
Earth Syst. Sci. Data, 14, 143–162, 2022
https://doi.org/10.5194/essd-14-143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Implementation of the CCDC algorithm to produce
the LCMAP Collection 1.0 annual land surface

change product

George Z. Xian1, Kelcy Smith2, Danika Wellington2, Josephine Horton2, Qiang Zhou3, Congcong Li3,
Roger Auch1, Jesslyn F. Brown1, Zhe Zhu4, and Ryan R. Reker2

1United States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center,
Sioux Falls, SD 57198, USA

2KBR, contractor to the USGS EROS Center, Sioux Falls, SD 57198, USA
3ASRC Federal Data Solutions (AFDS), contractor to the USGS EROS Center, Sioux Falls, SD 57198, USA
4Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, USA

Correspondence: George Z. Xian (xian@usgs.gov)

Received: 15 June 2021 – Discussion started: 13 August 2021
Revised: 4 November 2021 – Accepted: 20 November 2021 – Published: 19 January 2022

Abstract. The increasing availability of high-quality remote sensing data and advanced technologies has
spurred land cover mapping to characterize land change from local to global scales. However, most land change
datasets either span multiple decades at a local scale or cover limited time over a larger geographic extent. Here,
we present a new land cover and land surface change dataset created by the Land Change Monitoring, Assess-
ment, and Projection (LCMAP) program over the conterminous United States (CONUS). The LCMAP land
cover change dataset consists of annual land cover and land cover change products over the period 1985–2017 at
a 30 m resolution using Landsat and other ancillary data via the Continuous Change Detection and Classification
(CCDC) algorithm. In this paper, we describe our novel approach to implement the CCDC algorithm to produce
the LCMAP product suite composed of five land cover products and five products related to land surface change.
The LCMAP land cover products were validated using a collection of ∼ 25000 reference samples collected
independently across CONUS. The overall agreement for all years of the LCMAP primary land cover product
reached 82.5 %. The LCMAP products are produced through the LCMAP Information Warehouse and Data Store
(IW+DS) and shared Mesos cluster systems that can process, store, and deliver all datasets for public access. To
our knowledge, this is the first set of published 30 m annual land change datasets that include land cover, land
cover change, and spectral change spanning from the 1980s to the present for the United States. The LCMAP
product suite provides useful information for land resource management and facilitates studies to improve the
understanding of terrestrial ecosystems and the complex dynamics of the Earth system. The LCMAP system
could be implemented to produce global land change products in the future. The LCMAP products introduced
in this paper are freely available at https://doi.org/10.5066/P9W1TO6E (LCMAP, 2021).
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1 Introduction

Changes in land cover and land surface are one of the great-
est and most immediate influences on the Earth system, and
these changes will continue in association with a surging
human population and growing demand on land resources
(Szantoi et al., 2020). Changes in land cover and ecosystems
and their implications for global environmental change and
sustainability are major research challenges for developing
strategies to respond to ongoing global change while meeting
development goals (Turner et al., 2007). Unknowns related
to the spatial extent and degrees of impacts of anthropogenic
activities on natural systems and strategies to respond to on-
going global change hinder efforts to overcome sustainabil-
ity challenges (Erb et al., 2017; Reid et al., 2010). An im-
proved understanding of the complex and dynamic interac-
tions between the various Earth system components, includ-
ing humans and their activities, is critical for policymakers
and scientists (Foley et al., 2005, 2011). To fully understand
these processes and monitor these changes, accurate and fre-
quently updated land cover information is essential for scien-
tific research and to assist decision makers in responding to
the challenges associated with competing land demands and
land surface change.

The characteristics of land surface fundamentally con-
nect with the functioning of Earth’s terrestrial surface. Satel-
lite observations have been used to observe the Earth’s sur-
face and to characterize land cover and change from lo-
cal to global scales. Remote sensing data allow us to ob-
tain information over large areas in a practical and accu-
rate manner. With advanced technologies and accumulating
satellite data, countries and regions have produced multi-
spatial-resolution and multi-temporal-resolution land cover
products (Chen et al., 2015; Gong et al., 2020; Hansen et
al., 2013; Homer et al., 2020; Li et al., 2020). A variety
of land change mapping has been carried out to produce
land cover and change products in the United States. Among
these efforts are the widely known National Land Cover
Database (NLCD) products. NLCD has provided compre-
hensive, general-purpose land cover mapping products at a
30 m resolution since 2001 in the United States, and the
products have been published and updated across more than
a decade (Homer et al., 2020). NLCD provides Anderson
Level II land cover classification (Anderson, 1976) for the
conterminous United States (CONUS) at approximately 2–
3-year intervals. Other national-scale mapping projects fo-
cus on specific land cover themes. Among these are the
Landscape Fire and Resource Management Planning Tools
(LANDFIRE) (Picotte et al., 2019), which maps vegetation
and fuels in support of wildfire management, and the Crop-
land Data Layer (Boryan et al., 2011) generated by the Na-
tional Agricultural Statistics Service (NASS) of the United
States Department of Agriculture (USDA). Due to the need
to incorporate data from neighboring years, as well as ex-
tensive post-processing, ancillary dataset dependencies, and

analyst-supported refinement, release dates for both LAND-
FIRE and NLCD products are typically several years sub-
sequent to the nominal map year. Other products including
national urban extent change and vegetation phenology data
are available (Li et al., 2019, 2020). These projects vary in
how land change information is incorporated or expressed
across product releases. Continuous data stacks allow for an
increase in input features for land cover classification. Fre-
quent data also provide the opportunity for near-real-time
change monitoring with frequently updated image acquisi-
tions. The availability of land change information has led to
approaches that attempt to monitor surface properties contin-
uously through time (Franklin et al., 2015; Gong et al., 2019;
Hermosilla et al., 2018; Homer et al., 2020; Kennedy et
al., 2015; Li et al., 2020). Such approaches have several ad-
vantages over traditional image processing techniques based
on small numbers of images (Bullock et al., 2020; Zhu and
Woodcock, 2014b).

