Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1257-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-1257-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost, active layer, and meteorological data (2010–2020) at the Mahan Mountain relict permafrost site of northeastern Qinghai–Tibet Plateau
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou 511458, China
Changwei Xie
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Xiaofan Zhu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Wu Wang
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Ren Li
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Amin Wen
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Dong Wang
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Peiqing Lou
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Chengpeng Shang
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Yune La
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Xianhua Wei
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Xin Ma
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Yongping Qiao
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Xiaodong Wu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Qiangqiang Pang
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Guojie Hu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resource, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Related authors
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Xiangfei Li, Tonghua Wu, Xiaodong Wu, Jie Chen, Xiaofan Zhu, Guojie Hu, Ren Li, Yongping Qiao, Cheng Yang, Junming Hao, Jie Ni, and Wensi Ma
Geosci. Model Dev., 14, 1753–1771, https://doi.org/10.5194/gmd-14-1753-2021, https://doi.org/10.5194/gmd-14-1753-2021, 2021
Short summary
Short summary
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost site on the Qinghai–Tibet Plateau (QTP) was conducted. The general performance of the Noah-MP model for snow cover events (SCEs), soil temperature (ST) and soil liquid water content (SLW) was assessed, and the sensitivities of parameterization schemes at different depths were investigated. We show that Noah-MP tends to overestimate SCEs and underestimate ST and topsoil SLW on the QTP.
Jianting Zhao, Lin Zhao, Zhe Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
The Cryosphere, 19, 4211–4236, https://doi.org/10.5194/tc-19-4211-2025, https://doi.org/10.5194/tc-19-4211-2025, 2025
Short summary
Short summary
We used the Moving-Grid Permafrost Model (MVPM) to simulate the permafrost thermal regime in West Kunlun (55,669 km², NW Qinghai–Tibet Plateau), driven by remote-sensing-based land surface temperature (LST; 1980–2022). The model showed high accuracy and stability. Despite ongoing warming (+0.40 °C per decade), permafrost extent remained stable, reflecting delayed deep responses. The permafrost thermal regime reveals altitude- and soil-dependent responses to climate change and offers valuable insights into thermal states in data-scarce regions.
Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, and Wangping Li
Earth Syst. Sci. Data, 17, 1731–1742, https://doi.org/10.5194/essd-17-1731-2025, https://doi.org/10.5194/essd-17-1731-2025, 2025
Short summary
Short summary
This study provides baseline data of permafrost temperature at 15 m depth on the Qinghai–Tibetan Plateau (QTP) over the period 2010–2019 at a spatial resolution of nearly 1 km, using 231 borehole records and a machine learning method. The average MAGT15 m of the QTP permafrost was −1.85 °C, with 90 % of the values ranging from −5.1 to −0.1 °C and 51.2 % exceeding −1.5 °C. The data can serve as a crucial boundary condition for deeper permafrost assessments and a reference for model simulations.
Yuqi Zhu, Chao Liu, Rui Liu, Hanxi Wang, Xiangwen Wu, Zihao Zhang, Shuying Zang, and Xiaodong Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-126, https://doi.org/10.5194/egusphere-2025-126, 2025
Short summary
Short summary
Water-soluble organic carbon (WSOC) is crucial in boreal forests, but its behavior across soil depths is poorly understood. Our study found that shallow soils contain complex WSOC molecules with high biodegradability, while deeper soils have simpler molecules that are also highly biodegradable. These results reveal the significant role of WSOC in carbon cycling across soil layers, improving our understanding of carbon dynamics in boreal ecosystems impacted by climate change.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022, https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Short summary
Permafrost has been warming and thawing globally; this is especially true in boundary regions. We focus on the changes and variability in permafrost distribution and thermal dynamics in the northern limit of permafrost on the Qinghai–Tibet Plateau (QTP) by applying a new permafrost model. Unlike previous papers on this topic, our findings highlight a slow, decaying process in the response of permafrost in the QTP to a warming climate, especially regarding areal extent.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Xiangfei Li, Tonghua Wu, Xiaodong Wu, Jie Chen, Xiaofan Zhu, Guojie Hu, Ren Li, Yongping Qiao, Cheng Yang, Junming Hao, Jie Ni, and Wensi Ma
Geosci. Model Dev., 14, 1753–1771, https://doi.org/10.5194/gmd-14-1753-2021, https://doi.org/10.5194/gmd-14-1753-2021, 2021
Short summary
Short summary
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost site on the Qinghai–Tibet Plateau (QTP) was conducted. The general performance of the Noah-MP model for snow cover events (SCEs), soil temperature (ST) and soil liquid water content (SLW) was assessed, and the sensitivities of parameterization schemes at different depths were investigated. We show that Noah-MP tends to overestimate SCEs and underestimate ST and topsoil SLW on the QTP.
