Chen, J., Liao, A., Cao, X., Chen, L., Chen, Z., He, C., Han, G., Peng, S.,
Lu, M., and Zhang, W.: Global land cover mapping at 30 m resolution: A
POK-based operational approach, ISPRS J. Photogramm., 103, 7–27, 2015.
Chen, T. and Guestrin, C.: XGBoost, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 13–17 August 2016, 785–794, 2016.
Cohen, W. B., Yang, Z., and Kennedy, R.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 2. TimeSync –
Tools for calibration and validation, Remote Sens. Environ., 114,
2911–2924, 2010.
Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang, H. K., and
Lymburner, L.: Analysis Ready Data: Enabling Analysis of the Landsat
Archive, Remote Sens., 10, 1363, https://doi.org/10.3390/rs10091363, 2018.
Erb, K. H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones, C.
D., Marin-Spiotta, E., McCallum, I., Robertson, E., Seufert, V., Fritz, S.,
Valade, A., Wiltshire, A., and Dolman, A. J.: Land management: data
availability and proces
s understanding for global change studies, Glob. Change Biol., 23, 512–533, 2017.
Franklin, S. E., Ahmed, O. S., Wulder, M. A., White, J. C., Hermosilla, T.,
and Coops, N. C.: Large Area Mapping of Annual Land Cover Dynamics Using
Multitemporal Change Detection and Classification of Landsat Time Series
Data, Can. J. Remote Sens., 41, 293–314, 2015.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 Global Land Cover: Algorithm
Refinements and Characterization of New Datasets, Remote Sens. Environ., 114, 168–182, 2010.
Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D.: The National Elevation Dataset, Photogramm. Eng. Rem. S., 68, 5–32, 2002.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji,
L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H.,
Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu,
L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song,
L.: Stable classification with limited sample: transferring a 30 m
resolution sample set collected in 2015 to mapping 10 m resolution global
land cover in 2017, Sci. Bull., 64, 370–373, 2019.
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B.,
Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global arifical
impervious areas (GAIA) between 1985 and 2018, Remote Sens. Environ., 236, 111510, https://doi.org/10.1016/j.rse.2019.111510, 2020.
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., and Hobart, G.
W.: Disturbance-Informed Annual Land Cover Classification Maps of Canada's
Forested Ecosystems for a 29-Year Landsat Time Series, Can. J. Remote Sens., 44, 67–87, 2018.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass,
L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.:
Conterminous United States land cover change patterns 2001–2016 from the
2016 National Land Cover Database, ISPRS J. Photogramm., 162, 184–199, 2020.
Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., and Xian, G.: A
comprehensive change detection method for updating the National Land Cover
Database to circa 2011, Remote Sens. Environ., 132, 159–175, 2013.
Kennedy, R. E., Yang, Z., Braaten, J., Copass, C., Antonova, N., Jordan, C.,
and Nelson, P.: Attribution of disturbance change agent from Landsat
time-series in support of habitat monitoring in the Puget Sound region, USA,
Remote Sens. Environ., 166, 271–285, 2015.
LCMAP: LCMAP Collection 1 Science Products, Earth Resources Observation and Science (EROS) Center [data set], https://doi.org/10.5066/P9W1TO6E, 2021 (data available at:
https://earthexplorer.usgs.gov/, last access: 30 November 2021).
Li, X., Zhou, Y., Meng, L., Asrar, G. R., Lu, C., and Wu, Q.: A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States, Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, 2019.
Li, X., Zhou, Y., Zhu, Z., and Cao, W.: A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States, Earth Syst. Sci. Data, 12, 357–371, https://doi.org/10.5194/essd-12-357-2020, 2020.
NPS: Fire – Yellowstone National Park, available at:
https://www.nps.gov/yell/learn/nature/fire.htm#:~:text=Number_in_Yellowstone,human-caused_fires_were_suppressed.&text=The_number_of_fires_has,70-285_acres_in_Yellowstone_burned,
last access: 27 April 2021.
Pengra, B. W., Stehman, S. V., Horton, J. A., and Wellington, D. F.:
Land Change Monitoring, Assessment, and Projection (LCMAP) Version 1.0
Annual Land Cover and Lans Cover Change Validation Tables, U.S. Geological
Survey data release [data set], https://doi.org/10.5066/P98EC5XR, 2020a.
Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T.
A., Yang, Z., and Loveland, T. R.: Quality control and assessment of
interpreter consistency of annual land cover reference data in an
operational national monitoring program, Remote Sens. Environ., 238,
111261, https://doi.org/10.1016/j.rse.2019.111261, 2020b.
Picotte, J. J., Dockter, D., Long, J., Tolk, B., Davidson, A., and
Peterson, B.: LANDFIRE remap prototype mapping effort: Developing a new
framework for mapping vegetation classification, change, and structure,
Fire, 2, 35, https://doi.org/10.3390/fire2020035, 2019.
Reid, W. V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y. T., Mokhele, K.,
Ostrom, E., Raivio, K., Rockstrom, J., Schellnhuber, H. J., and Whyte, A.:
Earth System Science for Global Sustainability: Grand Challenges, Science,
330, 916–917, 2010.
Stehman, S. V.: Estimating area from an accuracy assessment error matrix, Remote Sens. Environ., 132, 202–211, 2013.
Stehman, S. V., Pengra, B. W., Horton, J. A., and Wellington, D. F.:
Validation of the U.S. Geological Survey's Land Change Monitoring,
Assessment and Projection (LCMAP) Collection 1.0 annual land cover products
1985–2017, Remote Sens. Environ., 265, 112646, https://doi.org/10.1016/j.rse.2021.112646, 2021.
Szantoi, Z., Geller, G. N., Tsendbazar, N.-E., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., and Obregón, A.: Addressing the need for improved land cover map products for policy support, Environ. Sci. Policy, 112, 28–35, 2020.
Tibshirani, R.: Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B Met., 58, 267–288, 1996.
Wickham, J. D., Stehman, S. V., Fry, J. A., Smith, J. H., and Homer, C. G.:
Thematic accuracy of the NLCD 2001 land cover for the conterminous United
States, Remote Sens. Environ., 114, 1286–1296, 2010.
Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., and Hermosilla, T.:
Land cover 2.0, Int. J. Remote Sens., 39, 4254–4284, 2018.
Xian, G., Homer, C., Meyer, D., and Granneman, B.: An approach for
characterizing the distribution of shrubland ecosystem components as
continuous fields as part of NLCD, ISPRS J. Photogramm., 86, 136–149, 2013.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhou, Q., Rover, J., Brown, J., Worstell, B., Howard, D., Wu, Z., Gallant, A. L., Rundquist, B., and Burke, M.: Monitoring Landscape Dynamics in Central U.S. Grasslands with Harmonized Landsat-8 and Sentinel-2 Time Series Data, Remote Sens., 11, 328, https://doi.org/10.3390/rs11030328, 2019.
Zhou, Q., Tollerud, H. J., Barber, C. P., Smith, K., and Zelenak, D.:
Training data selection for annual land cover classification for the land
change monitoring, assessment, and projection (LCMAP) initiative, Remote
Sens., 12, 699, https://doi.org/10.3390/rs12040699, 2020.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection
in Landsat imagery, Remote Sens. Environ., 118, 83–94, 2012.
Zhu, Z. and Woodcock, C. E.: Automated cloud, cloud shadow, and snow
detection in multitemporal Landsat data: An algorithm designed specifically
for monitoring land cover change, Remote Sens. Environ., 152, 217–234, 2014a.
Zhu, Z. and Woodcock, C. E.: Continuous change detection and classification
of land cover using all available Landsat data, Remote Sens. Environ., 144, 152–171, 2014b.
Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the
Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7,
8, and Sentinel 2 images, Remote Sens. Environ., 159, 269–277, 2015a.
Zhu, Z., Woodcock, C. E., Holden, C., and Yang, Z.: Generating synthetic
Landsat images based on all available Landsat data: Predicting Landsat
surface reflectance at any given time, Remote Sens. Environ., 162, 67–83, 2015b.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P.,
Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing
selection of training and auxiliary data for operational land cover
classification for the LCMAP initiative, ISPRS J. Photogramm., 122, 206–221, 2016.