Leveraging the increasingly massive number of openly
available, analysis-ready data products into the generation
of operational land cover and land change information has
been described as the new paradigm for land cover science
(Wulder et al., 2018). The approach, which intended to use
all available medium-resolution remotely sensed data from
the 1980s to the present, opened a door for the scientific
community to integrate time series information to improve
change detection and land cover characterization in a ro-
bust way. Furthermore, change events, when combined with
knowledge of ecology settings or anticipation of a given pro-
cess post-change, can accommodate consistent change ob-
servations and characterization of land cover. For example,
forest areas that are cleared by wildfire or harvest activities
typically transfer to non-forest herbaceous or shrub vegeta-
tion cover, followed by a succession of young tree stages
and ultimately returning to a forest class. Traditional change
detection methods using limited observations may not have
identified these changes if data were collected with a starting
date prior to the change and an end date that occurred after
the transitional (non-tree) vegetation returned to tree cover.
Therefore, incorporating change information into the land
cover characterization process allows for insights regard-
ing expected land cover class transitions related to succes-
sional processes and likewise provides a mechanism to iden-
tify illogical class transitions and causes or agents of change
(Kennedy et al., 2015; Wulder et al., 2018). The choice of
a time series approach also allows missing data and pheno-
logical variations to be handled robustly (Friedl et al., 2010;
Wulder et al., 2018).

The Continuous Change Detection and Classification
(CCDC) algorithm (Zhu and Woodcock, 2014b; Zhu et
al., 2015b) was developed to advance time series change de-
tection by using all available Landsat data. The Continuous
Change Detection (CCD) algorithm uses robust methodology
to identify when and how the land surface changes through
time. The algorithm first estimates a time series model based
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on clear observations and then detects outliers by comparing
model estimates and Landsat observations. The algorithm fits
harmonic regression models through a least absolute shrink-
age and selection operator (LASSO) (Tibshirani, 1996) ap-
proach to every pixel over time to estimate the time series
model defined by sine and cosine functions. New Landsat
records are compared to predicted results, and if the observed
data deviate beyond a set threshold for all records within a
moving window period, then a model break is produced. The
parameters used to fit the model are used as inputs for the
cover classifier for land cover characterization.

The original implementation of CCDC was written in
the MATLAB programming language and had been imple-
mented for a regional land cover change assessment in the
eastern CONUS (Zhu and Woodcock, 2014b). The algorithm
includes the automation of change detection and classifica-
tion and can monitor changes for different land cover types.
The implementation of CCDC over a large geographic ex-
tent still encounters several challenges: the availability of
Landsat records and training datasets, the effectiveness of
choosing good-quality Landsat records, and the robustness
to characterize land cover and change across various land
cover types and conditions. In this paper, we outlined ma-
jor efforts and challenges in the implementation of CCDC for
the US Geological Survey (USGS) Land Change Monitoring,
Assessment, and Projection (LCMAP) initiative (Brown et
al., 2020). LCMAP focuses on using CCD/CCDC with Land-
sat time series records and other ancillary information to pro-
duce annual land cover and change products from 1985 to the
present for the United States. We focused on how LCMAP
employed every observation in a time series of US Land-
sat Analysis Ready Data (ARD) (Dwyer et al., 2018) over
a long period starting with the 1980s to determine whether
change occurred at any given point in the observation record.
The CCDC algorithm that was initially developed for abrupt
change detection on the land surface was modified through
lessons learned from the prototype test to include both grad-
ual land cover transition and abrupt land change so that the
algorithm could be used in an operational setting with the
goals of robust, repeatable, and geographically consistent re-
sults (Brown et al., 2020). The algorithm was further used to
classify the pixel to indicate what land cover type or types
were observed before and after a detected change on the land
surface. Classification in LCMAP was modified to improve
representativeness of training data and reduce notable arti-
facts including misclassification of rare classes and dramatic
increases in the number of training data. The CCDC algo-
rithm has since been translated into an open-source library
as Python code. The full implementation joined the CCD
Python library with the classification methodology in combi-
nation with data delivery/processing services made available
through the LCMAP Information Warehouse and Data Store
(IW+DS) and evolved as a national operational monitoring
system.

2 Data sources

The CCDC algorithm utilizes all available Landsat observa-
tions including surface reflectance, brightness temperature,
and associated quality data to characterize the spectral re-
sponses of every pixel through harmonic regression model
fits. The model fits are then used to categorize each pixel time
series into temporal segments of stable periods and to esti-
mate the dates at which the spectral time series data diverge
from past responses or patterns. The outcomes of model fits
and other input data are then used for classification. The algo-
rithm requires several input datasets to perform both change
detection and classification.

2.1 Landsat observations

US Landsat ARD have been processed according to a mini-
mum set of requirements and organized into a form that can
be more directly and easily used for monitoring and assess-
ing landscape change with minimal additional user effort.
Landsat ARD Collection 1 provides consistent radiometric
and geometric Landsat products across Landsat 4–5 The-
matic Mapper (TM), Landsat 7 Enhanced Thematic Map-
per Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI)/Thermal Infrared Sensor (TIRS) instruments for use
in time series analysis (Dwyer et al., 2018). Landsat ARD
is organized in tiles, which are units of uniform dimension
bounded by static corner points in a defined grid system
(Fig. 1). An ARD tile is currently defined as 5000× 5000
pixels of 30 m or 150× 150 km. To implement CCDC algo-
rithms to produce LCMAP Collection 1.0 land change prod-
ucts in CONUS, all available Landsat ARD records of sur-
face reflectance and brightness temperature from the 1980s
to 2017 were required.

2.2 Land cover and ancillary datasets

The CCDC algorithm employs every observation in a time
series of Landsat data to determine whether change has oc-
curred at any given time. The algorithm further classifies
the time series to indicate what land cover types were ob-
served before and after a detected change and further to gen-
erate LCMAP annual land cover products (Table 1). The
land cover products are produced by using training data from
NLCD in 2001. NLCD provides Anderson Level II (Ander-
son, 1976) land cover classification for CONUS and outly-
ing areas (Homer et al., 2020). Spectral index and change
metrics between cloud-corrected Landsat mosaics are used,
among other information, to identify change pixels (Jin et
al., 2013). These metrics allow NLCD to incorporate tempo-
ral and spectral trajectory information into both training data
selection and final land cover classification. The NLCD land
cover data are used in LCMAP as land cover training data.

Ancillary data comprise two main source datasets: the
USGS National Elevation Dataset (NED) (Gesch et al., 2002)
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Figure 1. Landsat ARD tile grids for the conterminous USA.

1 arcsec digital elevation models (DEMs) and a wetland po-
tential index (WPI) layer created for NLCD 2011 land cover
production (Zhu et al., 2016). The WPI layer is a ranking (0–
8) of wetland likelihood from a comparison of the National
Wetlands Inventory (NWI), the US Department of Agricul-
ture Soil Survey Geographic Database (SSURGO) for hydric
soils, and the NLCD 2006 wetlands land cover classes.