Cited articles
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Britta,
A., Sannel, K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A.,Wu, Q.,
Yoshikawa, K., Zheleznyak,M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S., Bornemann, N., Morgenstern, A., Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., Burke, E., and Kutzbach, L.: A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models, Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, 2019.
Burn, C. R. and Smith, C. A. S.: Observations of the “thermal offset” in
near-surface mean annual ground temperatures at several sites near Mayo,
Yukon Territory, Canada, Arctic, 41, 99–104, 1988.
Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., and Yang, X.: Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China, Earth Syst. Sci. Data, 11, 1483–1499, https://doi.org/10.5194/essd-11-1483-2019, 2019.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res.-Earth, 112, 1–10, https://doi.org/10.1029/2006JF000631, 2007.
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., Zou, D., Jin, H., Li, X., and Wu, Q.: Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau, Chin. Sci. Bull., 64, 2783–2795. https://doi.org/10.1360/TB-2019-0191, 2019.
Ding, Y., Zhang, S., Zhao, L., Li, Z., and Kang, S.: Global warming
weakening the inherent stability of glaciers and permafrost, Sci. Bull.,
64, 245–253, https://doi.org/10.1016/j.scib.2018.12.028,
2019.
Domine, F., Lackner, G., Sarrazin, D., Poirier, M., and Belke-Brea, M.: Meteorological, snow and soil data (2013–2019) from a herb tundra permafrost site at Bylot Island, Canadian high Arctic, for driving and testing snow and land surface models, Earth Syst. Sci. Data, 13, 4331–4348, https://doi.org/10.5194/essd-13-4331-2021, 2021.
Dong, X., Xie, C., Zhao, L., Yao, J., and Hu, G.: Characteristics of surface
energy budget components in permafrost region of the Mahan Mountain, Lanzhou, J. Glaciol. Geocryol., 35, 320–326, https://doi.org/10.7522/j.issn.1000-0240.2013.0038, 2013 (in Chinese).
Du, R., Peng, X., Frauenfeld, O. W, Sun, W., Liang, B., Chen, C., Jin, H.,
and Zhao, Y.: The role of peat on permafrost thaw based on field
observation, Catena, 208, 105772,
https://doi.org/10.1016/j.catena.2021.105772, 2022.
Harris, C., Mühll, D. V., Isaksen, K., Haeberli, W., Sollid, J. L.,
King, L., Holmlund, P., Dramis, F., Guglielmin, M., and Palacios, D.:
Warming permafrost in European mountains, Global Planet. Change, 39, 215–225,
https://doi.org/10.1016/j.gloplacha.2003.04.001, 2003.
Hincapié, I. and Germann, P. F., Impact of initial and boundary
conditions on preferential flow, J. Contam. Hydrol., 104,
67–73, https://doi.org/10.1016/j.jconhyd.2008.10.001, 2009.
Hinzman, L. D., Kane, D. L., and Gieck, R. E: Hydrologic and thermal
properties of the active layer in the Alaskan Arctic, Cold Reg. Sci.
Technol., 19, 95–110, https://doi.org/10.1016/0165-232X(91)90001-W, 1991.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hu, G., Zhao, L., Li, R., Wu, T., Pang, Q., Wu, X., Qiao, Y., and Shi J.:
Characteristics of hydro-thermal transfer during freezing and thawing period
in permafrost regions, Soils, 46, 355–360, 2014 (in Chinese with English
abstract).
