Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K.:
Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI,
and Landsat-7 ETM+ top of atmosphere spectral characteristics over the
conterminous United States, Remote Sens. Environ., 221, 274–285,
https://doi.org/10.1016/j.rse.2018.11.012, 2019.
Chiew, F., Prosser, I., and Post, D.: On climate variability and climate
change and impact on water resources, in: MODSIM 2011, 12–16 December 2011, Perth, Australia, Modelling and Simulation Society of Australia and New Zealand, 3553–3559, available at:
http://hdl.handle.net/102.100.100/102035?index=1 (last access: 6 November 2020), 2011.
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger,
J.-C., Skakun, S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2
surface reflectance data set, Remote Sens. Environ., 219, 145–161,
https://doi.org/10.1016/j.rse.2018.09.002, 2018.
Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato,
E., Hagolle, O., Inglada, J., Nicola, L., and Rabaute, T.: Near real-time
agriculture monitoring at national scale at parcel resolution: Performance
assessment of the Sen2-Agri automated system in various cropping systems
around the world, Remote Sens. Environ., 221, 551–568, https://doi.org/10.1016/j.rse.2018.11.007, 2019.
Didan, K. and Barreto, A.: NASA MEaSUREs vegetation index and phenology
(VIP) vegetation indices monthly global 0.05 Deg CMG, NASA EOSDIS Land
Process, DAAC [data set], https://doi.org/10.5067/MEaSUREs/VIP/VIP15.004, 2016.
Ding, M., Chen, Q., Xiao, X., Xin, L., Zhang, G., and Li, L.: Variation in
cropping intensity in northern China from 1982 to 2012 based on GIMMS-NDVI
data, Sustainability, 8, 1123, https://doi.org/10.3390/su8111123, 2016.
Ding, M., Guan, Q., Li, L., Zhang, H., Liu, C., and Zhang, L.:
Phenology-based rice paddy mapping using multi-source satellite imagery and
a fusion algorithm applied to the Poyang Lake Plain, Southern China, Remote
Sens., 12, 1022, https://doi.org/10.3390/rs12061022, 2020.
Dong, J. and Xiao, X.: Evolution of regional to global paddy rice mapping
methods: A review, ISPRS J. Photogramm., 119,
214–227, https://doi.org/10.1016/j.isprsjprs.2016.05.010, 2016.
Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y.,
Wang, J., and Biradar, C.: Tracking the dynamics of paddy rice planting area
in 1986–2010 through time series Landsat images and phenology-based
algorithms, Remote Sens. Environ., 160, 99–113, https://doi.org/10.1016/j.rse.2015.01.004, 2015.
Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar,
C., and Moore III, B.: Mapping paddy rice planting area in northeastern Asia
with Landsat 8 images, phenology-based algorithm and Google Earth Engine,
Remote Sens. Environ., 185, 142–154, https://doi.org/10.1016/j.rse.2016.02.016, 2016.
Eilers, P. H.: A perfect smoother, Anal. Chem., 75, 3631–3636,
2003.
Estel, S., Kuemmerle, T., Levers, C., Baumann, M., and Hostert, P.: Mapping
cropland-use intensity across Europe using MODIS NDVI time series,
Environ. Res. Lett., 11, 024015, https://doi.org/10.1088/1748-9326/11/2/024015, 2016.
FAO, IFAD, UNICEF, WFP, and WHO: The State of Food Security and Nutrition in
the World 2020. Transforming food systems for affordable healthy diets, FAO,
Rome, Italy, https://doi.org/10.4060/ca9692en, 2020.
FAOSTAT: FAOSTAT database, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy [data set], available at:
https://www.fao.org/faostat/en/#data, last access: 4 September 2019.
Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., Van der Velde, M., Kraxner, F., and Obersteiner, M.: Geo-Wiki: An online platform for improving global land cover, Environ. Model Softw., 31, 110–123, https://doi.org/10.1016/j.envsoft.2011.11.015, 2012.
Galdo, V., Lopez-Acevedo, G., and Rama, M.: Conflict and the Composition of
Economic Activity in Afghanistan, World Bank Policy Research Working Paper, The World Bank, Washington, D.C., USA, No. 9188, available at:
https://ssrn.com/abstract=3556240 (last access: 24 February 2021), 2020.