3 Methodology

As part of the operational LCMAP system, the original MAT-
LAB version of the CCDC algorithm is converted to a for-
mat that meets the needs of large-scale land change detection
and change characterization on an annual basis. Python is
selected to replace MATLAB to implement the CCDC algo-
rithm for LCMAP. The CCD component of the CCDC algo-
rithm is converted to create the Python-based CCD (PyCCD)
library. The PyCCD library is a per-pixel algorithm, and the
fundamental outputs are the spectral characterizations (seg-
ments) of the input data. There are several key components
in PyCCD. The overall CCD procedures are summarized in
Fig. 2.

3.1 Data filtering and harmonic modeling

The removal of invalid and cloud-contaminated data points is
important for deriving model coefficients that accurately rep-
resent the phenology of the surface and for the correct iden-
tification of model break points. The CCD algorithm uses
Landsat ARD PIXELQA values to mask observations iden-
tified as cloud, cloud shadow, fill, or (in some cases) snow
derived based on the Fmask 3.3 algorithm (Zhu et al., 2015a;
Zhu and Woodcock, 2012). Additional cirrus and terrain oc-
clusion bits are provided for Landsat 8 OLI–TIRS ARD that
are not available in the Landsat 4–7 TM/ETM+ quality as-
sessment band. To maintain consistency across the historical
archive, the algorithm does not rely on these Landsat 8-only
quality assurance (QA) flags to filter out observations.

Landsat ARD containing invalid or physically unrealistic
data values are removed. For the surface reflectance bands,
the valid data range is between 0 and 10 000. Brightness tem-
perature values, which in the ARD are stored as 10× tem-
perature (kelvins), are converted to 100× (◦C), and observa-
tions are filtered for values outside the range −9320 to 7070
(−93.2 to 70.7 ◦C). This procedure rescales the brightness
temperature values into a roughly similar numerical range
to that of the surface reflectance bands. A multi-temporal
mask (Tmask) model (Zhu and Woodcock, 2014a) is imple-
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Table 1. LCMAP land cover product specifications.

Code Land cover class Description

1 Developed Areas of intensive use with much of the land covered with structures (e.g., high-density residential, commercial,
industrial, mining, or transportation) or less intensive uses where the land cover matrix includes vegetation,
bare ground, and structures (e.g., low-density residential, recreational facilities, cemeteries,
transportation/utility corridors), including any land functionality related to
the developed or built-up activity.

2 Cropland Land in either a vegetated or an unvegetated state used in production of food, fiber, and fuels.
This includes cultivated and uncultivated croplands, hay lands, orchards, vineyards, and
confined livestock operations. Forest plantations are considered forests or woodlands
(tree cover class) regardless of the use of the wood products.

3 Grass/shrub Land predominantly covered with shrubs and perennial or annual natural and domesticated grasses
(e.g., pasture), forbs, or other forms of herbaceous vegetation. The grass and shrub cover
must comprise at least 10 % of the area, and tree cover is less than 10 % of the area.

4 Tree cover Tree-covered land where the tree cover density is greater than 10 %. Cleared or harvested trees
(i.e., clear-cuts) will be mapped according to current cover (e.g., barren, grass/shrub).

5 Water bodies Areas covered with water, such as streams, canals, lakes, reservoirs, bays, or oceans.

6 Wetland Lands where water saturation is the determining factor in soil characteristics, vegetation types, and
animal communities. Wetlands are composed of mosaics of water, bare soil, and herbaceous
or wooded vegetated cover.

7 Ice and snow Land where accumulated snow and ice do not completely melt during the summer period
(i.e., perennial ice/snow).

8 Barren Land comprised of natural occurrences of soils, sand, or rocks where less than 10 % of the area is vegetated.

mented first to remove additional outliers by using the multi-
temporal observation record to identify values that deviate
from the overall phenology curve using a specific harmonic
model to perform an initial fit to the phenology. Additional
details are provided in Eq. (S1) in the Supplement.

The filtered Landsat ARD are further operated upon to
generate the time series fit by harmonic models whose sinu-
soidal components are frequency multiples of the base annual
frequency. A constant and linear term characterizes the sur-
face reflectance or brightness temperature offset value and
overall slope, respectively. The full harmonic model is de-
fined as follows:

p̂(i, t)= c0, i + c1, i t +
∑3

n=1

(
an, i cosωnt + bn, i sinωnt

)
, (1)

where ω is the base annual frequency (2π/T ), t is the ordi-
nal of the date when 1 January of the year zero has ordinal 1
(sometimes called Julian date), i is the ith Landsat band, an, i
and bn, i are the estimated nth order harmonic coefficients for
the ith Landsat band, c0, i and c1, i are the estimated intercept
and slope coefficients for the ith Landsat band, and p̂(i, t) is
the predicted value for the ith Landsat band at ordinal date
t . Model initialization and certain special-case regression fits
such as at the beginning/end of the time series use the simple
four-coefficient model. Outside of these conditions, the se-
lection of coefficients depends on the number of observations
used for the regression. For a full model (eight coefficients),
there must be at least 24 observations covered by the regres-

sion. The fit parameters returned by PyCCD always include
eight coefficient values including an intercept, with unused
coefficients reported as zeroes.

3.2 Regression models and change detection
thresholds

The best-fit coefficients for the time series model are calcu-
lated using a LASSO regression model (Tibshirani, 1996). In
contrast to ordinary least squares (OLS), which was used in
the original CCDC development, LASSO penalizes the sum
of the absolute values of coefficients, in some cases forcing
a subset of the coefficients to zero. Together with the explicit
limits enforced on the number of coefficients, this reduces in-
stances of overfitting, including in cases when observations
are too sparse or unevenly distributed in time to constrain the
model to real phenological features. To detect change, the
LASSO model checks CCD model breaks with respect to its
last determined best-fit harmonic model.

To correctly detect change, the algorithm distinguishes be-
tween a substantive deviation from model prediction and de-
viations that result from variability inherent in the data (due
to incomplete atmospheric removal and/or other sources of
natural variation) to detect change. The algorithm calculates
two parameters related to dispersion, or scatter, to estimate
the variability in data for each spectral band. The first one
is a comparison root-mean-square error (RMSE) that is the
RMSE of the 24 observations covered by the model which
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Figure 2. Overall procedures of the CCD algorithm.

are closest in day of year to the last observation in the “peek
window” or over all observations covered by the model if
there are fewer than 24. This value is recalculated at each
step of the time series. The second parameter (var) is used to
measure the overall variability in the data values and is de-
fined as the median of the absolute value of the differences

between each observation and the ith successive observation,
where i is the smallest value such that the majority of these
observation pairs are separated by more than 30 d if possible
(otherwise, i = 1). The var is computed once at the beginning
of the standard procedure, using all non-masked observations
in the time series.
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Observations not yet incorporated into the model are eval-
uated as a group of no fewer than the PEEK_SIZE parameter
value; this is the peek window, which “slides” along the time
series one observation at a time. For each iteration, a value
is calculated for each individual observation within the peek
window as follows:

magn =
∑
i∈D

(
residn, i

max(vari,RMSEi)

