Articles | Volume 13, issue 10
Earth Syst. Sci. Data, 13, 4799–4817, 2021
https://doi.org/10.5194/essd-13-4799-2021
Earth Syst. Sci. Data, 13, 4799–4817, 2021
https://doi.org/10.5194/essd-13-4799-2021
Data description paper
21 Oct 2021
Data description paper | 21 Oct 2021

GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery

Miao Zhang et al.

Related authors

CALC-2020: a new baseline land cover map at 10 m resolution for the circumpolar Arctic
Chong Liu, Xiaoqing Xu, Xuejie Feng, Xiao Cheng, Caixia Liu, and Huabing Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-224,https://doi.org/10.5194/essd-2022-224, 2022
Preprint under review for ESSD
Short summary
Synthesis of global actual evapotranspiration from 1982 to 2019
Abdelrazek Elnashar, Linjiang Wang, Bingfang Wu, Weiwei Zhu, and Hongwei Zeng
Earth Syst. Sci. Data, 13, 447–480, https://doi.org/10.5194/essd-13-447-2021,https://doi.org/10.5194/essd-13-447-2021, 2021
Short summary
A NEW INDEX FOR IDENTIFYING WATER BODY FROM SENTINEL-2 SATELLITE REMOTE SENSING IMAGERY
W. Jiang, Y. Ni, Z. Pang, G. He, J. Fu, J. Lu, K. Yang, T. Long, and T. Lei
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 33–38, https://doi.org/10.5194/isprs-annals-V-3-2020-33-2020,https://doi.org/10.5194/isprs-annals-V-3-2020-33-2020, 2020
STUDY ON THE WATER BODY EXTRACTION USING GF-1 DATA BASED ON ADABOOST INTEGRATED LEARNING ALGORITHM
J. Y. Sun, G. Z. Wang, G. J. He, D. C. Pu, W. Jiang, T. T. Li, and X. F. Niu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 641–648, https://doi.org/10.5194/isprs-archives-XLII-3-W10-641-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-641-2020, 2020
DETECTING WATER BODIES IN LANDSAT8 OLI IMAGE USING DEEP LEARNING
W. Jiang, G. He, T. Long, and Y. Ni
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 669–672, https://doi.org/10.5194/isprs-archives-XLII-3-669-2018,https://doi.org/10.5194/isprs-archives-XLII-3-669-2018, 2018

Related subject area

Land Cover and Land Use
Mapping 10 m global impervious surface area (GISA-10m) using multi-source geospatial data
Xin Huang, Jie Yang, Wenrui Wang, and Zhengrong Liu
Earth Syst. Sci. Data, 14, 3649–3672, https://doi.org/10.5194/essd-14-3649-2022,https://doi.org/10.5194/essd-14-3649-2022, 2022
Short summary
Improving intelligent dasymetric mapping population density estimates at 30 m resolution for the conterminous United States by excluding uninhabited areas
Jeremy Baynes, Anne Neale, and Torrin Hultgren
Earth Syst. Sci. Data, 14, 2833–2849, https://doi.org/10.5194/essd-14-2833-2022,https://doi.org/10.5194/essd-14-2833-2022, 2022
Short summary
High-resolution map of sugarcane cultivation in Brazil using a phenology-based method
Yi Zheng, Ana Cláudia dos Santos Luciano, Jie Dong, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2065–2080, https://doi.org/10.5194/essd-14-2065-2022,https://doi.org/10.5194/essd-14-2065-2022, 2022
Short summary
GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform
Xiao Zhang, Liangyun Liu, Tingting Zhao, Yuan Gao, Xidong Chen, and Jun Mi
Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022,https://doi.org/10.5194/essd-14-1831-2022, 2022
Short summary
High-resolution land use and land cover dataset for regional climate modelling: a plant functional type map for Europe 2015
Vanessa Reinhart, Peter Hoffmann, Diana Rechid, Jürgen Böhner, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 1735–1794, https://doi.org/10.5194/essd-14-1735-2022,https://doi.org/10.5194/essd-14-1735-2022, 2022
Short summary

Cited articles

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., and Parsian, S.: Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review, IEEE J. Sel. Top. Appl., 13, 5326–5350, https://doi.org/10.1109/JSTARS.2020.3021052, 2020. 
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. 
Becker, M. and Johnson, D. E.: Cropping intensity effects on upland rice yield and sustainability in West Africa, Nutr. Cycl. Agroecosys., 59, 107–117, https://doi.org/10.1023/A:1017551529813, 2001. 
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. 
Challinor, A. J., Parkes, B., and Ramirez-Villegas, J.: Crop yield response to climate change varies with cropping intensity, Glob. Change Biol., 21, 1679–1688, https://doi.org/10.1111/gcb.12808, 2015. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.