Collection 1.0 annual land cover products
1985–2017, Remote Sens. Environ., 265, 112646, https://doi.org/10.1016/j.rse.2021.112646, 2021.
Szantoi, Z., Geller, G. N., Tsendbazar, N.-E., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., and Obregón, A.: Addressing the need for improved land cover map products for policy support, Environ. Sci. Policy, 112, 28–35, 2020.
Tibshirani, R.: Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B Met., 58, 267–288, 1996.
Turner II, B. L., Lambin, E. F., and Reeberg, A.: The emergence of land
change science for global environmental change and sustainability, P. Natl. Acad. Sci. USAa, 104, 20666–20671, 2007.
Underwood, E. C., Ustin, S. L., and Ramirez, C. M.: A comparison of spatial
and spectral image resolution for mapping invasive plants in coastal
california, Environ. Manage., 39, 63–83, 2007.
Xian, G., Homer, C., Meyer, D., and Granneman, B.: An approach for
characterizing the distribution of shrubland ecosystem components as
continuous fields as part of NLCD, ISPRS J. Photogramm., 86, 136–149, 2013.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhou, Q., Rover, J., Brown, J., Worstell, B., Howard, D., Wu, Z., Gallant, A. L., Rundquist, B., and Burke, M.: Monitoring Landscape Dynamics in Central U.S. Grasslands with Harmonized Landsat-8 and Sentinel-2 Time Series Data, Remote Sens., 11, 328, https://doi.org/10.3390/rs11030328, 2019.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection
in Landsat imagery, Remote Sens. Environ., 118, 83–94, 2012.
Zhu, Z. and Woodcock, C. E.: Automated cloud, cloud shadow, and snow
detection in multitemporal Landsat data: An algorithm designed specifically
for monitoring land cover change, Remote Sens. Environ., 152, 217–234, 2014a.
Zhu, Z. and Woodcock, C. E.: Continuous change detection and classification
of land cover using all available Landsat data, Remote Sens. Environ., 144, 152–171, 2014b.
Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the
Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7,
8, and Sentinel 2 images, Remote Sens. Environ., 159, 269–277, 2015a.
Zhu, Z., Woodcock, C. E., Holden, C., and Yang, Z.: Generating synthetic
Landsat images based on all available Landsat data: Predicting Landsat
surface reflectance at any given time, Remote Sens. Environ., 162, 67–83, 2015b.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P.,
Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing
selection of training and auxiliary data for operational land cover
classification for the LCMAP initiative, ISPRS J. Photogramm., 122, 206–221, 2016.
Short summary
Continuous change detection algorithms were implemented with time series satellite records to produce annual land surface change products for the conterminous United States. The land change products are in 30 m spatial resolution and represent land cover and change from 1985 to 2017 across the country. The LCMAP product suite provides useful information for land resource management and facilitates studies to improve the understanding of terrestrial ecosystems.
Continuous change detection algorithms were implemented with time series satellite records to...