)2

, (2)

where residn, i is the residual relative to the LASSO mod-
els for each band i and for each observation n within
the PEEK_SIZE window and vari and RMSEi are the pa-
rameters of dispersion as described above, for each band
i. This summation is carried out for all bands i in the
set of DETECTION_BANDS (D). This produces a scalar
magnitude, representing the deviation from model predic-
tion across these bands, for each observation. The detec-
tion of a model break requires this value to be above the
CHANGE_THRESHOLD value for all observations in the
window. This is separate from the value that is reported as a
per-band magnitude when a change is detected in the time
series. Change detection sensitivity depends on the value
of the change threshold. The CHANGE_THRESHOLD
is determined in Eqs. (S2) and (S3) in the Supple-
ment. If magn <CHANGE_THRESHOLD for any n in
the PEEK_SIZE window, then add the most recent ob-
servation to the segment by shifting the PEEK_SIZE
window one observation forward in the time series. If
magn >CHANGE_THRESHOLD for all n values in the
PEEK_SIZE window, this is considered a spectral break.

3.3 Permanent snow and insufficient clear observation
procedures

The permanent snow procedure indicates that too few clear
(fewer than 25 % of total observations) or water observa-
tions, which are identified from the QA band, exist to ro-
bustly detect change and a large fraction of observations are
snow. The algorithm will return at most one segment that fits
through the entire time series and provide at least 12 filtered
observations. The model will, under the default settings, fit
only four coefficients (i.e., characterizing the reflectance and
brightness temperature bands using only a simple harmonic
with no higher-frequency terms). Unlike other procedures,
snow pixels are not filtered out and are fit as part of the an-
nual pattern. This avoids overfitting the model to a season-
ally sparse observation record. Similarly, for the insufficient
clear observations determined by the QA band, the model
will perform a LASSO regression fit for the entire time series
using four coefficients. The model coefficients and RMSE
from this regression are recorded. Additional parameters in-
cluding the start, end, and observation count are also saved.
Further, the change Boolean value is set to 0, and the break
day is recorded as the last observation date. The magnitude
of change as zero for each band is also saved.

3.4 Land cover classification

The CCDC algorithm characterizes the land cover compo-
nent of a pixel at any point using the LCMAP time series
model approach from the Landsat 4– Landsat 8 records. The
classification of CCDC is accomplished for every pixel based
on data from the time series models (e.g., model coefficients).
Land cover classifications are generated on an annual basis,
using 1 July as a representative date. A list of land cover
classes and descriptions is provided in Table 1. Figure 3 il-
lustrates an overall classification approach.

3.4.1 Classification algorithm

We chose eXtreme Gradient Boosting (XGBoost) (Chen and
Guestrin, 2016) as the classification method. XGBoost is a
scalable implementation of gradient tree boosting, which is
a supervised learning method that can be used to develop
a classification model when provided with an appropriate
training dataset. Generally, for a given dataset, a tree ensem-
ble model uses additive functions, which correspond to in-
dependent tree structures, to predict the land cover. The pre-
dictions from all trees are also normalized to the final class
probabilities using the softmax function. The algorithm can
handle sparse data and theoretically justify weighted quan-
tile sketch for approximate learning. The resultant trained
model can be applied to a larger dataset to generate predic-
tions and probability scores which are the basis for LCMAP
primary and secondary land cover types. The primary and
secondary land cover confidence values are calculated from
these scores.

3.4.2 Training dataset

The training data used in XGBoost for the LCMAP Collec-
tion 1.0 land cover products are from the USGS NLCD 2001
land cover product (Homer et al., 2020). To meet the LCMAP
land cover legend, the NLCD data are first cross-walked to
LCMAP classes, as shown in Fig. 4 and Table 2. The use
of NLCD data that were cross-walked to the LCMAP land
cover legend as the training data will reduce uncertainties
and improve the consistency of annual land cover change.
For example, grass and shrub have different ecological func-
tions. Their spectral signatures are distinct in some ecolog-
ical regions but are very close in others, especially in the
western ecoregions of the conterminous United States (Un-
derwood et al., 2007; Xian et al., 2013). Grass and shrub
usually grow close together, making it difficult to separate
them in thematic land cover. Combining these two cover
classes can reduce uncertainties potentially caused by lack
of spectral distinction in Landsat observations. Furthermore,
the extent of each land cover class in the cross-walked NLCD
layer is eroded by 1 pixel. This step aims to reduce potential
noise in the classifier by removing pixels that may be heavily
mixed with different cover types or whose land cover label
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Figure 3. The overall approach of land cover classification in CCDC.

may be less reliable. It also removes the narrow, linear, low-
intensity developed pixels corresponding to road networks,
which were found to have registration issues with Landsat
ARD in some areas.

3.4.3 Ancillary data

Ancillary data used in the classification contain two main
datasets: the DEM and the WPI layer. Three DEM derivative
datasets are implemented as geographic references for land
cover classification as ancillary data including topographic
slope, aspect, and position index. The WPI is highly related
to wetland distribution and has potential to improve wetland
classification in LCMAP.

3.4.4 Classification procedures

For each pixel, CCD segment data for the segment that in-
cludes the 1 July 2001 date are used with training data to cre-
ate classification models (Zhou et al., 2020; Zhu et al., 2016).
Data generated from the CCD models are used to make the
land cover classification because different land cover classes
can have different shapes for the estimated time series mod-
els. The coefficients of the CCD models including the overall
mean and model coefficients except intercepts can be used to
estimate the intra-annual changes caused by phenology and
sun angle differences for the ith Landsat band. The informa-
tion obtained from the time series model is useful for land
cover classification. The CCD model data used with training
data include the model coefficients (except the intercepts)
generated from surface reflectance and brightness tempera-
ture bands, the model RMSE value for each band, and an
average intercept value that is calculated from average an-
nual reflectance values for each band for the 1 July 2001
year. The model training procedure is conducted at the tile
level, using random samples drawn from the targeted tile as
well as the eight surrounding tiles to avoid not having enough
training samples of rare land cover types in the targeted tile.
Cross-walked and eroded NLCD data are used for classifi-
cation labels, while the CCD model outputs and ancillary
data are provided as independent variables. Based on train-

ing data testing using different sample sizes, a target sam-
ple size of 20 million pixels from the extent of 3× 3 ARD
tiles is chosen, requiring approximately proportional repre-
sentation of classes with the added constraint that no class
be represented by fewer than 600 000 or more than 8 million
samples. If there are fewer than 600 000 samples available
for a class, then all of the available samples are used with-
out any oversampling. The XGBoost hyperparameters are se-
lected as maximum tree depth 8, the fast histogram optimized
approximate greedy algorithm for the tree method, multiclass
log loss for the evaluation metric, and maximum number of
rounds 500.