Gommes, R., Wu, B., Li, Z., and Zeng, H.: Design and characterization of
spatial units for monitoring global impacts of environmental factors on
major crops and food security, Food and Energy Security, 5, 40–55,
https://doi.org/10.1002/fes3.73, 2016.
Gommes, R., Wu, B., Zhang, N., Feng, X., Zeng, H., Li, Z., and Chen, B.:
CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on
global agriculture, Int. J. Biometeorol., 61, 199–215,
https://doi.org/10.1007/s00484-016-1199-7, 2017.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang,
X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X.,
Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng,
Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu,
X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., and Chen, J.: Finer resolution observation
and monitoring of global land cover: first mapping results with Landsat TM
and ETM+ data, Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Gray, J., Friedl, M., Frolking, S., Ramankutty, N., Nelson, A., and Gumma,
M. K.: Mapping Asian cropping intensity with MODIS, IEEE J. Sel.
Top. Appl., 7, 3373–3379, https://doi.org/10.1109/JSTARS.2014.2344630, 2014.
Gray, J., Sulla-Menashe, D., and Friedl, M. A.: User guide to collection 6
modis land cover dynamics (mcd12q2) product, NASA EOSDIS Land Processes
DAAC, Missoula, MT, USA, 2019.
Guo, H.: Big Earth data in support of the sustainable development goals
(2019), Science Press and EDP Sciences, Beijing, China, 2021.
Guo, H., Bao, A., Liu, T., Ndayisaba, F., Jiang, L., Kurban, A., and De
Maeyer, P.: Spatial and temporal characteristics of droughts in Central Asia
during 1966–2015, Sci. Total Environ., 624, 1523–1538,
https://doi.org/10.1016/j.scitotenv.2017.12.120, 2018.
Hao, L., Sun, G., Liu, Y., Wan, J., Qin, M., Qian, H., Liu, C., Zheng, J., John, R., Fan, P., and Chen, J.: Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China, Hydrol. Earth Syst. Sci., 19, 3319–3331, https://doi.org/10.5194/hess-19-3319-2015, 2015.
Hao, P.-Y., Tang, H.-J., Chen, Z.-X., Le, Y. U., and Wu, M.-Q.: High
resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2
data, J. Integr. Agr., 18, 2883–2897, https://doi.org/10.1016/S2095-3119(19)62599-2, 2019.
Hinz, R., Sulser, T. B., Hüfner, R., Mason-D'Croz, D., Dunston, S.,
Nautiyal, S., Ringler, C., Schüngel, J., Tikhile, P., and Wimmer, F.:
Agricultural development and land use change in India: A scenario analysis
of trade-offs between UN Sustainable Development Goals (SDGs), Earth's
Future, 8, e2019EF001287, https://doi.org/10.1029/2019EF001287,
2020.
Iizumi, T. and Ramankutty, N.: How do weather and climate influence cropping
area and intensity?, Global Food Security, 4, 46–50, https://doi.org/10.1016/j.gfs.2014.11.003, 2015.
Iqbal, M. W., Donjadee, S., Kwanyuen, B., and Liu, S.-y.: Farmers'
perceptions of and adaptations to drought in Herat Province, Afghanistan,
J. Mt. Sci., 15, 1741–1756, https://doi.org/10.1007/s11629-017-4750-z, 2018.
Jain, M., Mondal, P., DeFries, R. S., Small, C., and Galford, G. L.: Mapping
cropping intensity of smallholder farms: A comparison of methods using
multiple sensors, Remote Sens. Environ., 134, 210–223, https://doi.org/10.1016/j.rse.2013.02.029, 2013.
Jankowski, K., Neill, C., Davidson, E. A., Macedo, M. N., Costa, C.,
Galford, G. L., Santos, L. M., Lefebvre, P., Nunes, D., and Cerri, C. E. P.:
Deep soils modify environmental consequences of increased nitrogen
fertilizer use in intensifying Amazon agriculture, Sci. Rep., 8,
13478, https://doi.org/10.1038/s41598-018-31175-1, 2018.
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M., and Brown, J. R.:
The role of climate variability in Australian drought, Nat. Clim.
Change, 10, 177–179, https://doi.org/10.1038/s41558-020-0718-z,
2020.
Kong, D., Zhang, Y., Gu, X., and Wang, D.: A robust method for
reconstructing global MODIS EVI time series on the Google Earth Engine,
ISPRS J. Photogramm., 155, 13–24, https://doi.org/10.1016/j.isprsjprs.2019.06.014, 2019.