Indoria, A. K., Sharma, K. L., and Reddy, K. S.: Hydraulic properties of soil
under warming climate, in: Climate Change and Soil Interactions, edited by:
Prasad, M. N. V. and Pietrzykowski, M., Elsevier, 473–508,
https://doi.org/10.1016/B978-0-12-818032-7.00018-7, 2020.
Kane, D. L., Hinzman, L. D., and Zarling J. P: Thermal response of the
active layer to climatic warming in a permafrost environment, Cold Reg. Sci.
Technol., 19, 111–122, https://doi.org/10.1016/0165-232X(91)90002-X, 1991.
Li, S. D.: Permafrost found on Mahan Mountains near Lanzhou, J.
Glaciol. Geocryol., 8, 409–410, 1986 (in Chinese).
Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang,
M., and Bao, Q.: CASEarth Poles: Big Data for the Three Poles, B. Am.
Meteorol. Soc., 101, E1475–E1491, https://doi.org/10.1175/BAMS-D-19-0280.1, 2020.
Li, X., Cheng, G., Wang, L., Wang, J., Ran, Y., Che, T., Li, G., He, H.,
Zhang, Q., Jiang, X., Zou, Z., and Zhao, G.: Boosting geoscience data
sharing in China, Nat. Geosci., 14, 541–542, https://doi.org/10.1038/s41561-021-00808-y, 2021a.
Li, X., Wu, T., Wu, X., Chen, J., Zhu, X., Hu, G., Li, R., Qiao, Y., Yang, C., Hao, J., Ni, J., and Ma, W.: Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai–Tibet Plateau, Geosci. Model Dev., 14, 1753–1771, https://doi.org/10.5194/gmd-14-1753-2021, 2021b.
Li, Z., Li, S., and Wang, Y.: Regional features of permafrost in Mahan
Mountain and their relationship to the environment, J. Glaciol.
Geocryol., 15, 83–89, https://doi.org/10.12785/amis/070422,
1993 (in Chinese).
Liu, W., Xie, C., Zhao, L., Wu, T., Li, R., Wang, W., and Qiao, Y.:
Simulating the active layer depth and analyzing its influence factors in
permafrost of the Mahan Mountain, Lanzhou, J. Glaciol.
Geocryol., 37, 1443–1452, https://doi.org/10.7522/j.isnn.1000-0240.2015.0160, 2015 (in Chinese).
Mathias, S. A., Skaggs, T. H., Quinn, S. A., Egan, S. N. C., Finch, L. E.,
and Oldham, C. D.: A soil moisture accounting-procedure with a Richards'
equation-based soil texture-dependent parameterization, Water Resour. Res.,
51, 506–523, https://doi.org/10.1002/2014WR016144, 2015.
Mu, C., Wu, X., Zhao, Q., Smoak, J. M.,Yang, Y., Hu, L., and Zhang, T.:
Relict mountain permafrost area (LoessPlateau, China) exhibits high
ecosystem respiration rates and accelerating rates in response to warming,
J. Geophys. Res.-Biogeo., 122, 2580–2592, https://doi.org/10.1002/2017JG004060, 2017.
Nauta, A. L., Heijmans, M. M. P. D., Blok, D., Limpens, J., Elberling, B.,
Gallagher, A., Li, B., Petrov, R. E., Maximov, T. C., van Huissteden, J., and
Berendse, F.: Permafrost collapse after shrub removal shifts tundra
ecosystem to a methane source, Nat. Clim. Change, 5, 67–70, https://doi.org/10.1038/nclimate2446, 2015.
Nelson, F. E., Anisimov, O. A., and Shiklomanov, N. I.: Subsidence risk from
thawing permafrost – The threat to man-made structures across regions in the
far north can be monitored, Nature, 410, 889–890, https://doi.org/10.1038/35073746, 2001.
Nelson, F. E., Shiklomanov, N. I., Hinkel, K. M., Christiansen, H. H.: The
Circumpolar active layer monitoring (CALM) Workshop and THE CALM II Program,
Polar Geogr., 28, 253–266, https://doi.org/10.1080/789610205, 2004.