After the classification models in a given tile are trained,
predictions are generated for each 1 July date that has an as-
sociated CCD segment (Fig. 5). The prediction information is
supplied to the production step for the creation of land cover.
The process is repeated for each tile for the entire CONUS
ARD extent.

3.5 Validation data

The LCMAP land cover product is validated using an inde-
pendent reference dataset. The reference data, which con-
sist of 24 971 pixels of 30 m× 30 m selected via a simple
random sampling method over CONUS, are collected from
these sample plots between 1985 and 2017. The TimeSync
tool is used to efficiently display Landsat data for interpreta-
tion and to record these interpretations into a database (Co-
hen et al., 2010; Pengra et al., 2020b; Stehman et al., 2021).
TimeSync displays the input Landsat images in two basic
ways: by annual time series images and by pixel values plot-
ted through time. For the image display, single 255× 255-
pixel subsets of Landsat images in the growing season are
displayed in sequence from 1984 to 2018. Trained inter-
preters have access to all available images in each year to col-
lect attributes in three basic categories: (1) land use, (2) land
cover, and (3) change processes. Additional attribute details
for the change processes, such as clear-cut and thinning as-
sociated with harvest events, are also collected. The inter-
preters manually label these attributes using Landsat 5, Land-
sat 7, and Landsat 8 imagery; high-resolution aerial photog-
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Figure 4. NLCD 2001 land cover (a), cross-walked LCMAP land cover classes (b), LCMAP land cover eroded by 1 pixel (c), zoomed-in
cross-walked land cover from NLCD 2001 (d), and zoomed-in LCMAP land cover classes eroded by 1 pixel (e). The color legends represent
the NLCD land cover class and LCMAP primary land cover (LCPRI).

raphy; and other ancillary datasets (Cohen et al., 2010; Pen-
gra et al., 2020b). Interpreters also use ancillary data to sup-
port interpretation of Landsat and high-resolution imagery,
although Landsat data take the highest weight of evidence.
Recording the full set of attributes in land use, land cover,
and land change categories provides sufficient information to
meet the needs of LCMAP as well as those of other potential
users. Quality assurance and quality control (QA–QC) pro-
cesses are also implemented to ensure the quality and con-
sistency of the reference data among interpreters and over

the time span of data collection (Pengra et al., 2020b). Each
reference sample is interpreted by a trained interpreter, and
about 60 % of these pixels are interpreted independently by a
second analyst. Much of the QA–QC process relies on com-
paring the interpretations at these duplicated sample pixels.
Duplicated sample pixels that have interpreter disagreement
are evaluated in the QA–QC process, focusing on identifying
issues with specific classes or interpreters, flagging sample
pixels for further review and possible editing, and provid-
ing ongoing training and feedback to interpreters throughout
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Table 2. NLCD land cover cross-walked to LCMAP land cover.

NLCD value LCMAP value

Water Water
Ice/snow Ice and snow
Developed, open space; developed, low intensity; developed, medium intensity; developed, high intensity Developed
Barren Barren
Deciduous forest, evergreen forest, mixed forest Tree cover
Shrub/scrub, grassland/herbaceous Grass/shrub
Hay/pasture, cultivated crops Cropland
Woody wetland, emergent herbaceous wetland Wetland

Figure 5. CCD change detection and segmentation using Landsat blue, green, red, near-infrared, shortwave infrared (SWIR) 1, shortwave
infrared (SWIR) 2, and thermal bands. Blue dots are all available clear Landsat records in each year. The horizontal lines in different colors
represent land cover classes labeled by the algorithm. The vertical lines show model break dates. The black line is the model fits. The
high-resolution images show landscape conditions in 2007 and 2013.

the collection process. QA–QC-related reviews are also com-
pleted on sample pixels that show interpretation data such as
uncommon and/or illogical land use and land cover combina-
tions, multi-year disturbance processes, rare classes, or other
opportunistically identified situations. Interpreted attributes
of sample pixels are edited, if necessary, to create the final
attribute assignments for the reference data. These final at-
tributes are then cross-walked to a single LCMAP land cover

class label, providing a single land cover reference label for
each year of the time series for each sample pixel.

The validation analysis protocols focus on estimating the
confusion matrix and overall, user’s, and producer’s accu-
racy by comparing the reference data and product data la-
bels. Overall accuracy and producer’s accuracy as well as
standard errors are produced using post-stratified estimators
(Card, 1982; Stehman, 2013). For accuracy estimates that
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are produced by combining multiple years of data, the sam-
pling design is treated as a one-stage cluster sample where
each pixel represents a cluster and each year of observa-
tion is the secondary sampling unit using cluster sampling
standard error formulas (Pengra et al., 2020b; Stehman et
al., 2021). The validation is only performed for primary land
cover and change products, not for other LCMAP science
products (Sect. S4 in the Supplement).

3.6 Information warehouse and data store

LCMAP adopts an information warehouse and data store
(IW+DS) system that can expand storage solutions along
with data access and discovery services running on the
EROS shared Mesos cluster. The system provides differ-
ent storage solutions to allow for flexibility in choos-
ing what best fits a dataset’s characteristics and currently
comprises Apache Cassandra (https://cassandra.apache.org/
_/index.html, last access: 30 November 2021) and Ceph
(https://ceph.io/en/, last access: 30 November 2021) object
storage. The services provide data ingest, retrieval, discov-
ery, metadata, processing, and other functionalities. LCMAP
maintains a copy of Landsat Collection 1 ARD and other
similarly tiled ancillary datasets that are spatially subset
within the IW+DS to allow efficient retrieval and to enable
large-scale CCDC processing and other algorithmic work.
The ingest process is designed to avoid bringing in ARD tile
observations that are already present within the IW+DS, to
keep the input consistent with any prior usage while allow-
ing CCDC to bring in new observations as they are available.
Algorithmic results, products, and other intermediate data are
kept in the Ceph object store arranged using a prefix structure
to label the identity of the data, with the actual object names
incorporating spatial concepts such as tile and chip, which is
a small subset of a tile and contains 100×100 pixels of 30 m.

4 Results and discussion

The LCMAP primary land cover and change products were
evaluated to outline annual land cover change from 1985 to
2017 in the conterminous Unites States.