Kontgis, C., Schneider, A., and Ozdogan, M.: Mapping rice paddy extent and
intensification in the Vietnamese Mekong River Delta with dense time stacks
of Landsat data, Remote Sens. Environ., 169, 255–269, https://doi.org/10.1016/j.rse.2015.08.004, 2015.
Köppen, W., Volken, E., and Brönnimann, S.: The thermal zones of the
earth according to the duration of hot, moderate and cold periods and to the
impact of heat on the organic world, Meteorol. Z., 20,
351–360, https://doi.org/10.1127/0941-2948/2011/105, 2011.
Kotsuki, S. and Tanaka, K.: SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI, Hydrol. Earth Syst. Sci., 19, 4441–4461, https://doi.org/10.5194/hess-19-4441-2015, 2015.
Lal, R.: Soil carbon dynamics in cropland and rangeland, Environ.
Poll., 116, 353–362, https://doi.org/10.1016/S0269-7491(01)00211-1, 2002.
Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N.,
Raevksi, G., Hooke, J., Woodcock, R., and Sixsmith, J.: The Australian
geoscience data cube – foundations and lessons learned, Remote Sens. Environ., 202, 276–292, https://doi.org/10.1016/j.rse.2017.03.015, 2017.
Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping
crop cycles in China using MODIS-EVI time series, Remote Sens., 6,
2473–2493, https://doi.org/10.3390/rs6032473, 2014.
Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q., Wu, B., Zhang, M.,
Nabil, M., and Tian, F.: A new framework to map fine resolution cropping
intensity across the globe: Algorithm, validation, and implication, Remote Sens. Environ., 251, 112095, https://doi.org/10.1016/j.rse.2020.112095, 2020.
Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., and Liang, S.: Annual dynamics of global land cover and its long-term changes from 1982 to 2015, Earth Syst. Sci. Data, 12, 1217–1243, https://doi.org/10.5194/essd-12-1217-2020, 2020.
Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., and Qiao, Z.: Mapping
cropping intensity in China using time series Landsat and Sentinel-2 images
and Google Earth Engine, Remote Sens. Environ., 239, 111624,
https://doi.org/10.1016/j.rse.2019.111624, 2020.
Lowder, S. K., Skoet, J., and Raney, T.: The number, size, and distribution
of farms, smallholder farms, and family farms worldwide, World Dev.,
87, 16–29, https://doi.org/10.1016/j.worlddev.2015.10.041,
2016.
Mason-D'Croz, D., Sulser, T. B., Wiebe, K., Rosegrant, M. W., Lowder, S. K.,
Nin-Pratt, A., Willenbockel, D., Robinson, S., Zhu, T., and Cenacchi, N.:
Agricultural investments and hunger in Africa modeling potential
contributions to SDG2–Zero Hunger, World Dev., 116, 38–53,
https://doi.org/10.1016/j.worlddev.2018.12.006, 2019.
Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Arai,
E., del Bon Espirito-Santo, F., Freitas, R., and Morisette, J.: Cropland
expansion changes deforestation dynamics in the southern Brazilian Amazon,
P. Natl. Acad. Sci. USA, 103, 14637–14641,
https://doi.org/10.1073/pnas.0606377103, 2006.
Nabil, M., Zhang, M., Bofana, J., Wu, B., Stein, A., Dong, T., Zeng, H., and
Shang, J.: Assessing factors impacting the spatial discrepancy of remote
sensing based cropland products: A case study in Africa, Int.
J. Appl. Earth Obs., 85, 102010,
https://doi.org/10.1016/j.jag.2019.102010, 2020.
Oliver, M. A. and Webster, R.: Kriging: a method of interpolation for
geographical information systems, Int. J. Geogr.
Inf. Syst., 4, 313–332, https://doi.org/10.1080/02693799008941549, 1990.
Pielke Sr., R. A., Adegoke, J. O., Chase, T. N., Marshall, C. H., Matsui, T.,
and Niyogi, D.: A new paradigm for assessing the role of agriculture in the
climate system and in climate change, Agr. Forest Meteorol.,
142, 234–254, https://doi.org/10.1016/j.agrformet.2006.06.012,
2007.
Qiu, S., Zhu, Z., and He, B.: Fmask 4.0: Improved cloud and cloud shadow
detection in Landsats 4–8 and Sentinel-2 imagery, Remote Sens. Environ., 231, 111205, https://doi.org/10.1016/j.rse.2019.05.024, 2019.