Nitu, R., Roulet, Y. A., Wolff, M., Earle, M., Reverdin, A., Smith, C., Kochendorfer, J., Morin, S., Rasmussen, R., Wong, K., Alastrué, J., Arnold, L., Baker, B., Buisán, S., Collado, J. L., Colli, M., Collins, B., Gaydos, A., Hannula, H. R., Hoover, J., Joe, P., Kontu, A., Laine, T., Lanza, L., Lanzinger, E., Lee, G. W., Lejeune, Y., Leppänen, L., Mekis, E., Panel, J. M., Poikonen, A., Ryu, S., Sabatini, F., Theriault, J., Yang, D., Genthon, C., van den Heuvel, F., Hirasawa, N., Konishi, H., Motoyoshi, H., Nakai, S., Nishimura, K., Senese, A., and Yamashita, K.: WMO Solid Precipitation Intercomparison
Experiment (SPICE) (2012–2015), Instruments and Observing Methods Rep. 131,
World Meteorological Organization, 21445 pp., https://library.wmo.int/doc_num.php?explnum_id55686 (last access: 17 March 2022), 2018.
Park, H., Kim, Y., and Kimball, J. S.: Widespread permafrost vulnerability
and soil active layer increases over the high northern latitudes inferred
from satellite remote sensing and process model assessments, Remote Sens.
Environ., 175, 349–358, https://doi.org/10.1016/j.rse.2015.12.046, 2016.
Park, H., Launiainen, S., Konstantinov, P. Y., Iijima, Y., and Fedorov, A.
N.: Modeling the effect of moss cover on soil temperature and carbon fluxes
at a tundra site in northeastern Siberia, J. Geophys. Res.-Biogeo.,
123, 3028–3044, https://doi.org/10.1029/2018JG004491, 2018.
Romanovsky, V. E. and Osterkamp, T. E.: Interannual variations of the
thermal regime of the active layer and near-surface permafrost in northern
Alaska, Permafrost Periglac., 6, 313–335, https://doi.org/10.1002/ppp.3430060404, 1995.
Romanovsky, V. E., Drozdov, D. S, Oberman, N. G., Malkova, G. V., Kholodov,
A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev, D. O., Ukraintseva, N.
G., Abramov, A. A., Gilichinsky, D. A. and Vasiliev, A. A.: Thermal state
of permafrost in Russia, Permafrost Periglac., 21, 136–155,
https://doi.org/10.1002/ppp.683, 2010.
Shogren, A. J., Zarnetske, J. P., Abbott, B. W., Bratsman, S., Brown, B., Carey, M. P., Fulweber, R., Greaves, H. E., Haines, E., Iannucci, F., Koch, J. C., Medvedeff, A., O'Donnell, J. A., Patch, L., Poulin, B. A., Williamson, T. J., and Bowden, W. B.: Multi-year, spatially extensive, watershed-scale synoptic stream chemistry and water quality conditions for six permafrost-underlain Arctic watersheds, Earth Syst. Sci. Data, 14, 95–116, https://doi.org/10.5194/essd-14-95-2022, 2022.
Smith, S. L., O'Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V.
E.: The changing thermal state of permafrost, Nat. Rev. Earth Environ., 3,
10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022.
Sun, G. J. and Zhao, S. L.: The study on vegetation of Mahan Mountain in
Gansu, Acta Bot. Boreal.-Occid. Sin., 15, 115–120, 1995 (in Chinese).
Van Everdingen, R. O.: Multi-Language Glossary of Permafrost and Related
Ground-Ice Terms in Chinese, English, French, German, Icelandic, Italian,
Norwegian, Polish, Romanian, Russian, Spanish, and Swedish. International
Permafrost Association, Terminology Working Group, The Arctic Institute of
North America, The University of Calgary, Alberta, Canada, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (last access: 17 March 2022),
1998.
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing
permafrost – a review, Vadose Zone J., 15, vzj2016.01.0010, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Wang, D., Wu, T., Zhao, L., Mu, C., Li, R., Wei, X., Hu, G., Zou, D., Zhu, X., Chen, J., Hao, J., Ni, J., Li, X., Ma, W., Wen, A., Shang, C., La, Y., Ma, X., and Wu, X.: A 1 km resolution soil organic carbon dataset for frozen ground in the Third Pole, Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, 2021.