4.1 Collection 1.0 primary land cover distribution and
change

The CONUS primary land cover mapping result and the pri-
mary confidence in 2010 are shown in Fig. 6a and b, respec-
tively. The land cover map illustrates distributions of differ-
ent land cover types across CONUS. The primary confidence
is above 90 % for most land cover classes, suggesting that the
classification models were created with high confidence for
land cover mapping for most classes in most regions. Some
vegetation transition (green in Fig. 6b) occurs mainly in the
southeast region, suggesting gradual tree recovery from dis-
turbances associated with tree harvesting. Figure 6c and d

display numbers of land cover changes and spectral changes
detected by the CCDC model between 1985 and 2017. The
number of land cover changes represents how many times
land cover has changed from one type to another for a spe-
cific pixel. However, the number of spectral changes denotes
how many times the model has detected spectral changes in
a CCD time series model where spectral observations have
diverged from the model predictions. These changes could
relate to a change in thematic land cover or might represent
more subtle conditional surface changes. The southeast re-
gion shows more frequent land cover changes in the 33 years
(Fig. 6c). The western part of CONUS, however, contains
more spectral changes than in the east (Fig. 6d). The NLCD
land change estimates also show similar change patterns be-
tween 2001 and 2016 (Homer et al., 2020). The different
spatial patterns in the total number of land cover changes
(Fig. 6c) and detected spectral changes (Fig. 6d) suggest that
not all changes lead to land cover change (e.g., drought and
precipitation-related changes in vegetation or grassland fire).
The large numbers of spectral change were mainly detected
in the southern grassland area.

Figure 7 shows the temporal changes of areas for eight
land cover classes from 1985 to 2017. Among all classes,
grass/shrub, tree cover, and cropland were dominant land
cover types, followed by wetland, water, developed, barren,
and snow/ice. The land cover and change datasets show that
developed land has a consistent increasing trend with an
8.4 % increase while barren increased 9.1 % between 1985
and 2017. Overall, the developed and barren areas increased
2.58×104 and 8.56×103 km2, respectively. Other land cover
categories do not have such increasing patterns. As for water,
although fluctuating, it had a generally increasing trend. The
area of wetland had a rapid decrease before 2000, following
a relatively steady though fluctuating trend. Net wetland ex-
tent declined about 0.4 % from 1985 to 2017. The grass/shrub
and tree cover classes both experienced consistent increasing
trends before 2008 and 1995, respectively, with areas reach-
ing about 2.85×106 km2 for grass/shrub and 2.14×106 km2

for tree in these 2 years. These two land covers have grad-
ually decreased since then. Tree cover declined after 1996,
showing a decreasing rate of 2.8 % between 1985 and 2017.
The cropland decreased from 1985 to 2008 and quickly in-
creased after that. By 2017, the area of cropland had reached
a similar level of cropland area to that in 1988. Further-
more, most land cover changes are located in the southeast
region where many pixels change more than one time. The
changes detected by the CCD model suggest that landscape
in the Midwest and west are more dynamic than in the east.
Many areas experience multiple disturbances although most
of these changes do not result in land cover transition.

The south ARD tile outlined in Fig. 6a covers the north-
ern Dallas region, and the spatial patterns of land cover and
change are shown in more detail in Fig. 8. The land cover dis-
tributions in the region show that urban land expanded con-
siderably from 1985 (Fig. 8a) to 1990 (Fig. 8b) and to 2016
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Figure 6. Illustration of the LCMAP product: (a) primary land cover in 2010, (b) primary land cover confidence in 2010, (c) the frequency
of land cover changes from 1985 to 2017, and (d) the total number of spectral changes detected from 1985 to 2017.

Figure 7. Areal variations in eight primary land cover types from
1985 to 2017 in CONUS.

(Fig. 8c). The land conversion was primarily from cropland
and grass/shrub to developed land. Lake Ray Roberts was
created in the late 1980s and captured in the land cover map
(Fig. 8b and c). The lake and urban conversion are also vis-
ible in the change count from 1985 to 2016 (Fig. 8g), which
mainly shows as blue, suggesting a one-time conversion. On
the other hand, there is almost no change in the urban cen-
ter (Fig. 8g). Figure 8d–f show high classification confidence
at the urban center, water, grass/shrub, and tree cover ar-
eas, whereas cropland is associated with relatively low confi-
dence, indicating frequent management activities over crop-
lands in the regions. The total pixels of different change num-
bers suggests that one to two change times are dominant, al-
though some pixels change more than three times (Fig. 8h).
The land cover distributions in 1985, 1990, and 2017 show
an increase in developed land and decreases in cropland and
grass/shrub (Fig. 8i).

The spatial patterns of land cover and change in the north
ARD tile displayed in Fig. 6a in northern Wyoming are
shown in Fig. 9. The tile covers most of Yellowstone National
Park, in which tree, grass/shrub, and water are three domi-
nant land cover types. Land cover in 1985, 1990, and 2016
(Fig. 9a–c) changed from tree to grass/shrub and back to
tree cover. The primary land cover confidence layers exhibit
changes as decreasing vegetation from tree to grass/shrub
and increasing vegetation from grass/shrub to tree (Fig. 9d–
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Figure 8. Primary land cover and confidence in 1985 (a, d), 1990 (b, e), and 2016 (c, f) and change in 1985–2017 (g), the frequency of
land cover change (x axis) from 1985 to 2017 and numbers of pixels (y axis) of these changes (h), and areas (y axis) of different land cover
(x axis) in the three times for the ARD tile 16_14 (i).

f). For those trees and water bodies that did not experience
any disturbances, their magnitudes of confidence are rela-
tively large. The change map suggests that most forest lands
experienced at least one change and some areas changed
multiple times (Fig. 9g). Most changes in forest lands were
related to wildland fires that occurred in the region. In 1988,
50 fires burned a mosaic covering nearly 3213 km2 in Yel-
lowstone as a result of extremely warm, dry, and windy
weather (NPS, 2021). Trees regrew in some of the burn ar-

eas, and these changes could occur more than once as shown
in the change map, which indicates at least two changes in
these areas. The total pixels of different change frequencies
suggests that one to two changes were dominant and very
few pixels changed more than three times (Fig. 9h). The land
cover distributions in 1985, 1990, and 2017 had increases in
grass/shrub after 1985 and reductions in tree cover after that
(Fig. 9i).
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Figure 9. Primary land cover and confidences in 1985 (a, d), 1990 (b, e), and 2016 (c, f) and change in 1985–2017 (g), the frequency of
land cover change (x axis) from 1985 to 2017 and numbers of pixels (y axis) of these changes (h), and areas (y axis) of different land cover
(x axis) in the three times for the ARD tile 9_6 (i).