Ray, D. K. and Foley, J. A.: Increasing global crop harvest frequency:
recent trends and future directions, Environ. Res. Lett., 8,
044041, https://doi.org/10.1088/1748-9326/8/4/044041, 2013.
Richardson, A. D., Hufkens, K., Milliman, T., and Frolking, S.:
Intercomparison of phenological transition dates derived from the PhenoCam
Dataset V1. 0 and MODIS satellite remote sensing, Sci. Rep., 8,
5679, https://doi.org/10.1038/s41598-018-23804-6, 2018a.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M.,
Gray, J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., and Kosmala,
M.: Tracking vegetation phenology across diverse North American biomes using
PhenoCam imagery, Scientific Data, 5, 180028, https://doi.org/10.1038/sdata.2018.28, 2018b.
Rivera, J. A., Otta, S., Lauro, C., and Zazulie, N.: A decade of
hydrological drought in Central-Western Argentina, Frontiers in Water, 3,
640544, https://doi.org/10.3389/frwa.2021.640544, 2021.
Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y.-A., Mushore,
T. D., and Gupta, A.: Impacts of drough
t on vegetation assessed by
vegetation indices and meteorological factors in Afghanistan, Remote
Sens., 12, 2433, https://doi.org/10.3390/rs12152433, 2020.
Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A.,
Frolking, S., and Richardson, A. D.: Tracking vegetation phenology across
diverse biomes using Version 2.0 of the PhenoCam Dataset, Scientific Data,
6, 222, https://doi.org/10.1038/s41597-019-0229-9, 2019.
Sherrod, L. A., Peterson, G. A., Westfall, D. G., and Ahuja, L. R.: Cropping
intensity enhances soil organic carbon and nitrogen in a no-till
agroecosystem, Soil Sci. Soc. Am. J., 67, 1533–1543,
https://doi.org/10.2136/sssaj2003.1533, 2003.
Siebert, S., Portmann, F. T., and Döll, P.: Global patterns of cropland
use intensity, Remote Sens., 2, 1625–1643, https://doi.org/10.3390/rs2071625, 2010.
Singha, M., Dong, J., Zhang, G., and Xiao, X.: High resolution paddy rice
maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data,
Scientific Data, 6, 26, https://doi.org/10.1038/s41597-019-0036-3, 2019.
Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson,
A., Khan, A., Adusei, B., Stehman, S. V., and Hansen, M. C.: National-scale
soybean mapping and area estimation in the United States using medium
resolution satellite imagery and field survey, Remote Sens.
Environ., 190, 383–395, https://doi.org/10.1016/j.rse.2017.01.008, 2017.
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., and
Brisco, B.: Google Earth Engine for geo-big data applications: A
meta-analysis and systematic review, ISPRS J. Photogramm., 164, 152–170, https://doi.org/10.1016/j.isprsjprs.2020.04.001, 2020.
Tilman, D., Balzer, C., Hill, J., and Befort, B. L.: Global food demand and
the sustainable intensification of agriculture, P. Natl.
Acad. Sci. USA, 108, 20260–20264, https://doi.org/10.1073/pnas.1116437108, 2011.
UN: Transforming our world: the 2030 Agenda for Sustainable Development, UN
General Assembly, United Nations, New York, NY, USA, 2015.
Waha, K., Dietrich, J. P., Portmann, F. T., Siebert, S., Thornton, P. K.,
Bondeau, A., and Herrero, M.: Multiple cropping systems of the world and the
potential for increasing cropping intensity, Global Environ. Change,
64, 102131, https://doi.org/10.1016/j.gloenvcha.2020.102131,
2020.
Waldner, F., De Abelleyra, D., Verón, S. R., Zhang, M., Wu, B.,
Plotnikov, D., Bartalev, S., Lavreniuk, M., Skakun, S., and Kussul, N.:
Towards a set of agrosystem-specific cropland mapping methods to address the
global cropland diversity, Int. J. Remote Sens., 37,
3196–3231, https://doi.org/10.1080/01431161.2016.1194545, 2016.
Whitcraft, A. K., Vermote, E. F., Becker-Reshef, I., and Justice, C. O.:
Cloud cover throughout the agricultural growing season: Impacts on passive
optical earth observations, Remote Sens. Environ., 156, 438–447,
https://doi.org/10.1016/j.rse.2014.10.009, 2015.