Westermann, S., Langer, M., and Boike, J.: Spatial and temporal variations
of summer surface temperatures of high-arctic tundra on Svalbard –
Implications for MODIS LST based permafrost monitoring, Remote Sens.
Environ., 115, 908–922, https://doi.org/10.1016/j.rse.2010.11.018, 2011.
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner, G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3, Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, 2016.
Wu, T. and Xie, C.: Permafrost, active layer and meteorological data from a relict permafrost site at Mahan Mountain, Northeast of Qinghai-Tibet Plateau (2010–2020) Version 2.0. National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Cryos.tpdc.271838, 2021.
Xie, C., Gough, W. A., Tam, A., Zhao, L., and Wu, T.: Characteristics and
Persistence of Relict High-Altitude Permafrost on Mahan Mountain, Loess
Plateau, China, Permafrost Periglac., 24, 200–209, https://doi.org/10.1002/ppp.1776, 2013.
Xu, X., Zhang, B., and Tian, J.: Experimental study on the
precipitation-soil water-groundwater transformation in loess hilly region,
Adv. Water Sci., 21, 16–22, 2010 (in Chinese with English abstract).
Zhang, G., Ran, Y., Wan, W., Luo, W., Chen, W., Xu, F., and Li, X.: 100 years of lake evolution over the Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, 2021.
Zhang, T., Heginbottom, J. A., Barry, R. G., and Brown, J.: Further
Statistics on the Distribution of Permafrost and Ground Ice in the Northern
Hemispere, Polar Geogr., 24, 14–19, https://doi.org/10.1080/10889370009377692, 2000.
Zhang, Z., Wu, Q., Xun, X., and Li, Y.: Spatial distribution and changes of
Xing'an permafrost in China over the past three decades, Quaternary Int.,
523, 16–24, https://doi.org/10.1016/j.quaint.2019.06.007, 2019.
Zhao, L. and Sheng, Y. (Eds.): Permafrost Survey Manual, Science Press,
Beijing, China, ISBN: 9787030456113, 2015.
Zhao, L., Wu, Q. B., Marchenko, S. S., and Sharkhuu, N.: Thermal state of
permafrost and active layer in Central Asia during the International Polar
Year, Permafrost Periglac., 21, 198–207, https://doi.org/10.1002/ppp.688, 2010.
Zhao, L., Hu, G., Zou, D., Wu, X., Ma, L., Sun, Z., Yuan, L., Zhou, H., and Liu, S.: Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau, Bull. Chin. Acad. Sci., 34, 1233–1246, https://doi.org/10.16418/j.issn.1000-3045.2019.11.006, 2019.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Zhao, Y., Chen, R., Han, C., Wang, L., Guo, S., and Liu J.: Correcting
precipitation measurements made with Geonor T-200B weighing gauges near the
August-one ice cap in the Qilian Mountains, Northwest China, J.
Hydrometeorol., 22, 1973–1985, https://doi.org/10.1175/JHM-D-20-0271.1, 2021.
Zhu, X., Wu, T., Li, R., Xie, C., Hu, G., Qin, Y., Wang, W., Hao, J., Yang,
S., Ni, J., and Yang, C.: Impacts of summer extreme precipitation events on
the hydrothermal dynamics of the active layer in the Tanggula permafrost
region on the Qinghai-Tibetan Plateau, J. Geophys. Res.-Atmos., 122,
1154911567,https://doi.org/10.1002/2017JD026736, 2017.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
We presented an 11-year time series of meteorological, active layer, and permafrost data at the Mahan Mountain relict permafrost site in northeastern Qinghai-Tibet Plateau. From 2010 to 2020, the increasing rate of active layer thickness was 1.8 cm-year and the permafrost temperature showed slight changes. The release of those data would be helpful to understand the impacts of climate change on permafrost in relict permafrost regions and to validate the permafrost models and land surface models.
We presented an 11-year time series of meteorological, active layer, and permafrost data at the...
Special issue
Altmetrics
Final-revised paper
Preprint