4.2 Validation of land cover product

The overall accuracy between the annual reference land
cover label and the LCMAP annual land cover products was
calculated as 82.5 % (±0.22 %, standard error) when sum-
marized for all years. Overall accuracy across the time se-

ries (1985–2017) varied within about 1.5 % annually, rang-
ing from a high of 83 % in the late 1990s to about 82 % in
the late 2010s (Fig. 10). Per class accuracies across CONUS
ranged between 43 % and 96 % for user’s accuracy (Ta-
ble 3), with water showing the highest accuracy (96± 0.5 %
user’s accuracy and 93± 0.7 % producer’s accuracy). Crop-
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land has about 93 % (±0.3 %) producer’s accuracy and 70 %
(±0.6 %) user’s accuracy. The lowest accuracies are ob-
served for barren and wetland. The per class per year agree-
ments show the accuracies vary slightly for each class in
each year (Table 4). The variations in annual overall accu-
racy are within a range of about 1.5 % across the time series.
The slight decline in annual overall accuracy suggests that
year-to-year trends may be a result of a complex interplay
of temporal biases in the LCMAP algorithm, Landsat data
quality and quantity, the model break detection accuracy of
the LCMAP CCD, and errors in the training data used for the
classification. For example, the change detection portion of
the algorithm is known to be conservative in identifying land
cover change. The CCD model assumes that the spectral vari-
ations in the land surface through time can be characterized
with annual harmonic models and can be separated into dis-
crete periods of time. Therefore, the model performs better
when the short-term spectral variability of the land surface
is low, the changes have a large spectral response, and the
observational data density is high. Over time, the actual land
cover may evolve away from the phenology represented by
spectral models that may have missed one or more spectral
breaks, which will impact accuracy especially when the land
cover changes are persistent rather than cyclic, such as with
an expanding urban footprint. Annual accuracy of developed
showed an upward trend in user’s accuracy (UA) and a down-
ward trend in producer’s accuracy (PA) over time (Stehman
et al., 2021). The increasing availability of high-resolution
data used by the interpreters may have increased the likeli-
hood of identifying features characteristic of developed land
that could not be identified earlier in the time series, lead-
ing to an increase in the proportion of developed area es-
timated from the sample. Consequently, the increasing sen-
sitivity of the reference interpretation to landscape features
may account for the difference between the mapping and the
reference data over time. Lower data density toward the be-
ginning and end of the time series may decrease accuracy,
which when combined with other factors, can contribute to
the annual land cover overall accuracy across all years.

4.3 Significance of the product

One of the biggest advances of LCMAP relative to conven-
tional methods available to date is its approach of generat-
ing annual land change products by using the entire Landsat
archive at a large geographic scale. Landsat ARD, which is
the foundation for LCMAP, is effective and straightforward
for tracking and characterizing the historical land changes at
a pixel level over decades. Compared to conventional meth-
ods, detecting changes using all available observations en-
ables us to date these changes as they occur. After change
is detected, temporally consistent land cover products rather
than stochastic changes in labels can be produced at annual
intervals by conducting classification from CCD model seg-
mented contributions.

Figure 10. Overall agreement between LCMAP primary land cover
and reference data across CONUS. The black error bars represent
±1 standard errors.

The LCMAP product suite includes five land cover change
and five land surface change science products. It represents
a new paradigm that consistently and continuously provides
a large volume of land change information for land change
monitoring, land resource management, and scientific re-
search. In addition to primary and secondary land cover be-
fore and after changes, change segments containing spec-
tral change time and magnitude are provided to explore the
changes in land condition and could meet various user com-
munities’ needs. The LCMAP products can improve our un-
derstanding of the causes, rates, and consequences of the land
surface changes such as forest changes caused by wildfire
and insect outbreaks.

By implementing the CCDC algorithm through a system
engineering approach, LCMAP provides a fully automated
framework for land change monitoring. The framework can
also be updated to include the latest Landsat records so that it
can be used for operational continuous monitoring in a large
geographic extent (Brown et al., 2020). Therefore, when new
observations become available, the framework can provide
timely and consistent land cover characteristics to the public.

4.4 Limitations and challenges

Although LCMAP Collection 1.0 products have been proven
to be successful in detecting various land surface changes
to support research applications related to environment and
ecology conditions, limitations and challenges exist. Utiliz-
ing Landsat ARD data as input provided consistent time se-
ries Landsat imagery with high-level geometric and radio-
metric quality for implementing the CCDC method. Never-
theless, the densities of Landsat observation records varied
greatly across space and time due to spatial differences in
Landsat scene overlap and temporal coverage, as well as re-
gional differences in contamination by clouds, cloud shad-
ows, and snow. The change detection accuracies of CCD
models were highly influenced by the temporal frequency
of available observations. Zhou et al. (2019) found that us-
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Table 3. Confusion matrix for CONUS (all years combined) where cell entries represent percent of CONUS area. Overall accuracy is 82.5 %
(±0.22 %). Standard errors for user’s and producer’s accuracies are shown in parentheses and n is the number of sample pixels for each row
and column.

Map Devel. Crop. Grass/shrub Tree Water Wetland Ice/snow Barren Total User n

(SE)

Devel. 3.000 0.139 0.321 0.377 0.024 0.035 0.001 3.896 77 32 102
(1.2)

Crop. 0.918 16.527 5.061 0.799 0.027 0.368 0.003 23.702 70 195 283
(0.6)

Grass/shrub 0.368 0.757 30.649 2.599 0.045 0.229 0.332 34.980 88 288 197
(0.3)

Tree 0.340 0.143 1.414 23.387 0.049 0.579 0.006 25.917 90 213 531
(0.3)

Water 0.013 0.008 0.048 0.024 4.788 0.067 0.020 4.968 96 40 932
(0.5)

Wetland 0.062 0.129 0.361 0.944 0.172 3.688 0.001 5.357 69 44 136
(1.3)

Ice/snow 0.004 0.004 0.004 0.012 0.004 0.028 43 231
(18.7)

Barren 0.072 0.005 0.501 0.013 0.056 0.012 0.492 1.151 43 9485
(2.8)

Total 4.772 17.707 38.358 28.149 5.162 4.981 0.012 0.859 100.00

Prod 63 93 80 83 93 74 100 57
(SE) (1.3) (0.3) (0.4) (0.4) (0.7) (1.2) (0) (3.2)

n 39 319 145 886 316 027 231 916 42 530 41 042 99 7078

ing harmonized Landsat 8 and Sentinel-2 data increased the
temporal frequency of the data and thus enhanced the abil-
ity to model seasonal variation and derived better change
detection results than using Landsat data alone. Integrating
multi-mission data could provide the opportunity to enhance
change detection, especially for the land cover types that are
highly dynamic or in frequently cloudy/snowy areas.