Whitcraft, A. K., Becker-Reshef, I., Justice, C. O., Gifford, L., Kavvada,
A., and Jarvis, I.: No pixel left behind: Toward integrating Earth
Observations for agriculture into the United Nations Sustainable Development
Goals framework, Remote Sens. Environ., 235, 111470, https://doi.org/10.1016/j.rse.2019.111470, 2019.
Wu, B., Ahmed, S., and He, C.: Shared Agronomic Information Community for
the Belt and Road Initiative, Bulletin of Chinese Academy of Sciences, 32,
34–41, 2017.
Wu, W., Yu, Q., You, L., Chen, K., Tang, H., and Liu, J.: Global cropping
intensity gaps: Increasing food production without cropland expansion, Land
Use Policy, 76, 515–525, https://doi.org/10.1016/j.landusepol.2018.02.032, 2018.
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W.,
and Moore Iii, B.: Mapping paddy rice agriculture in southern China using
multi-temporal MODIS images, Remote Sens. Environ., 95, 480–492,
https://doi.org/10.1016/j.rse.2004.12.009, 2005.
Xie, Y., Lark, T. J., Brown, J. F., and Gibbs, H. K.: Mapping irrigated
cropland extent across the conterminous United States at 30 m resolution
using a semi-automatic training approach on Google Earth Engine, ISPRS
J. Photogramm., 155, 136–149, https://doi.org/10.1016/j.isprsjprs.2019.07.005, 2019.
Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P.,
Oliphant, A., Congalton, R. G., Yadav, K., and Gorelick, N.: Nominal 30 m
cropland extent map of continental Africa by integrating pixel-based and
object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth
Engine, Remote Sens., 9, 1065, https://doi.org/10.3390/rs9101065, 2017.
Yan, H., Xiao, X., Huang, H., Liu, J., Chen, J., and Bai, X.: Multiple
cropping intensity in China derived from agro-meteorological observations
and MODIS data, Chinese Geogr. Sci., 24, 205–219, https://doi.org/10.1007/s11769-013-0637-2, 2014.
Yan, H., Liu, F., Qin, Y., Doughty, R., and Xiao, X.: Tracking the
spatio-temporal change of cropping intensity in China during 2000–2015,
Environ. Res. Lett., 14, 035008, https://doi.org/10.1088/1748-9326/aaf9c7, 2019.
Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F.,
Guan, K., Jintrawet, A., and Wood, E. F.: Highland cropland expansion and
forest loss in Southeast Asia in the twenty-first century, Nat.
Geosci., 11, 556–562, https://doi.org/10.1038/s41561-018-0166-9, 2018.
Zhang, M. and Liu, C.: The script of core GCI30 algorithm on Google Earth Engine, Google Earth Engine (GEE) [code], available at:
https://code.earthengine.google.com/64f569c03f8fd633a896a3ec6f56b89a, last access: 29 September 2021.
Zhang, M., Wu, B., Meng, J., Dong, T., and You, X.: Fallow land mapping for
better crop monitoring in Huang-Huai-Hai Plain using HJ-1 CCD data, IOP Conf. Ser.: Earth Environ. Sci., 17, 012048,
https://doi.org/10.1088/1755-1315/17/1/012048, 2014a.
Zhang, M., Wu, B., Yu, M., Zou, W., and Zheng, Y.: Crop condition assessment
with adjusted NDVI using the uncropped arable land ratio, Remote Sens., 6,
5774–5794, https://doi.org/10.3390/rs6065774, 2014b.
Zhang, M., Wu, B., Zeng, H., He, G., Liu, C., Nabil, M., Tian, F., Bofana,
J., Wang, Z., and Yan, N.: GCI30: Global Cropping Intensity at 30 m
resolution (2), V2, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/86M4PO,
2020.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H., McVicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global
evapotranspiration and gross primary production in 2002–2017, Remote Sens. Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection
in Landsat imagery, Remote Sens. Environ., 118, 83–94, https://doi.org/10.1016/j.rse.2011.10.028, 2012.
Zohaib, M. and Choi, M.: Satellite-based global-scale irrigation water use
and its contemporary trends, Sci. Total Environ., 714, 136719,
https://doi.org/10.1016/j.scitotenv.2020.136719, 2020.