Providing only eight general land cover classes and their
changes in LCMAP Collection 1.0 products limits the us-
age of the product in some applications that need a higher
level of thematic land cover detail. For example, shrub and
grass are two major vegetation types and have different eco-
logical functions, but they are not delineated separately in
LCMAP Collection 1.0 products. Lack of measurement of
grassland–shrub transition constrains the study of shrub en-
croachment, which is a symptom of land degradation. How-
ever, the NLCD 2001 level I land cover product had different
mapping accuracies for different land cover types in different
ecological regions (Wickham et al., 2010). For example, the
grass mapping accuracies were higher in the eastern regions
than they were in most western mapping regions. The ac-
curacies of shrub cover had similar variation patterns across
CONUS. These accuracy variations suggest uncertainties in

the products, especially in most western regions where grass
and shrub are more difficult to separate. Combining grass and
shrub from the NLCD 2001 product reduced uncertainties in-
troduced by the two individual components and made the ac-
curacy of the grass/shrub product in LCMAP relatively high
and consistent across CONUS (Stehman et al., 2021). NLCD
has established new efforts to improve mapping accuracies
by adding innovative approaches for land cover classifica-
tion and introducing continuous rangeland products in west-
ern CONUS for NLCD thematic land cover products since
2001 (Homer et al., 2020). The use of new NLCD products
as the training data will support LCMAP to produce more
land cover types including separating grass and shrub in the
future.

Adopting the NLCD land cover product as the training
data source efficiently provided abundant training samples
to deliver a land cover product with high classification ac-
curacy. Selecting a sufficient size of training samples is im-
portant for CCDC models to obtain accurate classification.
Previous land cover post-classification analysis suggested
that the overall classification accuracy increased when the
training samples increased (Gong et al., 2020). The recent
global land cover classification also suggested that the ap-
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Table 4. Overall per class agreement as percentages between 1985 and 2017.

Overall per class Developed Cropland Grass/shrub Tree Water Wetland Snow/ice Barren
agreement

1985 66 80 83 87 95 72 60 49
1986 67 80 83 87 95 72 60 49
1987 68 80 83 86 95 72 60 49
1988 68 80 83 87 95 72 60 49
1989 68 80 84 87 95 72 60 48
1990 68 80 84 87 95 72 60 48
1991 68 80 84 87 95 72 60 49
1992 69 80 84 87 95 71 60 50
1993 69 80 84 87 95 71 60 49
1994 69 80 84 87 95 71 60 49
1995 70 80 84 87 95 72 60 49
1996 69 80 84 87 95 72 60 48
1997 70 80 84 87 95 72 60 49
1998 70 80 84 87 94 72 60 48
1999 70 80 84 87 95 72 60 48
2000 70 80 84 87 95 72 60 48
2001 70 80 84 87 95 72 60 49
2002 70 80 84 86 95 72 60 49
2003 70 80 84 87 94 71 60 48
2004 69 80 84 86 94 71 60 48
2005 70 80 84 86 94 71 60 49
2006 70 79 84 86 94 71 60 49
2007 70 79 84 86 94 71 60 50
2008 70 79 84 86 94 71 60 49
2009 70 79 84 86 94 71 60 49
2010 70 79 84 86 94 71 60 50
2011 70 79 84 86 94 71 60 51
2012 70 79 83 86 94 71 60 50
2013 69 79 83 86 94 71 60 50
2014 69 79 83 86 94 71 60 50
2015 69 79 83 86 94 71 60 50
2016 69 79 83 86 94 71 60 50
2017 69 78 83 85 94 70 60 49

propriate training sample size for a mapping extent of three
158 km× 158 km tiles should be larger than 60 000 (Zhang et
al., 2021). For the LCMAP land cover classification, a much
larger training size was utilized to ensure that these train-
ing samples could represent landscape features in the clas-
sification tiles. However, these training data were randomly
selected from the NLCD land cover product, suggesting er-
rors could potentially be carried over to the training samples
due to potential errors in the training source. Besides un-
certainties in training data, some obvious challenges such as
class definitional differences between pasture/hay and grass-
land between NLCD and LCMAP could potentially be car-
ried over to the LCMAP land cover product. Implementing
training data by reducing uncertainties and potential errors in
a more consistent and accurate way is critical to strengthen
land cover classification and to improve the scientific quality
of LCMAP products in the future.

There are apparent shifts in some land cover types, espe-
cially in snow/ice and barren (Fig. 7), and a decline in overall
agreement (Fig. 10) in 2017, the last year of the Collection
1.0 product. The last year’s product is usually provisional be-
cause limited Landsat observations are available at the end of
a time series. The CCDC requires at least 24 clear observa-
tions to create full models for change detection and classi-
fication. Without sufficient clear observations, the algorithm
could not produce model breaks accurately. Therefore, in the
last year of a time series, the rule-based assignment is imple-
mented to label land cover for these pixels that do not have
enough observations to build a time series model. Both pri-
mary and secondary land cover classes are assigned from the
last identified primary and secondary classes.
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5 Data availability

The LCMAP products generated in this paper are available
at https://earthexplorer.usgs.gov/ (last access: 30 Novem-
ber 2021). All LCMAP land change products are mo-
saicked for the conterminous United States in the Geo-
TIFF format. Find exact data as described here at
https://doi.org/10.5066/P9W1TO6E (LCMAP, 2021). The
reference dataset used for the product validation is also
available at https://doi.org/10.5066/P98EC5XR (Pengra et
al., 2020a).

6 Conclusions

The continuous Landsat observations spanning from the
1980s to the present, new generations of change detection
and classification models, and systems capable of process-
ing large-volume data are offering unprecedented opportuni-
ties to characterize land cover and detect land surface change
consistently and accurately. Additionally, the collection of
reference data used to validate land cover products provides
validation results for each land cover category annually. To
capture the variability in landscape condition and its re-
sponses to different disturbances, land cover and land surface
change datasets need to be produced over a large geographic
scale. LCMAP has produced a suite of land change prod-
ucts at a 30 m resolution including the reference dataset in
the United States. In that context, LCMAP was developed to
generate an essential dataset to meet broad scientific research
and resource management needs. Using the CCDC algorithm
and Landsat ARD to determine whether change has occurred
at any given point in the observation record, LCMAP pro-
duced annual land cover and change datasets for the conter-
minous United States in a robust manner. These new datasets
and the novel production systems will allow for a new gener-
ation of research and applications in connecting time series
remote sensing observations with land surface change at a
much finer scale than previously possible.
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